Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Biomed Pharmacother ; 161: 114460, 2023 May.
Article in English | MEDLINE | ID: mdl-36870282

ABSTRACT

Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Molecular Docking Simulation , p38 Mitogen-Activated Protein Kinases/metabolism
2.
J Orthop Surg Res ; 17(1): 455, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243801

ABSTRACT

BACKGROUND: Apart from the current understanding of enzyme function, the mechanism of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) deficiency-associated osteoporosis is unknown. We aimed to explore the changes in the expression of signaling pathways of bone tissues involved in Enpp1 deficiency. METHODS: The body weights and morphology and histology of the bones of male Enpp1 knockout (KO) and wild-type (WT) mice were assessed. The humeri of WT and Enpp1 KO mice at 12 weeks of age were subjected to high-throughput quantitative molecular measurements, and bioinformatics analysis was performed. Proteins from humeri and calvarial pre-osteoblasts (Pobs) were used to verify the differentially expressed signaling pathways and to explain the mechanism of Enpp1 deficiency-associated osteoporosis. RESULTS: Enpp1 KO mice had significantly lower body weight and trabecular bone mass in the hindlimbs than WT mice. Proteomics and immunoblotting showed that Enpp1 deletion downregulated the expression of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in bones. Lysophosphatidic acid (LPA) was involved in activating the MKK3/p38 MAPK/PCNA pathway and proliferating Pobs in Enpp1 KO mice, whereas a p38 MAPK inhibitor suppressed the LPA-induced pro-proliferation phenotype (p < 0.05). CONCLUSION: The inhibition of MKK3/p38 MAPK/PCNA pathway plays an important role in the development of osteoporosis caused by Enpp1 deficiency, and LPA partially rescued the proliferation of pre-osteoblasts via the MKK3/p38 MAPK/PCNA pathway.


Subject(s)
Osteoporosis , p38 Mitogen-Activated Protein Kinases , Animals , Male , Mice , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Mice, Knockout , Osteoporosis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Signal Transduction/genetics
3.
Sci Rep ; 12(1): 14480, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008477

ABSTRACT

p38-MAPK is a stress-response kinase activated by hyperosmolarity. Here we interrogated the pathways involved. We show that p38-MAPK signaling is activated by hyperosmotic stimulation in various solutions, cell types and colonic organoids. Hyperosmolarity sensing is detected at the level of the upstream activators of p38-MAPK: TRAF2/ASK1 (but not Rac1) and MKK3/6/4. While WNK kinases are known osmo-sensors, we found, unexpectedly, that short (2 h) inhibition of WNKs (with WNK463) led to elevated p38-MAPK activity under hyperosmolarity, which was mediated by WNK463-dependent stimulation of TAK1 or TRAF2/ASK1, the upstream activators of MKK3/6/4. However, this effect was temporary and was reversed by long-term (2 days) incubation with WNK463. Accordingly, 2 days (but not 2 h) inhibition of p38-MAPK or its upstream activators ASK1 or TAK1, or WNKs, diminished regulatory volume increase (RVI) following cell shrinkage under hyperosmolarity. We also show that RVI mediated by the ion transporter NKCC1 is dependent on p38-MAPK. Since WNKs are known activators of NKCC1, we propose a WNK- > NKCC1- > p38-MAPK pathway that controls RVI. This pathway is augmented by NHE1. Additionally, hyperosmolarity inhibited mTORC1 activation and cell proliferation. Thus, activation of p38-MAPK and WNKs is important for RVI and for cell proliferation.


Subject(s)
MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases , Enzyme Activation , MAP Kinase Kinase 3/metabolism , TNF Receptor-Associated Factor 2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Elife ; 112022 08 16.
Article in English | MEDLINE | ID: mdl-35971771

ABSTRACT

Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38ß, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.


The human heart can increase its size to supply more blood to the body's organs. This process, called hypertrophy, can happen during exercise or be caused by medical conditions, such as high blood pressure or inherited genetic diseases. If hypertrophy is continually driven by illness, this can cause the heart to fail and no longer be able to properly pump blood around the body. For hypertrophy to happen, several molecular changes occur in the cells responsible for contracting the heart, including activation of the p38 pathway. Within this pathway is a p38 enzyme as well as a series of other proteins which are sequentially turned on in response to stress, such as inflammatory molecules or mechanical forces that alter the cell's shape. There are different types of p38 enzyme which have been linked to other diseases, making them a promising target for drug development. However, clinical trials blocking individual members of the p38 family have had disappointing results. An alternative approach is to target other proteins involved in the p38 pathway, such as MKK6, but it is not known what effect this might have. To investigate, Romero-Becerra et al. genetically modified mice to not have any MKK6 protein. As a result, these mice had a shorter lifespan, with hypertrophy developing at a young age that led to heart problems. Romero-Becerra et al. used different mice models to understand why this happened, showing that a lack of MKK6 reduces the activity of a specific member of the p38 family called p38α. However, this blockage boosted a different branch of the pathway which involved two other p38 proteins, p38γ and p38δ. This, in turn, triggered another key pathway called mTOR which also promotes hypertrophy of the heart. These results suggest that drugs blocking MKK6 and p38α could lead to side effects that cause further harm to the heart. A more promising approach for treating hypertrophic heart conditions could be to inhibit p38γ and/or p38δ. However, before this can be fully explored, further work is needed to generate compounds that specifically target these proteins.


Subject(s)
Heart Diseases , MAP Kinase Kinase 6 , Mitogen-Activated Protein Kinase 13 , Animals , Cardiomegaly , Heart Diseases/genetics , Heart Diseases/pathology , Longitudinal Studies , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , Mice , Mitogen-Activated Protein Kinase 13/metabolism , TOR Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Chem Biol Interact ; 361: 109983, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35569513

ABSTRACT

Fenbendazole, a broad-spectrum anti-parasitic drug, can be a potential anti-tumor agent. In this study, we synthesized and purified its derivative, analog 6, intending to achieve improved efficacy in cancer cells and decreased toxicity in normal cells. To evaluate in vitro anti-tumor activities of fenbendazole and analog 6 in different cancer cell lines, a CCK-8 assay was performed, and we found that human cervical cancer HeLa cells were more sensitive to analog 6 than to fenbendazole. Furthermore, we explored the associated mechanism, and our results showed that analog 6 and fenbendazole could induce oxidative stress by accumulating ROS. It not only activated the p38-MAPK signaling pathway, thereby inhibiting the proliferation of HeLa cells and enhancing the apoptosis of HeLa cells, but also significantly induced impaired energy metabolism and restrained their migration and invasion. In addition, the modified analog 6 showed reduced toxicity to normal cells without decreased anti-cancer effect. In conclusion, fenbendazole and analog 6 have multiple targets and strong anti-tumor effects on HeLa cells in vitro and in vivo. The optimized analog 6 could inhibit the viability of HeLa cells with lower toxicity than normal human cells, promising to be developed as an antitumor active compound.


Subject(s)
Uterine Cervical Neoplasms , p38 Mitogen-Activated Protein Kinases , Apoptosis , Cell Line, Tumor , Cell Proliferation , Energy Metabolism , Female , Fenbendazole/pharmacology , HeLa Cells , Humans , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/metabolism , Oxidative Stress , Uterine Cervical Neoplasms/pathology , p38 Mitogen-Activated Protein Kinases/metabolism
6.
J Med Chem ; 65(9): 6690-6709, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35442672

ABSTRACT

Tumor necrosis factor α (TNF-α) has been demonstrated to be a therapeutic target for autoimmune diseases. However, this biological therapy exhibits some inevitable disadvantages, such as risk of infection. Thus, small-molecule alternatives by targeting TNF-α production signaling pathway are still in demand. Herein, we describe the design, synthesis, and structure-activity relationships of 3-aryindanone compounds regarding their modulation of TNF-α production. Among them, (R)-STU104 exhibited the most potent inhibitory activity on TNF-α production, which suppressed the TAK1/MKK3/p38/MnK1/MK2/elF4E signal pathways through binding with MKK3 and disrupting the TAK1 phosphorylating MKK3. As a result, (R)-STU104 demonstrated remarkable dose-effect relationships on both acute and chronic mouse UC models. In addition to its good pharmacokinetic (PK) and safety profile, (R)-STU104 showed better anti-UC efficacy in vivo at 10 mg/kg/d than mesalazine at the dose of 50 mg/kg/d. These results suggested that TAK1-MKK3 interaction inhibitors could be potentially utilized for the treatment of UC.


Subject(s)
Colitis, Ulcerative , MAP Kinase Kinase 3 , MAP Kinase Kinase Kinases , Protein Kinase Inhibitors , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , MAP Kinase Kinase 3/antagonists & inhibitors , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Aging Cell ; 21(2): e13543, 2022 02.
Article in English | MEDLINE | ID: mdl-35080104

ABSTRACT

In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)-mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull-down assays to assess the interaction between RAGE and mitogen-activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3-MKK3-p38 signaling module. Mechanistically, we found that activation of p38 mitogen-activated protein kinase (MAPK)/NF-κB signaling depends on mediation of the RAGE-MKK3 interaction by C-terminal RAGE (ctRAGE) amino acids (AAs) 2-5. We found that ctRAGE R2A-K3A-R4A-Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE-MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2-5, which leads to assembly of the MEKK3-MKK3-p38 signaling module and subsequent activation of the p38MAPK/NF-κB pathway, and ultimately results in diabetic encephalopathy (DE).


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , MAP Kinase Kinase 3 , MAP Kinase Kinase Kinase 3 , Receptor for Advanced Glycation End Products , p38 Mitogen-Activated Protein Kinases , Animals , Cognition , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Mice , Receptor for Advanced Glycation End Products/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Theor Appl Genet ; 135(1): 217-232, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34633474

ABSTRACT

KEY MESSAGE: HvMKK3 alleles are temperature sensitive and are major contributors to environmental stability of preharvest sprouting in barley. Preharvest sprouting (PHS) can severely damage barley (Hordeum vulgare L.) malting quality, but PHS resistance is often negatively correlated with malting quality. Seed dormancy is closely related to PHS. Increased temperature during grain fill can decrease seed dormancy in barley, but genetic components of seed dormancy temperature sensitivity are poorly understood. Six years of PHS data were used to fit quantitative trait locus (QTL) x environment mixed models incorporating marker data from seed dormancy genes HvAlaAT1, HvGA20ox1, and HvMKK3 and weather covariates in spring and winter two-row malting barley. Variation in winter barley PHS was best modeled by average temperature range during grain fill and spring barley PHS by total precipitation during grain fill. Average high temperature during grain fill also accurately modeled PHS for both datasets. A highly non-dormant HvMKK3 allele determined baseline PHS susceptibility and HvAlaAT1 interactions with multiple HvMKK3 alleles conferred environmental sensitivity. Polygenic variation for PHS within haplotype was detected. Residual genotype and QTL by environment interaction variance indicated additional environmental and genetic factors involved in PHS. These models provide insight into genotype and environmental regulation of barley seed dormancy, a method for PHS forecasting, and a tool for breeders to improve PHS resistance.


Subject(s)
Hordeum/genetics , Models, Biological , Quantitative Trait Loci , Seedlings/growth & development , Alleles , Gene-Environment Interaction , Genes, Plant , Hordeum/enzymology , Hordeum/growth & development , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Plant Dormancy/genetics , Seedlings/genetics
9.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830095

ABSTRACT

Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to identify oncogenic mutations within this demographic to aid in the development of new strategies to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site, while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3) impacted protein stability, inducing degradation and reducing expression. The expression of 4M-MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Furthermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL. These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.


Subject(s)
Cell Proliferation/genetics , MAP Kinase Kinase 3 , MAP Kinase Signaling System/genetics , Mutation , Neoplasm Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteolysis , HEK293 Cells , Hep G2 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
10.
Cells ; 10(7)2021 07 03.
Article in English | MEDLINE | ID: mdl-34359850

ABSTRACT

Ischemia reperfusion (IR) injury remains an important topic in clinical medicine. While a multitude of prophylactic and therapeutic strategies have been proposed, recent studies have illuminated protective effects of myostatin inhibition. This study aims to elaborate on the intracellular pathways involved in myostatin signaling and to explore key proteins that convey protective effects in IR injury. We used CRISPR/Cas9 gene editing to introduce a myostatin (Mstn) deletion into a C2C12 cell line. In subsequent experiments, we evaluated overall cell death, activation of apoptotic pathways, ROS generation, lipid peroxidation, intracellular signaling via mitogen-activated protein kinases (MAPKs), cell migration, and cell proliferation under hypoxic conditions followed by reoxygenation to simulate an IR situation in vitro (hypoxia reoxygenation). It was found that mitogen-activated protein kinase kinase 3/6, also known as MAPK/ERK Kinase 3/6 (MEK3/6), and subsequent p38 MAPK activation were blunted in C2C12-Mstn-/- cells in response to hypoxia reoxygenation (HR). Similarly, c-Jun N-terminal kinase (JNK) activation was negated. We also found the intrinsic activation of apoptosis to be more important in comparison with the extrinsic activation. Additionally, intercepting myostatin signaling mitigated apoptosis activation. Ultimately, this research validated protective effects of myostatin inhibition in HR and identified potential mediators worth further investigation. Intercepting myostatin signaling did not inhibit ROS generation overall but mitigated cellular injury. In particular, intrinsic activation of apoptosis origination from mitochondria was alleviated. This was presumably mediated by decreased activation of p38 caused by the diminished kinase activity increase of MEK3/6. Overall, this work provides important insights into HR signaling in C2C12-Mstn-/- cells and could serve as basis for further research.


Subject(s)
Apoptosis , Cytoprotection , Myostatin/deficiency , Oxidative Stress , Aldehydes/metabolism , Animals , Cell Hypoxia , Cell Line , Cell Movement , Cell Proliferation , DNA Replication , Lipid Peroxidation , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/metabolism , Mice , Myostatin/metabolism , Nitrosative Stress , Oxygen , Reactive Oxygen Species/metabolism , Signal Transduction , Tyrosine/analogs & derivatives , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Cell Death Dis ; 12(5): 451, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958583

ABSTRACT

Metastasis-associated protein 2 (MTA2) is a transcription factor that is highly associated with matrix metalloproteinase 12 (MMP12). Thus, we hypothesized that MTA2 may regulate MMP12 expression and is involved in cervical cancer metastasis. Results showed that MTA2 and MMP12 were highly expressed in cervical cancer cells, and MTA2 knockdown reduced MMP12 expression and inhibited the metastasis of cervical cancer cells in xenograft mice. MMP12 knockdown did not influence the viability of cervical cancer cells but clearly inhibited cell migration and invasion both in vitro and in vivo. MMP12 was highly expressed in cervical tumor tissues and correlated with the poor survival rate of patients with cervical cancer. Further investigations revealed that p38 mitogen-activated protein kinase (p38), mitogen-activated protein kinase kinase 3 (MEK3), and apoptosis signal-regulating kinase 1 (ASK1) were involved in MMP12 downregulation in response to MTA2 knockdown. Results also demonstrated that p38-mediated Y-box binding protein1 (YB1) phosphorylation disrupted the binding of AP1 (c-Fos/c-Jun) to the MMP12 promoter, thereby inhibiting MMP12 expression and the metastatic potential of cervical cancer cells. Collectively, targeting both MTA2 and MMP12 may be a promising strategy for the treatment of cervical cancer.


Subject(s)
Histone Deacetylases/metabolism , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Matrix Metalloproteinase 12/biosynthesis , Repressor Proteins/metabolism , Transcription Factor AP-1/metabolism , Uterine Cervical Neoplasms/metabolism , Y-Box-Binding Protein 1/metabolism , Animals , Female , HeLa Cells , Heterografts , Histone Deacetylases/genetics , Humans , MAP Kinase Kinase 3/metabolism , Matrix Metalloproteinase 12/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Oncogenes , Repressor Proteins/genetics , Transfection , Uterine Cervical Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
12.
J Integr Plant Biol ; 63(7): 1324-1340, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33605510

ABSTRACT

Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2 O2 ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2 O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3-MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2 O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.


Subject(s)
Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Ethylenes/pharmacology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Stomata/drug effects , Plant Stomata/metabolism , Receptors, Cell Surface/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 3/genetics , Mitogen-Activated Protein Kinases/genetics , Receptors, Cell Surface/genetics , Transcription Factors/genetics
13.
Chin J Integr Med ; 26(12): 897-904, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33259022

ABSTRACT

OBJECTIVE: To explore whether Panax notoginseng saponins (PNS) exhibits heart protective effect in myocardial infarction (MI) rats and to identify the potential signaling pathways involved. METHODS: MI rats induced by ligating the left anterior descending (LAD) coronary artery were assigned to sham coronary artery ligation or coronary artery ligation. Totally 36 Sprague-Dawley rats were randomly divided into sham group (distilled water, n=9), MI group (distilled water, n=9), PNS group (PNS, 40 mg/kg daily, n=9) and fosinopril group (FIP, 1.2 mg/kg daily, n=9) according to a random number table. The left ventricular morphology and function were conducted by echocardiography. Histological alterations were evaluated by the stainings of HE and Masson. The serum levels of C reactive protein (CRP), tumor necrosis factor α (TNF-α), growth differentiation factor-15 (GDF-15) and the ratio of metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP-9 (TIMP-1) were determined by ELISA. The levels of activating transcription factor 3 (ATF3), mitogen-activated protein kinase kinase 3 (MAP2K3), p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation of p38 MAPK (p-p38 MAPK), transforming growth factor-ß (TGF-ß1), collagen I, nuclear factor kappa B p65 (NFκB p65), phosphorylation of NFκB p65 (p-NFκB p65), and phosphorylation of inhibitory kappa Bα (p-Iκ Bα) in hearts were measured by Western blot and immunohistochemical staining, respectively. RESULTS: PNS improved cardiac function and fibrosis in MI rats (P<0.05). The serum levels of CRP, TNF-α, GDF-15 and the ratio of MMP9/TIMP1 were reversed by PNS in MI rats. The expressions of TGF-ß1, collagen I, MAP2K3, p38 MAPK, p-p38 MAPK, NFκB p65, p-NFκB p65, and p-IκBα were down-regulated, while ATF3 increased with the treatment of PNS (P<0.05). CONCLUSIONS: PNS may improve cardiac function and fibrosis in MI rats via regulating ATF3/MAP2K3/p38 MAPK and NFκB signaling pathways. These results suggest the potential of PNS in preventing the development of ventricular remodeling in MI rats.


Subject(s)
Activating Transcription Factor 3/metabolism , MAP Kinase Kinase 3/metabolism , NF-kappa B/metabolism , Panax notoginseng , Saponins/pharmacology , Ventricular Remodeling/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Biomarkers/metabolism , Disease Models, Animal , Male , Myocardial Infarction , Rats , Rats, Sprague-Dawley
14.
Cell Death Dis ; 11(8): 713, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873775

ABSTRACT

Esophageal cancer is one of the most common cancer with limited therapeutic strategies, thus it is important to develop more effective strategies to against it. Sulforaphene (SFE), an isothiocyanate isolated from radish seeds, was proved to inhibit esophageal cancer progression in the current study. Flow cytometric analysis showed SFE induced cell apoptosis and cycle arrest in G2/M phase. Also, scrape motility and transwell assays presented SFE reduced esophageal cancer cell metastasis. Microarray results showed the influence of SFE on esophageal cancer cells was related with stearoyl-CoA desaturase (SCD), cadherin 3 (CDH3), mitogen-activated protein kinase kinase 3 (MAP2K3) and growth arrest and DNA damage inducible beta (GADD45B). SCD and CDH3 could promote esophageal cancer metastasis via activating the Wnt pathway, while the latter one was involved in a positive feedback loop, GADD45B-MAP2K3-p38-p53, to suppress esophageal cancer growth. GADD45B was known to be the target gene of p53, and we proved in this study, it could increase the phosphorylation level of MAP2K3 in esophageal cancer cells, activating p38 and p53 in turn. SFE treatment elevated MAP2K3 and GADD45B expression and further stimulated this feedback loop to better exert antitumor effect. In summary, these results demonstrated that SFE had the potential for developing as a chemotherapeutic agent because of its inhibitory effects on esophageal cancer metastasis and proliferation.


Subject(s)
Cadherins/metabolism , Isothiocyanates/pharmacology , Stearoyl-CoA Desaturase/metabolism , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cadherins/physiology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Isothiocyanates/metabolism , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Signaling System/genetics , Mice , Mice, Nude , Stearoyl-CoA Desaturase/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Proc Natl Acad Sci U S A ; 117(33): 19994-20003, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747557

ABSTRACT

The transcriptional regulator YAP, which plays important roles in the development, regeneration, and tumorigenesis, is activated when released from inhibition by the Hippo kinase cascade. The regulatory mechanism of YAP in Hippo-low contexts is poorly understood. Here, we performed a genome-wide RNA interference screen to identify genes whose loss of function in a Hippo-null background affects YAP activity. We discovered that the coatomer protein complex I (COPI) is required for YAP nuclear enrichment and that COPI dependency of YAP confers an intrinsic vulnerability to COPI disruption in YAP-driven cancer cells. We identified MAP2K3 as a YAP regulator involved in inhibitory YAP phosphorylation induced by COPI subunit depletion. The endoplasmic reticulum stress response pathway activated by COPI malfunction appears to connect COPI and MAP2K3. In addition, we provide evidence that YAP inhibition by COPI disruption may contribute to transcriptional up-regulation of PTGS2 and proinflammatory cytokines. Our study offers a resource for investigating Hippo-independent YAP regulation as a therapeutic target for cancers and suggests a link between YAP and COPI-associated inflammatory diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coat Protein Complex I/metabolism , MAP Kinase Kinase 3/metabolism , Neoplasms/metabolism , RNA Interference , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Coat Protein Complex I/genetics , Gene Expression Regulation, Neoplastic , Genome , Hippo Signaling Pathway , Humans , MAP Kinase Kinase 3/genetics , Mice , Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/genetics , YAP-Signaling Proteins
16.
Int Immunopharmacol ; 88: 106691, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822908

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disease with high morbidity and mortality. Dysregulation of microRNAs (miRNAs) was involved in human diseases, including AP. However, the effects of miR-92b-3p on AP process and its mechanism remain not been fully clarified. The expression levels of miR-92b-3p and tumor necrosis factor receptor-associated factor-3 (TRAF3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of TRAF3, tumor necrosis factor α (TNF-α) TNF-α, interleukin-6 (IL-6), phosphorylated mitogen-activated protein kinase kinase 3 (p-MKK3), MKK3, p38 and phosphorylated p38 (p-p38) were detected by western blot. The concentration of TNF-α and IL-6 in the medium was measured using ELISA kits. The possible binding sites of miR-92b-3p and TRAF3 were predicted by TargetScan and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression level of miR-92b-3p was decreased and TRAF3 expression was increased in AR42J cells stimulated with caerulein. Moreover, the protein levels of pro-inflammatory cytokines (TNF-α and IL-6) were markedly elevated, and the expression levels of autophagy-related markers Beclin1 as well as the ratio of LC3-II/I were obviously increased in AR42J cells treated with caerulein. In addition, overexpression of miR-92b-3p or knockdown of TRAF3 significantly suppressed the release of pro-inflammatory cytokines and autophagy in caerulein-induced AR42J cells. Furthermore, TRAF3 was a direct target of miR-92b-3p and its upregulation reversed the effects of miR-92b-3p overexpression on inflammatory response and autophagy. Besides, overexpression of miR-92b-3p inhibited the activation of the MKK3-p38 pathway by affecting TRAF3 expression. In conclusion, miR-92b-3p attenuated inflammatory response and autophagy by downregulating TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells, providing a novel avenue for treatment of AP.


Subject(s)
Autophagy , MicroRNAs/genetics , MicroRNAs/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Acinar Cells/metabolism , Animals , Autophagy/genetics , Cell Line , Ceruletide/toxicity , Cytokines/metabolism , Inflammation/genetics , MAP Kinase Kinase 3/metabolism , MicroRNAs/immunology , Pancreas/metabolism , Rats , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Theranostics ; 10(17): 7906-7920, 2020.
Article in English | MEDLINE | ID: mdl-32685028

ABSTRACT

Background: Capsaicin is an active compound found in plants of the Capsicum genus; it has a range of therapeutic benefits, including anti-tumor effects. Here we aimed to delineate the inhibitory effects of capsaicin on nasopharyngeal carcinoma (NPC). Methods: The anti-cancer effects of capsaicin were confirmed in NPC cell lines and xenograft mouse models, using CCK-8, clonogenic, wound-healing, transwell migration and invasion assays. Co-immunoprecipitation, western blotting and pull-down assays were used to determine the effects of capsaicin on the MKK3-p38 axis. Cell proliferation and EMT marker expression were monitored in MKK3 knockdown (KD) or over-expression NPC cell lines treated with or without capsaicin. Finally, immunohistochemistry was performed on NPC specimens from NPC patients (n = 132) and the clinical relevance was analyzed. Results: Capsaicin inhibited cell proliferation, mobility and promoted apoptosis in NPC cells. Then we found that capsaicin directly targets p38 for dephosphorylation. As such, MKK3-induced p38 activation was inhibited by capsaicin. Furthermore, we found that capsaicin-induced inhibition of cell motility was mediated by fucokinase. Xenograft models demonstrated the inhibitory effects of capsaicin treatment on NPC tumor growth in vivo, and analysis of clinical NPC samples confirmed that MKK3 phosphorylation was associated with NPC tumor growth and lymphoid node metastasis. Conclusions: The MKK3-p38 axis represents a potential therapeutic target for capsaicin. MKK3 phosphorylation might serve as a biomarker to identify NPC patients most likely to benefit from adjunctive capsaicin treatment.


Subject(s)
Capsaicin/pharmacology , MAP Kinase Kinase 3/metabolism , MAP Kinase Signaling System/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Animals , Capsaicin/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Signaling System/genetics , Male , Mice , Middle Aged , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Xenograft Model Antitumor Assays
18.
Food Funct ; 11(7): 6054-6065, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32558848

ABSTRACT

In this study, a triple-helix Chinese Iron Yam polysaccharide (CIYP) with a molecular weight of 1.67 × 103 kDa was obtained. The CIYP was extracted with deionized water followed by deproteination, decoloration and purification using anion-exchange chromatography and size exclusion chromatography. Its structural characteristics and micromorphology were investigated by GC-MS, periodate oxidation and Smith degradation, FT-IR, NMR spectroscopy, SEM and AFM. The results showed that CIYP is a catenarian polysaccharide composed of rhamnose, arabinose, mannose, glucose, galactose and galacturonic acid in the ratio of 1 : 1.33 : 8.31 : 2.83 : 1.12 : 2.62. Meanwhile, the gastric mucosa protective effect of CIYP on an ethanol-injured BALB/c mouse model was investigated. It was found that the preventive CIYP-treatment groups (200 and 400 mg kg-1 d-1) showed gastric mucosa protective effects on the BALB/c mouse model. The lesion index and lesion inhibition rate of the CIYP and cimetidine treatment groups were significantly altered compared with the ethanol-induced gastric mucosal lesion (GML) group. Moreover, the administration of CIYP showed definite effects of increasing the NO, PGE2 and EGF levels, and SOD activities, and reducing the MDA levels of gastric mucosa tissues to prevent gastric oxidative stress. Histopathological analysis indicated that the microscopic morphology of gastric mucosal tissues was changed after being damaged by ethanol and the damage was significantly reduced after CIYP administration. Finally, the western blot and quantitative real-time polymerase chain reaction (qRT-PCR) results provided comprehensive evidence that the CIYP could repress gastric inflammation through the reduction of IL-1ß, TNF-α and IL-6, prevent gastric oxidative stress through the inhibition of lipid peroxides, and favor cell survival via downregulating the TAK1, MKK3, P-p38 and Bax levels and upregulating the protein expression levels, compared with the CIM group.


Subject(s)
Dioscorea/chemistry , Ethanol/adverse effects , Gastric Mucosa/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Stomach Ulcer/metabolism , Animals , Cytokines/metabolism , Dinoprostone/metabolism , Disease Models, Animal , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/therapeutic use , Humans , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase 3/metabolism , Male , Malondialdehyde/metabolism , Mice, Inbred BALB C , Molecular Structure , Nitric Oxide/metabolism , Plant Extracts/therapeutic use , Plant Tubers/chemistry , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Stomach Ulcer/etiology , Stomach Ulcer/prevention & control , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism
19.
Mol Biol Rep ; 47(6): 4285-4293, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32418112

ABSTRACT

Chemokines interact with hepatic resident cells during inflammation and fibrosis. CC chemokine ligand (CCL) 20 has been reported to be important in inflammation and fibrosis in the liver. We hypothesized that visfatin, an adipocytokine, could play a role in hepatic fibrosis via CCL20. We investigated the effect of visfatin on CCL20 in THP-1 human promonocytic cells and examined the molecular mechanisms involved. Following treatment of THP-1 cells with visfatin, CCL20 expression and secretion were assessed. We assessed the intracellular signaling molecules IKK/NF-κB, JAK2/STAT3, MAPKs, and MKK3/6 by western blotting. We treated THP-1 cells with visfatin and signaling inhibitors, and examined CCL20 mRNA and protein levels. To investigate the effect of visfatin-induced CCL20 expression in hepatic stellate cells (HSCs), LX-2 cells were co-cultured with the culture supernatant of THP-1 cells with or without anti-CCL20 neutralizing antibodies, and fibrosis markers were examined by RT-PCR and immunoblotting. In THP-1 cells, visfatin increased the CCL20 mRNA and protein levels. visfatin increased the activities of the NF-κB, p38, and MLK3/6 signaling pathways but not those of the JAK2/STAT3 and ERK pathways. Visfatin treatment together with an NF-κB, p38, or MLK3 inhibitor reduced the mRNA and protein levels of CCL20. The visfatin-induced CCL20 increased the expression of fibrosis markers and CCR6 in HSCs. Following neutralization of CCL20, the levels of fibrosis markers and CCR6 were decreased. Visfatin increases the expression of CCL20 via the NF-κB and MKK3/6-p38 signaling pathways in macrophages, and visfatin-induced CCL20 expression promotes the fibrosis markers in HSCs.


Subject(s)
Chemokine CCL20/metabolism , Hepatic Stellate Cells/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Chemokine CCL20/physiology , Chemokines/metabolism , Hepatocytes/metabolism , Humans , Janus Kinase 2/metabolism , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/metabolism , MAP Kinase Signaling System/physiology , Macrophages/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , THP-1 Cells , Transcription Factor RelA/metabolism
20.
Int J Mol Sci ; 21(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429593

ABSTRACT

The activation of p38 mitogen-activated protein kinases (MAPKs) through a phosphorylation cascade is the canonical mode of regulation. Here, we report a novel activation mechanism for p38α. We show that Arg49 and Arg149 of p38α are methylated by protein arginine methyltransferase 1 (PRMT1). The non-methylation mutations of Lys49/Lys149 abolish the promotive effect of p38α on erythroid differentiation. MAPK kinase 3 (MKK3) is identified as the major p38α upstream kinase and MKK3-mediated activation of the R49/149K mutant p38α is greatly reduced. This is due to a profound reduction in the interaction of p38α and MKK3. PRMT1 can enhance both the methylation level of p38α and its interaction with MKK3. However, the phosphorylation of p38α by MKK3 is not a prerequisite for methylation. MAPK-activated protein kinase 2 (MAPKAPK2) is identified as a p38α downstream effector in the PRMT1-mediated promotion of erythroid differentiation. The interaction of MAPKAPK2 with p38α is also significantly reduced in the R49/149K mutant. Together, this study unveils a novel regulatory mechanism of p38α activation via protein arginine methylation on R49/R149 by PRMT1, which impacts partner interaction and thus promotes erythroid differentiation. This study provides a new insight into the complexity of the regulation of the versatile p38α signaling and suggests new directions in intervening p38α signaling.


Subject(s)
Arginine/metabolism , Erythropoiesis/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Signaling System/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Line, Tumor , Enzyme Activation/drug effects , Erythropoiesis/drug effects , Gene Knockdown Techniques , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Signaling System/drug effects , Mass Spectrometry , Methylation , Mutation , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Repressor Proteins/genetics , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...