Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Lipids Health Dis ; 23(1): 205, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951804

ABSTRACT

BACKGROUND: Glycerophospholipids (GPLs) are essential for cell membrane structure and function. Sphingomyelin and its metabolites regulate cell growth, apoptosis, and stress responses. This study aimed to investigate lipid metabolism in patients experiencing sudden sensorineural hearing loss across all frequencies (AF-SSNHL). METHODS: The study included 60 patients diagnosed with unilateral AF-SSNHL, among whom 30 patients had a level of hearing improvement ≥ 15 dB after 6 months of follow-up. A propensity score-matched (2:1) control group was used. Liquid chromatography‒mass spectrometry based untargeted lipidomics analysis combined with multivariate statistics was performed to investigate the lipids change. The "lipidome" R package and weighted gene co-expression network analysis (WGCNA) were utilised to assess the lipids' structural features and the association between lipids and hearing. RESULTS: Lipidomics successfully differentiated the AF-SSNHL group from the control group, identifying 17 risk factors, mainly including phosphatidylcholine (PC), phosphatidylethanolamine (PE), and related metabolites. The ratios of lysophosphatidylcholine/PC, lysophosphatidylethanolamine/PE, and lysodimethylphosphatidylethanolamine/PE were upregulated, while some glycerophospholipid (GPL)-plasmalogens were downregulated in the AF-SSNHL group, indicating abnormal metabolism of GPLs. Trihexosylceramide (d34:1), PE (18:1e_22:5), and sphingomyelin (d40:3) were significantly different between responders and nonresponders, and positively correlated with hearing improvement. Additionally, the results of the WGCNA also suggested that partial GPL-plasmalogens were positively associated with hearing improvement. CONCLUSION: AF-SSNHL patients exhibited abnormally high blood lipids and pronounced GPLs metabolic abnormalities. Sphingolipids and GPL-plasmalogens had an association with the level of hearing improvement. By understanding the lipid changes, clinicians may be able to predict the prognosis of hearing recovery and personalize treatment approaches.


Subject(s)
Biomarkers , Hearing Loss, Sensorineural , Lipid Metabolism , Lipidomics , Humans , Female , Male , Middle Aged , Biomarkers/blood , Hearing Loss, Sensorineural/blood , Adult , Hearing Loss, Sudden/blood , Glycerophospholipids/blood , Aged , Phosphatidylethanolamines/blood , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/blood , Phosphatidylcholines/metabolism , Lysophosphatidylcholines/blood , Sphingomyelins/blood , Sphingomyelins/metabolism , Lysophospholipids
2.
J Trace Elem Med Biol ; 85: 127479, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878466

ABSTRACT

BACKGROUND: Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR). METHODS: Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults. Blood essential/probably essential trace elements and lipid metabolites were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULT AND CONCLUSION: Except for LysoPC (O-18:0/0:0), an inverse V shape was observed between body weight and PC and LysoPC species. A Pearson correlation analysis showed that essential/probably-essential metals (Se, Cu, and Ni: r=-0.4∼-0.7) were negatively correlated with PC metabolites but positively correlated with LysoPC (O-18:0/0:0) (Se, Cu, and Ni: r=0.85-0.64). Quantile-g computation showed that one quantile increase in essential metals was associated with a 2.16-fold increase in serum Lp-PLA2 (ß=2.16 (95 % confidence interval (CI): 0.34, 3.98), p=0.023), which are key enzymes involved in PC/Lyso PC metabolism. An interactive analysis showed that compared to those with the lowest levels (reference), individuals with the highest levels of serum PCs (pooled, M2) and the lowest essential/probably essential metals (M1) were associated with a healthier body composition and had a 76 % decreased risk of IR (odds ratio (OR)=0.24 (95 % CI: 0.06, 0.90), p<0.05). In contrast, increased exposure to LysoPC(O-18:0/0:0) (M2) and essential metals (M2) exhibited an 8.22-times highest risk of IR (OR= 8.22 (2.07, 32.57), p<0.05) as well as an altered body composition. In conclusion, overexposure to essential/probably essential trace elements may promote an unhealthy body weight and IR through modulating PC/LysoPC remodeling pathways.


Subject(s)
Body Composition , Insulin Resistance , Phosphatidylcholines , Trace Elements , Humans , Male , Phosphatidylcholines/blood , Phosphatidylcholines/metabolism , Female , Trace Elements/blood , Trace Elements/metabolism , Adult , Middle Aged , Lysophosphatidylcholines/blood , Lysophosphatidylcholines/metabolism
3.
J Hazard Mater ; 475: 134870, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876019

ABSTRACT

Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.


Subject(s)
Air Pollutants , Ozone , Humans , Ozone/toxicity , Male , Female , Adult , Air Pollutants/toxicity , Young Adult , Lysophosphatidylcholines/blood , Glycerophospholipids/blood , Glycerophospholipids/metabolism , Environmental Exposure , Phosphatidylcholines/metabolism , Phosphatidylcholines/blood
4.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732512

ABSTRACT

Non-invasive diagnostics are crucial for the timely detection of renal cell carcinoma (RCC), significantly improving survival rates. Despite advancements, specific lipid markers for RCC remain unidentified. We aimed to discover and validate potent plasma markers and their association with dietary fats. Using lipid metabolite quantification, machine-learning algorithms, and marker validation, we identified RCC diagnostic markers in studies involving 60 RCC and 167 healthy controls (HC), as well as 27 RCC and 74 HC, by analyzing their correlation with dietary fats. RCC was associated with altered metabolism in amino acids, glycerophospholipids, and glutathione. We validated seven markers (l-tryptophan, various lysophosphatidylcholines [LysoPCs], decanoylcarnitine, and l-glutamic acid), achieving a 96.9% AUC, effectively distinguishing RCC from HC. Decreased decanoylcarnitine, due to reduced carnitine palmitoyltransferase 1 (CPT1) activity, was identified as affecting RCC risk. High intake of polyunsaturated fatty acids (PUFAs) was negatively correlated with LysoPC (18:1) and LysoPC (18:2), influencing RCC risk. We validated seven potential markers for RCC diagnosis, highlighting the influence of high PUFA intake on LysoPC levels and its impact on RCC occurrence via CPT1 downregulation. These insights support the efficient and accurate diagnosis of RCC, thereby facilitating risk mitigation and improving patient outcomes.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/diagnosis , Case-Control Studies , Male , Female , Middle Aged , Biomarkers, Tumor/blood , Aged , Fatty Acids, Unsaturated/administration & dosage , Fatty Acids, Unsaturated/blood , Carnitine O-Palmitoyltransferase/metabolism , Adult , Lysophosphatidylcholines/blood , Carnitine/blood , Carnitine/analogs & derivatives , Machine Learning , Lipid Metabolism , Tryptophan/blood
5.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727269

ABSTRACT

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Subject(s)
Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
6.
Exp Dermatol ; 33(5): e15103, 2024 May.
Article in English | MEDLINE | ID: mdl-38794829

ABSTRACT

Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.


Subject(s)
Metabolomics , Principal Component Analysis , Psoriasis , Humans , Psoriasis/blood , Psoriasis/metabolism , Metabolomics/methods , Male , Female , Adult , Middle Aged , Chromatography, Liquid , Betaine/blood , Biomarkers/blood , Tryptophan/blood , Tryptophan/metabolism , Lysophosphatidylcholines/blood , Isoleucine/blood , Uric Acid/blood , Vitamin A/blood , Case-Control Studies , Mass Spectrometry , Dermatitis, Exfoliative/blood , Glycerophospholipids/blood , Discriminant Analysis , Down-Regulation , Least-Squares Analysis , Liquid Chromatography-Mass Spectrometry
7.
Clin Transl Gastroenterol ; 15(6): e1, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38661171

ABSTRACT

INTRODUCTION: Diabetes (T3cDM) secondary to chronic pancreatitis (CP) arises due to endocrine dysfunction and metabolic dysregulations. Currently, diagnostic tests are not available to identify patients who may progress from normoglycemia to hyperglycemia in CP. We conducted plasma metabolomic profiling to diagnose glycemic alterations early in the course of disease. METHODS: Liquid chromatography-tandem mass spectrometry was used to generate untargeted, targeted plasma metabolomic profiles in patients with CP, controls (n = 445) following TRIPOD guidelines. Patients were stratified based on glucose tolerance tests following ADA guidelines. Multivariate analysis was performed using partial least squares discriminant analysis to assess discriminatory ability of metabolites among stratified groups. COMBIROC and logistic regression were used to derive biomarker signatures. AI-ML tool (Rapidminer) was used to verify these preliminary results. RESULTS: Ceramide, lysophosphatidylethanolamine, phosphatidylcholine, lysophosphatidic acid (LPA), phosphatidylethanolamine, carnitine, and lysophosphatidylcholine discriminated T3cDM CP patients from healthy controls with AUC 93% (95% CI 0.81-0.98, P < 0.0001), and integration with pancreatic morphology improved AUC to 100% (95% CI 0.93-1.00, P < 0.0001). LPA, phosphatidylinositol, and ceramide discriminated nondiabetic CP with glycemic alterations (pre-diabetic CP); AUC 66% (95% CI 0.55-0.76, P = 0.1), and integration enhanced AUC to 74% (95% CI 0.55-0.88, P = 0.86). T3cDM was distinguished from prediabetic by LPA, phosphatidylinositol, and sphinganine (AUC 70%; 95% CI 0.54-0.83, P = 0.08), and integration improved AUC to 83% (95% CI 0.68-0.93, P = 0.05). CombiROC cutoff identified 75% and 78% prediabetes in validation 1 and 2 cohorts. Random forest algorithm assessed performance of integrated panel demonstrating AUC of 72% in predicting glycemic alterations. DISCUSSION: We report for the first time that a panel of metabolites integrated with pancreatic morphology detects glycemia progression before HbA1c in patients with CP.


Subject(s)
Biomarkers , Glycated Hemoglobin , Metabolomics , Pancreatitis, Chronic , Prediabetic State , Humans , Male , Pancreatitis, Chronic/blood , Pancreatitis, Chronic/diagnosis , Prediabetic State/blood , Prediabetic State/diagnosis , Female , Middle Aged , Adult , Biomarkers/blood , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Metabolomics/methods , Disease Progression , Lysophospholipids/blood , Lysophospholipids/metabolism , Carnitine/blood , Carnitine/analogs & derivatives , Tandem Mass Spectrometry , Case-Control Studies , Glucose Tolerance Test , Ceramides/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Aged , Chromatography, Liquid , Pancreas/pathology , Pancreas/metabolism , Metabolome , Lysophosphatidylcholines/blood
8.
Biosci Biotechnol Biochem ; 88(6): 648-655, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38490741

ABSTRACT

Lysophosphatidylcholine (LPC) is present in various foods and contains a choline moiety such as in glycerophosphocholine (GPC). However, the potential of LPC as a choline source remains unclear. This study investigated the single-dose pharmacokinetics of 480 mg soy-derived LPC in 12 healthy men compared with that of either soy oil with the same lipid amount (placebo) or GPC with the same choline amount. Both LPC and GPC supplementation increased plasma choline, serum phospholipid, and serum triglyceride concentrations, but neither of them significantly elevated plasma trimethylamine N-oxide concentration. In addition, although the intake of LPC slightly increased plasma LPC16:0, LPC18:2, and total LPC concentrations, their concentrations remained within physiological ranges. No adverse events were attributed to the LPC supplementation. To the best of our knowledge, this study is the first to compare LPC and GPC pharmacokinetics in humans and shows that LPC can be a source of choline.


Subject(s)
Choline , Glycerylphosphorylcholine , Glycine max , Lysophosphatidylcholines , Humans , Male , Lysophosphatidylcholines/blood , Glycerylphosphorylcholine/pharmacokinetics , Glycerylphosphorylcholine/blood , Choline/pharmacokinetics , Choline/blood , Adult , Glycine max/chemistry , Dietary Supplements , Young Adult , Triglycerides/blood , Methylamines/blood , Methylamines/pharmacokinetics
9.
Nutr Metab Cardiovasc Dis ; 34(7): 1807-1816, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38503619

ABSTRACT

BACKGROUND AND AIMS: Obesity has reached epidemic proportions, emphasizing the importance of reliable biomarkers for detecting early metabolic alterations and enabling early preventative interventions. However, our understanding of the molecular mechanisms and specific lipid species associated with childhood obesity remains limited. Therefore, the aim of this study was to investigate plasma lipidomic signatures as potential biomarkers for adolescent obesity. METHODS AND RESULTS: A total of 103 individuals comprising overweight/obese (n = 46) and normal weight (n = 57) were randomly chosen from the baseline ORANGE (Obesity Reduction and Noncommunicable Disease Awareness through Group Education) cohort, having been followed up for a median of 7.1 years. Plasma lipidomic profiling was performed using the UHPLC-HRMS method. We used three different models adjusted for clinical covariates to analyze the data. Clustering methods were used to define metabotypes, which allowed for the stratification of subjects into subgroups with similar clinical and metabolic profiles. We observed that lysophosphatidylcholine (LPC) species like LPC.16.0, LPC.18.3, LPC.18.1, and LPC.20.3 were significantly (p < 0.05) associated with baseline and follow-up BMI in adolescent obesity. The association of LPC species with BMI remained consistently significant even after adjusting for potential confounders. Moreover, applying metabotyping using hierarchical clustering provided insights into the metabolic heterogeneity within the normal and obese groups, distinguishing metabolically healthy individuals from those with unhealthy metabolic profiles. CONCLUSION: The specific LPC levels were found to be altered and increased in childhood obesity, particularly during the follow-up. These findings suggest that LPC species hold promise as potential biomarkers of obesity in adolescents, including healthy and unhealthy metabolic profiles.


Subject(s)
Biomarkers , Body Mass Index , Lipidomics , Lysophosphatidylcholines , Pediatric Obesity , Humans , Lysophosphatidylcholines/blood , Male , Adolescent , Female , Pediatric Obesity/blood , Pediatric Obesity/diagnosis , Biomarkers/blood , Cross-Sectional Studies , Prospective Studies , Child , Age Factors , Predictive Value of Tests , Case-Control Studies , Time Factors
10.
Nat Commun ; 13(1): 124, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013261

ABSTRACT

Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.


Subject(s)
Biomarkers, Tumor/blood , Ceramides/blood , Lipid Metabolism/genetics , Lysophosphatidylcholines/blood , Pancreatic Neoplasms/diagnosis , Sphingomyelins/blood , Biomarkers, Tumor/genetics , CA-19-9 Antigen/blood , Case-Control Studies , Female , Humans , Lipidomics/methods , Male , Multivariate Analysis , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Proportional Hazards Models , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Pancreatic Neoplasms
11.
Ann Neurol ; 91(3): 389-403, 2022 03.
Article in English | MEDLINE | ID: mdl-34979595

ABSTRACT

OBJECTIVE: Cardiac arrest (CA) is a major health burden with brain damage being a significant contributor to mortality. We found lysophosphatidylcholine (LPC), including a species containing docosahexaenoic acid (LPC-DHA), was significantly decreased in plasma post-CA, supplementation of which significantly improved neurological outcomes. The aim of this study is to understand the protective role of LPC-DHA supplementation on the brain post-CA. METHODS: We first evaluated associations between the plasma level of LPC-DHA and neurological injury and outcomes of human patients with CA. We then utilized a rat CA model and cell cultures to investigate therapeutic and mechanistic aspects of plasma LPC-DHA supplementation. RESULTS: We found that decreased plasma LPC-DHA was strongly associated with neurological outcomes and disappearance of the difference between gray and white matter in the brain after CA in human patients. In rats, the decreased plasma LPC-DHA was associated with decreased levels of brain LPC-DHA after CA, and supplementing plasma LPC-DHA normalized brain levels of LPC-DHA and alleviated neuronal cell death, activation of astrocytes, and expression of various inflammatory and mitochondrial dynamics genes. We also observed deceased severity of metabolic alterations with LPC-DHA supplementation using untargeted metabolomics analysis. Furthermore, LPC treatment showed a similar protective effect for neurons and astrocytes in mixed primary brain cell cultures. INTERPRETATION: The observed neuroprotection accompanied with normalized brain LPC-DHA level by plasma supplementation implicate the importance of preventing the decrease of brain LPC-DHA post-CA for attenuating brain injury. Furthermore, the data supports the causative role of decreased plasma LPC-DHA for brain damage after CA. ANN NEUROL 2022;91:389-403.


Subject(s)
Astrocytes/drug effects , Brain Injuries/drug therapy , Cell Death/drug effects , Heart Arrest/complications , Lysophosphatidylcholines/administration & dosage , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Animals , Brain/drug effects , Brain Injuries/blood , Brain Injuries/etiology , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/therapeutic use , Humans , Lysophosphatidylcholines/blood , Lysophosphatidylcholines/therapeutic use , Male , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley
12.
J Clin Lab Anal ; 36(1): e24099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34788474

ABSTRACT

BACKGROUND: Lysophosphatidylcholine (LPC) plays pivotal roles in several physiological processes and their disturbances are closely associated with various disorders. In this study, we described the development and validation of a reliable and simple flow injection analysis-tandem mass spectrometry (FIA-MS/MS)-based method using dried blood spots (DBS) for quantification of four individual LPC (C20:0, C22:0, C24:0, and C26:0). METHODS: Lysophosphatidylcholines were extracted from 3.2 mm DBS with 85% methanol containing 60 ng/ml internal standard using a rapid (30 min) and simple procedure. The analytes and the internal standard were directly measured by triple quadrupole tandem mass spectrometry in multiple reactions monitoring mode via positive electrospray ionization. RESULTS: Method validation results showed good linearity ranging from 50 to 2000 ng/ml for each LPC. Intra- and inter-day precision and accuracy were within the acceptable limits at four quality control levels. Recovery was from 70.5% to 107.0%, and all analytes in DBS were stable under assay conditions (24 h at room temperature and 72 h in autosampler). The validated method was successfully applied to assessment of C20:0-C26:0LPCs in 1900 Chinese neonates. C26:0-LPC levels in this study were consistent with previously published values. CONCLUSION: We propose a simple FIA-MS/MS method for analyzing C20:0-C26:0LPCs in DBS, which can be used for first-tier screening.


Subject(s)
Dried Blood Spot Testing/methods , Flow Injection Analysis/methods , Lysophosphatidylcholines/blood , Neonatal Screening/methods , Tandem Mass Spectrometry/methods , Humans , Infant, Newborn , Linear Models , Reproducibility of Results , Sensitivity and Specificity
13.
Crit Care Med ; 50(2): e199-e208, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34259447

ABSTRACT

OBJECTIVES: Cardiac arrest and subsequent resuscitation have been shown to deplete plasma phospholipids. This depletion of phospholipids in circulating plasma may contribute to organ damage postresuscitation. Our aim was to identify the diminishment of essential phospholipids in postresuscitation plasma and develop a novel therapeutic approach of supplementing these depleted phospholipids that are required to prevent organ dysfunction postcardiac arrest, which may lead to improved survival. DESIGN: Clinical case control study followed by translational laboratory study. SETTING: Research institution. PATIENTS/SUBJECTS: Adult cardiac arrest patients and male Sprague-Dawley rats. INTERVENTIONS: Resuscitated rats after 10-minute asphyxial cardiac arrest were randomized to be treated with lysophosphatidylcholine specie or vehicle. MEASUREMENTS AND MAIN RESULTS: We first performed a phospholipid survey on human cardiac arrest and control plasma. Using mass spectrometry analysis followed by multivariable regression analyses, we found that plasma lysophosphatidylcholine levels were an independent discriminator of cardiac arrest. We also found that decreased plasma lysophosphatidylcholine was associated with poor patient outcomes. A similar association was observed in our rat model, with significantly greater depletion of plasma lysophosphatidylcholine with increased cardiac arrest time, suggesting an association of lysophosphatidylcholine levels with injury severity. Using a 10-minute cardiac arrest rat model, we tested supplementation of depleted lysophosphatidylcholine species, lysophosphatidylcholine(18:1), and lysophosphatidylcholine(22:6), which resulted in significantly increased survival compared with control. Furthermore, the survived rats treated with these lysophosphatidylcholine species exhibited significantly improved brain function. However, supplementing lysophosphatidylcholine(18:0), which did not decrease in the plasma after 10-minute cardiac arrest, had no beneficial effect. CONCLUSIONS: Our data suggest that decreased plasma lysophosphatidylcholine is a major contributor to mortality and brain damage postcardiac arrest, and its supplementation may be a novel therapeutic approach.


Subject(s)
Heart Arrest/metabolism , Lysophosphatidylcholines/analysis , Mass Screening/standards , Phospholipids/analysis , Aged , Aged, 80 and over , Animals , Female , Heart Arrest/blood , Heart Arrest/complications , Humans , Lysophosphatidylcholines/blood , Male , Mass Screening/methods , Mass Screening/statistics & numerical data , Phospholipids/blood , Rats , Rats, Sprague-Dawley , Severity of Illness Index
14.
EBioMedicine ; 74: 103707, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34801968

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a cluster of multiple cardiometabolic risk factors that increase the risk of type 2 diabetes and cardiovascular diseases. Identifying novel biomarkers of MetS and their genetic associations could provide insights into the mechanisms of cardiometabolic diseases. METHODS: Potential MetS-associated metabolites were screened and internally validated by untargeted metabolomics analyses among 693 patients with MetS and 705 controls. External validation was conducted using two well-established targeted metabolomic methods among 149 patients with MetS and 253 controls. The genetic associations of metabolites were determined by linear regression using our previous genome-wide SNP data. Causal relationships were assessed using a one-sample Mendelian Randomization (MR) approach. FINDINGS: Nine metabolites were ultimately found to be associated with MetS or its components. Five metabolites, including LysoPC(14:0), LysoPC(15:0), propionyl carnitine, phenylalanine, and docosapentaenoic acid (DPA) were selected to construct a metabolite risk score (MRS), which was found to have a dose-response relationship with MetS and metabolic abnormalities. Moreover, MRS displayed a good ability to differentiate MetS and metabolic abnormalities. Three SNPs (rs11635491, rs7067822, and rs1952458) were associated with LysoPC(15:0). Two SNPs, rs1952458 and rs11635491 were found to be marginally correlated with several MetS components. MR analyses showed that a higher LysoPC(15:0) level was causally associated with the risk of overweight/obesity, dyslipidaemia, high uric acid, high insulin and high HOMA-IR. INTERPRETATION: We identified five metabolite biomarkers of MetS and three SNPs associated with LysoPC(15:0). MR analyses revealed that abnormal LysoPC metabolism may be causally linked the metabolic risk. FUNDING: This work was supported by grants from the National Key Research and Development Program of China (2017YFC0907004).


Subject(s)
Lysophosphatidylcholines/blood , Metabolic Syndrome/diagnosis , Metabolomics/methods , Polymorphism, Single Nucleotide , Case-Control Studies , Early Diagnosis , Female , Genome-Wide Association Study , Humans , Linear Models , Male , Mendelian Randomization Analysis , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Middle Aged
15.
Lipids Health Dis ; 20(1): 136, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34629052

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and cirrhosis. NAFLD is mediated by changes in lipid metabolism and known risk factors include obesity, metabolic syndrome, and diabetes. The aim of this study was to better understand differences in the lipid composition of individuals with NAFLD compared to controls, by performing direct infusion lipidomics on serum biospecimens from a cohort study of adults in Mexico. METHODS: A nested case-control study was conducted with a sample of 98 NAFLD cases and 100 healthy controls who are participating in an on-going, longitudinal study in Mexico. NAFLD cases were clinically confirmed using elevated liver enzyme tests and liver ultrasound or liver ultrasound elastography, after excluding alcohol abuse, and 100 controls were identified as having at least two consecutive normal alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (< 40 U/L) results in a 6-month period, and a normal liver ultrasound elastography result in January 2018. Samples were analyzed on the Sciex Lipidyzer Platform and quantified with normalization to serum volume. As many as 1100 lipid species can be identified using the Lipidyzer targeted multiple-reaction monitoring list. The association between serum lipids and NAFLD was investigated using analysis of covariance, random forest analysis, and by generating receiver operator characteristic (ROC) curves. RESULTS: NAFLD cases had differences in total amounts of serum cholesterol esters, lysophosphatidylcholines, sphingomyelins, and triacylglycerols (TAGs), however, other lipid subclasses were similar to controls. Analysis of individual TAG species revealed increased incorporation of saturated fatty acyl tails in serum of NAFLD cases. After adjusting for age, sex, body mass index, and PNPLA3 genotype, a combined panel of ten lipids predicted case or control status better than an area under the ROC curve of 0.83. CONCLUSIONS: These preliminary results indicate that the serum lipidome differs in patients with NAFLD, compared to healthy controls, and suggest that assessing the desaturation state of TAGs or a specific lipid panel may be useful clinical tools for the diagnosis of NAFLD.


Subject(s)
Cholesterol/blood , Lysophosphatidylcholines/blood , Non-alcoholic Fatty Liver Disease/blood , Sphingomyelins/blood , Triglycerides/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Cohort Studies , Female , Humans , Lipidomics , Male , Mexico , Middle Aged , ROC Curve
16.
Sci Rep ; 11(1): 13738, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215757

ABSTRACT

We investigated longitudinal associations of moderate-to-vigorous physical activity (MVPA) and light-intensity physical activity (LPA) with plasma concentrations of 138 metabolites after colorectal cancer (CRC) treatment. Self-reported physical activity data and blood samples were obtained at 6 weeks, and 6, 12 and 24 months post-treatment in stage I-III CRC survivors (n = 252). Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQp180 kit). Linear mixed models were used to evaluate confounder-adjusted longitudinal associations. Inter-individual (between-participant differences) and intra-individual associations (within-participant changes over time) were assessed as percentage difference in metabolite concentration per 5 h/week of MVPA or LPA. At 6 weeks post-treatment, participants reported a median of 6.5 h/week of MVPA (interquartile range:2.3,13.5) and 7.5 h/week of LPA (2.0,15.8). Inter-individual associations were observed with more MVPA being related (FDR-adjusted q-value < 0.05) to higher concentrations of arginine, citrulline and histidine, eight lysophosphatidylcholines, nine diacylphosphatidylcholines, 13 acyl-alkylphosphatidylcholines, two sphingomyelins, and acylcarnitine C10:1. No intra-individual associations were found. LPA was not associated with any metabolite. More MVPA was associated with higher concentrations of several lipids and three amino acids, which have been linked to anti-inflammatory processes and improved metabolic health. Mechanistic studies are needed to investigate whether these metabolites may affect prognosis.


Subject(s)
Colorectal Neoplasms/blood , Exercise/physiology , Metabolome/genetics , Aged , Arginine/blood , Cancer Survivors , Carnitine/analogs & derivatives , Carnitine/blood , Citrulline/blood , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Histidine/blood , Humans , Longitudinal Studies , Lysophosphatidylcholines/blood , Male , Middle Aged , Quality of Life , Self Report , Sphingomyelins/blood , Tandem Mass Spectrometry
17.
Mol Nutr Food Res ; 65(17): e2001154, 2021 09.
Article in English | MEDLINE | ID: mdl-34184401

ABSTRACT

SCOPE: To examine the relationship between changes in circulating metabolites during diet-induced weight loss and changes of adiposity. This study also investigates changes in these metabolites in relation to body weight and adiposity regain during a weight loss maintenance period. METHODS AND RESULTS: This cohort study is nested within the Satiety Innovation (SATIN) study. Participants (n = 162) achieving ≥8% weight loss during an initial 8-week low-calorie formula diet (LCD) are included in a 12-week weight loss maintenance period. A targeted metabolite profiling (123 metabolites) approach is applied using three different platforms (proton nuclear magnetic resonance, liquid chromatography mass spectrometry, gas chromatography mass spectrometry). Changes in several lipid species and citric acid are significantly associated with greater reduction of body weight, total fat, and abdominal adiposity distribution during the LCD. Decreases in the concentrations of lysophosphatidylcholines (LPCs) 14:0, LPC 20:3, phosphatidylcholine (PC) 32:2, PC 38:3, sphingomyelin (SM) 32:2, and increases in citric acid concentrations during the LCD are associated with adiposity regain and loss, respectively, during the weight loss maintenance period. CONCLUSIONS: The results show that weight loss is associated with changes in lipid species and citric acid. These changes are related to subsequent weight and adiposity regain identifying the adipose lipid metabolism as an important factor for the maintenance of lost weight and adiposity.


Subject(s)
Adiposity , Blood/metabolism , Caloric Restriction , Weight Reduction Programs/methods , Adult , Body Composition , Body Weight , Citric Acid/blood , Female , Humans , Lipids/blood , Lysophosphatidylcholines/blood , Male , Middle Aged , Weight Loss
18.
Sci Rep ; 11(1): 11642, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079030

ABSTRACT

To understand the characteristic of changes of serum metabolites between healthy people and patients with hepatitis B virus (HBV) infection at different stages of disease, and to provide reference metabolomics information for clinical diagnosis of liver disease patients. 255 patients with different stages of HBV infection were selected. 3 mL blood was collected from each patient in the morning to detect differences in serum lysophosphatidylcholine, acetyl-L-carnitine, oleic acid amide, and glycocholic acid concentrations by UFLC-IT-TOF/MS. The diagnostic values of four metabolic substances were evaluated by receiver operating characteristic (ROC) curve. The results showed that the optimal cut-off value of oleic acid amide concentration of the liver cirrhosis and HCC groups was 23.6 mg/L, with a diagnostic sensitivity of 88.9% and specificity of 70.6%. The diagnostic efficacies of the three substances were similar in the hepatitis and HCC groups, with an optimal cut-off value of 2.04 mg/L, and a diagnostic sensitivity and specificity of 100% and 47.2%, respectively. The optimal cut-off value of lecithin of the HBV-carrier and HCC groups was 132.85 mg/L, with a diagnostic sensitivity and specificity of 88.9% and 66.7%, respectively. The optimal cut-off value of oleic acid amide of the healthy and HCC groups was 129.03 mg/L, with a diagnostic sensitivity and specificity of 88.4% and 83.3%, respectively. Lysophosphatidylcholine, acetyl-L-carnitine, and oleic acid amide were potential metabolic markers of HCC. Among them, lysophosphatidylcholine was low in the blood of HCC patients, and its diagnostic efficacy was better than that of acetyl-L-carnitine and oleic acid amide, providing reference metabolomics information in clinical diagnosis and future research.


Subject(s)
Acetylcarnitine/blood , Glycocholic Acid/blood , Hepatitis B, Chronic/diagnosis , Hepatitis C, Chronic/diagnosis , Liver Cirrhosis/diagnosis , Lysophosphatidylcholines/blood , Oleic Acids/blood , Adult , Biomarkers/blood , Case-Control Studies , Female , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Humans , Liver/metabolism , Liver/pathology , Liver/virology , Liver Cirrhosis/blood , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Male , Metabolomics/methods , Middle Aged , ROC Curve , Sensitivity and Specificity , Severity of Illness Index , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Ethnopharmacol ; 277: 114223, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34044080

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) preparation, Shengmai Yin (SMY), is widely applied in cardiovascular disease treatments. However, the pharmacological mechanism of its therapeutic effects has not been fully clarified. AIM OF THIS STUDY: This study aimed to clearly define the efficacy and underlying mechanism of SMY and its active components in protecting against atherosclerosis. MATERIALS AND METHODS: The pharmacological effects of SMY and its components were evaluated upon a mouse hypercholesteremia model induced by a high cholesterol diet (HCD) for 12 weeks and Apoe-/- mice, a mouse atherosclerosis model. Pathological indicators including serum cholesterol levels, cytokines and histological changes in aortic root plaques were assessed. Untargeted metabolomic, untargeted lipidomic and targeted lipidomic changing profiles were investigated to clarify pharmacological mechanisms. RESULTS: SMY and red ginseng crude extracts (GE) significantly decreased the serum cholesterol levels in hypercholesteremia mice and reduced the aortic root plaque areas and exerted antiatherogenic efficacy in Apoe-/- mice. Moreover, total red ginseng saponin extracts (TGS) showed the most apparent improvement on maintaining lipid homeostasis, representing the effects of red ginseng in SMY on atherosclerosis treatment. Mechanically, TGS inhibited serum secreted phospholipase A2 (sPLA2) activity and lowered the serum levels of lysophosphatidylcholine (lysoPC), which is a risk factor for atherosclerosis. CONCLUSIONS: Our findings revealed that ginsenosides from SMY exerted therapeutic effects on atherosclerosis by maintaining lipid homeostasis including cholesterol and lysoPCs.


Subject(s)
Atherosclerosis/prevention & control , Drugs, Chinese Herbal/pharmacology , Ginsenosides/pharmacology , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Cholesterol/blood , Cholesterol, Dietary , Cytokines/blood , Disease Models, Animal , Drug Combinations , Ginsenosides/isolation & purification , Lysophosphatidylcholines/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Am J Med Genet A ; 185(6): 1848-1853, 2021 06.
Article in English | MEDLINE | ID: mdl-33683010

ABSTRACT

We report three unrelated probands, two male and one female, diagnosed with Aicardi-Goutières syndrome (AGS) after screening positive on California newborn screening (CA NBS) for X-linked adrenoleukodystrophy (X-ALD) due to elevated C26:0 lysophosphatidylcholine (C26:0-LPC). Follow-up evaluation was notable for elevated C26:0, C26:1, and C26:0/C22:0 ratio, and normal red blood cell plasmalogens levels in all three probands. Diagnoses were confirmed by molecular sequencing prior to 12 months of age after clinical evaluation was inconsistent with X-ALD or suggestive of AGS. For at least one proband, the early diagnosis of AGS enabled candidacy for enrollment into a therapeutic clinical trial. This report demonstrates the importance of including AGS on the differential diagnosis for individuals who screen positive for X-ALD, particularly infants with abnormal neurological features, as this age of onset would be highly unusual for X-ALD. While AGS is not included on the Recommended Universal Screening Panel, affected individuals can be identified early through state NBS programs so long as providers are aware of a broader differential that includes AGS. This report is timely, as state NBS algorithms for X-ALD are actively being established, implemented, and refined.


Subject(s)
Adrenoleukodystrophy/blood , Autoimmune Diseases of the Nervous System/blood , Genetic Diseases, X-Linked/blood , Neonatal Screening , Nervous System Malformations/blood , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Autoimmune Diseases of the Nervous System/complications , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/pathology , Dried Blood Spot Testing , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Humans , Infant , Infant, Newborn , Lysophosphatidylcholines/blood , Male , Nervous System Malformations/complications , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL