Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100176, 2021.
Article in English | MEDLINE | ID: mdl-33303630

ABSTRACT

Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens/chemistry , Immunoglobulin Fab Fragments/chemistry , Lysine/chemistry , MAP Kinase Kinase Kinase 2/chemistry , Peptides/chemistry , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibody Affinity , Antibody Specificity , Antigens/genetics , Antigens/immunology , Binding Sites , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Cross Reactions , Crystallography, X-Ray , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/isolation & purification , Kinetics , Lysine/immunology , MAP Kinase Kinase Kinase 2/genetics , MAP Kinase Kinase Kinase 2/immunology , Methylation , Molecular Dynamics Simulation , Peptide Library , Peptides/genetics , Peptides/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Rabbits
2.
Chembiochem ; 20(1): 66-71, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30338897

ABSTRACT

Protein phosphatase-1 (PP1)-disrupting peptides (PDPs) are selective chemical modulators of PP1 that liberate the active PP1 catalytic subunit from regulatory proteins; thus allowing the dephosphorylation of nearby substrates. We have optimized the original cell-active PDP3 for enhanced stability, and obtained insights into the chemical requirements for stabilizing this 23-mer peptide for cellular applications. The optimized PDP-Nal was used to dissect the involvement of PP1 in the MAPK signaling cascade. Specifically, we have demonstrated that, in human osteosarcoma (U2OS) cells, phosphoMEK1/2 is a direct substrate of PP1, whereas dephosphorylation of phosphoERK1/2 is indirect and likely mediated through enhanced tyrosine phosphatase activity after PDP-mediated PP1 activation. Thus, as liberators of PP1 activity, PDPs represent a valuable tool for identifying the substrates of PP1 and understanding its role in diverse signaling cascades.


Subject(s)
Peptides/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Sequence , Cell Line, Tumor , Histones/chemistry , Histones/metabolism , Humans , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation
3.
Toxins (Basel) ; 7(11): 4455-67, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26529015

ABSTRACT

The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.


Subject(s)
Anthrax/prevention & control , Bacillus anthracis/chemistry , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/toxicity , Gastrointestinal Diseases/prevention & control , Probiotics/pharmacology , Saccharomyces , Actins/chemistry , Cell Line , Cell Membrane Permeability/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , MAP Kinase Kinase Kinase 2/chemistry , Tight Junctions/drug effects
4.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24847881

ABSTRACT

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinases/metabolism , Oncogene Protein p21(ras)/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinases/chemistry , Methylation , Mice , Mitogen-Activated Protein Kinases/metabolism , Oncogene Protein p21(ras)/genetics , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins A-raf/metabolism , Signal Transduction
5.
Mol Cell Biol ; 27(12): 4566-77, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17452462

ABSTRACT

MEKK2 and MEK5 encode Phox/Bem1p (PB1) domains that heterodimerize with one another. MEKK2, MEK5, and extracellular signal-related kinase 5 (ERK5) form a ternary complex through interactions involving the MEKK2 and MEK5 PB1 domains and a 34-amino-acid C-terminal extension of the MEK5 PB1 domain. This C-terminal extension encodes an ERK5 docking site required for MEK5 activation of ERK5. The PB1 domains bind in a front-to-back arrangement, with a cluster of basic amino acids in the front of the MEKK2 PB1 domain binding to the back-end acidic clusters of the MEK5 PB1 domain. The C-terminal moiety, including the acidic cluster of the MEKK2 PB1 domain, is not required for MEK5 binding and binds MKK7. Quiescent MEKK2 preferentially binds MEK5, and MEKK2 activation results in ERK5 activation. Activated MEKK2 binds and activates MKK7, leading to JNK activation. The findings define how the MEKK2 and MEK5 PB1 domains are uniquely used for differential binding of two mitogen-activated protein kinase kinases, MEK5 and MKK7, for the coordinated control of ERK5 and c-Jun N-terminal kinase activation.


Subject(s)
MAP Kinase Kinase 5/chemistry , MAP Kinase Kinase 7/physiology , MAP Kinase Kinase Kinase 2/chemistry , Mitogen-Activated Protein Kinase 7/physiology , Signal Transduction , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Mice, Knockout , Protein Structure, Tertiary
6.
J Biol Chem ; 280(14): 13477-82, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15695508

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades are the central components of the intracellular signaling networks that eukaryotic cells use to respond to a wide spectrum of extracellular stimuli. MAPKs are activated through a module consisting of a MAPK, a MAPK kinase (MKK), and a MKK kinase (MAP3K). Because of its unique position in the MAPK module, a MAP3K is crucial in relaying the upstream receptor-mediated signals through the MAPK cascades to induce physiological responses. Yet, the underlying molecular mechanism of MAP3K regulation and activation remains largely unknown. In this study, we demonstrated that MAP3K MEKK2 activation requires dimerization. We mapped the MEKK2 dimerization motif in its catalytic domain and showed that the NH2-terminal region is not required for MEKK2 dimer formation. We also found that the inactive, non-phosphorylated MEKK2 formed significantly more dimers than the phosphorylated and, hence, active MEKK2. Moreover, prevention of MEKK2 dimer formation inhibited MEKK2-mediated JNK activation. Using a chemical-induced dimerization system, we further demonstrated that MEKK2 dimer formation in vivo augmented MEKK2-dependent JNK activation and JNK/AP-1 reporter gene transcription. Together, these results suggest a novel mechanism underlying MEKK2 regulation and activation.


Subject(s)
Catalytic Domain , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Signaling System/physiology , Protein Structure, Quaternary , Animals , Cell Line , Dimerization , Enzyme Activation , Genes, Reporter , Humans , MAP Kinase Kinase Kinase 2/genetics , Phosphorylation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
7.
Biochem Cell Biol ; 82(6): 658-63, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15674433

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.


Subject(s)
MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinase 3/metabolism , MAP Kinase Signaling System , Animals , MAP Kinase Kinase Kinase 1/chemistry , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinase 2/genetics , MAP Kinase Kinase Kinase 3/chemistry , MAP Kinase Kinase Kinase 3/genetics , Mice , Mice, Knockout , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...