Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Front Immunol ; 15: 1389710, 2024.
Article in English | MEDLINE | ID: mdl-38736876

ABSTRACT

Macrophage activation syndrome (MAS) is a rare complication of autoimmune inflammatory rheumatic diseases (AIIRD) characterized by a progressive and life-threatening condition with features including cytokine storm and hemophagocytosis. Predisposing factors are typically associated with microbial infections, genetic factors (distinct from typical genetically related hemophagocytic lymphohistiocytosis (HLH)), and inappropriate immune system overactivation. Clinical features include unremitting fever, generalized rash, hepatosplenomegaly, lymphadenopathy, anemia, worsening liver function, and neurological involvement. MAS can occur in various AIIRDs, including but not limited to systemic juvenile idiopathic arthritis (sJIA), adult-onset Still's disease (AOSD), systemic lupus erythematosus (SLE), Kawasaki disease (KD), juvenile dermatomyositis (JDM), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), etc. Although progress has been made in understanding the pathogenesis and treatment of MAS, it is important to recognize the differences between different diseases and the various treatment options available. This article summarizes the cell types and cytokines involved in MAS-related diseases, the heterogeneity, and treatment options, while also comparing it to genetically related HLH.


Subject(s)
Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/therapy , Macrophage Activation Syndrome/diagnosis , Disease Progression , Cytokines/metabolism , Animals , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis
2.
BMC Nephrol ; 25(1): 164, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745129

ABSTRACT

BACKGROUND: Atypical haemolytic uremic syndrome (aHUS) is an uncommon form of thrombotic microangiopathy (TMA). However, it remains difficult to diagnose the disease early, given its non-specific and overlapping presentation to other conditions such as thrombotic thrombocytopenic purpura and typical HUS. It is also important to identify the underlying causes and to distinguish between primary (due to a genetic abnormality leading to a dysregulated alternative complement pathway) and secondary (often attributed by severe infection or inflammation) forms of the disease, as there is now effective treatment such as monoclonal antibodies against C5 for primary aHUS. However, primary aHUS with severe inflammation are often mistaken as a secondary HUS. We presented an unusual case of adult-onset Still's disease (AOSD) with macrophage activation syndrome (MAS), which is in fact associated with anti-complement factor H (anti-CFH) antibodies related aHUS. Although the aHUS may be triggered by the severe inflammation from the AOSD, the presence of anti-CFH antibodies suggests an underlying genetic defect in the alternative complement pathway, predisposing to primary aHUS. One should note that anti-CFH antibodies associated aHUS may not always associate with genetic predisposition to complement dysregulation and can be an autoimmune form of aHUS, highlighting the importance of genetic testing. CASE PRESENTATION: A 42 years old man was admitted with suspected adult-onset Still's disease. Intravenous methylprednisolone was started but patient was complicated with acute encephalopathy and low platelet. ADAMTS13 test returned to be normal and concurrent aHUS was eventually suspected, 26 days after the initial thrombocytopenia was presented. Plasma exchange was started and patient eventually had 2 doses of eculizumab after funding was approved. Concurrent tocilizumab was also used to treat the adult-onset Still's disease with MAS. The patient was eventually stabilised and long-term tocilizumab maintenance treatment was planned instead of eculizumab following haematology review. Although the aHUS may be a secondary event to MAS according to haematology opinion and the genetic test came back negative for the five major aHUS gene, high titre of anti-CFH antibodies was detected (1242 AU/ml). CONCLUSION: Our case highlighted the importance of prompt anti-CFH antibodies test and genetic testing for aHUS in patients with severe AOSD and features of TMA. Our case also emphasized testing for structural variants within the CFH and CFH-related proteins gene region, as part of the routine genetic analysis in patients with anti-CFH antibodies associated aHUS to improve diagnostic approaches.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Complement Factor H , Still's Disease, Adult-Onset , Humans , Still's Disease, Adult-Onset/complications , Still's Disease, Adult-Onset/diagnosis , Still's Disease, Adult-Onset/drug therapy , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/immunology , Complement Factor H/immunology , Adult , Male , Autoantibodies/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/immunology
3.
Clin Exp Immunol ; 216(3): 272-279, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38457368

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening condition, characterized by cytopenia, multi-organ dysfunction, and coagulopathy associated with excessive activation of macrophages. In this study, we investigated the roles of alpha2-antiplasmin (α2AP) in the progression of MAS using fulminant MAS mouse model induced by toll-like receptor-9 agonist (CpG) and D-(+)-galactosamine hydrochloride (DG). α2AP deficiency attenuated macrophage accumulation, liver injury, and fibrin deposition in the MAS model mice. Interferon-γ (IFN-γ) is associated with macrophage activation, including migration, and plays a pivotal role in MAS progression. α2AP enhanced the IFN-γ-induced migration, and tissue factor production. Additionally, we showed that fibrin-induced macrophage activation and tumor necrosis factor-α production. Moreover, the blockade of α2AP by neutralizing antibodies attenuated macrophage accumulation, liver injury, and fibrin deposition in the MAS model mice. These data suggest that α2AP may regulate IFN-γ-induced responses and be associated with macrophage activation and fibrin deposition in the MAS progression.


Subject(s)
Disease Models, Animal , Fibrin , Interferon-gamma , Macrophage Activation Syndrome , Macrophage Activation , Macrophages , alpha-2-Antiplasmin , Animals , Fibrin/metabolism , Mice , alpha-2-Antiplasmin/metabolism , Macrophage Activation/immunology , Macrophage Activation Syndrome/immunology , Interferon-gamma/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice, Knockout , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Male , Liver/immunology , Liver/metabolism , Liver/pathology , Galactosamine
4.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269577

ABSTRACT

Macrophage activation syndrome (MAS) is one of the few entities in rheumatology with the potential to quickly cause multiple organ failure and loss of life, and as such, requires urgent clinical intervention. It has a broad symptomatology, depending on the organs it affects. One especially dangerous aspect of MAS's course of illness is myocarditis leading to acute heart failure and possibly death. Research in recent years has proved that macrophages settled in different organs are not a homogenous group, with particular populations differing in both structure and function. Within the heart, we can determine two major groups, based on the presence of the C-C 2 chemokine receptor (CCR2): CCR2+ and CCR2-. There are a number of studies describing their function and the changes in the population makeup between normal conditions and different illnesses; however, to our knowledge, there has not been one touching on the matter of changes occurring in the populations of heart macrophages during MAS and their possible consequences. This review summarizes the most recent knowledge on heart macrophages, the influence of select cytokines (those particularly significant in the development of MAS) on their activity, and both the immediate and long-term consequences of changes in the makeup of specific macrophage populations-especially the loss of CCR2- cells that are responsible for regenerative processes, as well as the substitution of tissue macrophages by the highly proinflammatory CCR2+ macrophages originating from circulating monocytes. Understanding the significance of these processes may lead to new discoveries that could improve the therapeutic methods in the treatment of MAS.


Subject(s)
Heart Failure/immunology , Macrophage Activation Syndrome/complications , Macrophages/immunology , Receptors, CCR2/metabolism , Disease Progression , Gene Expression Regulation , Heart Failure/etiology , Humans , Macrophage Activation Syndrome/immunology , Myocardium/immunology
5.
Pediatr Rheumatol Online J ; 20(1): 16, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193600

ABSTRACT

BACKGROUND: Macrophage activation syndrome (MAS) is a severe and under-recognized complication of rheumatologic diseases. We describe a patient who presented with rapidly progressive, refractory MAS found to have anti-MDA5 antibody Juvenile Dermatomyositis (JDM) as her underlying rheumatologic diagnosis. CASE PRESENTATION: We describe a 14-year-old female who at the time of admission had a history of daily fevers for 6 weeks and an unintentional sixteen-pound weight loss. Review of systems was significant for cough, shortness of breath, chest pain, headaches, sore throat, muscle aches, rash, nausea, and loss of appetite. An extensive initial workup revealed findings consistent with an autoimmune process. While awaiting results of her workup she had clinical decompensation with multi-organ system involvement including pancytopenias, interstitial lung disease, hepatitis, cardiac involvement, gastrointestinal distension and pain, feeding intolerance, extensive mucocutaneous candidiasis, and neuropsychiatric decline. Due to her decompensation, significant interstitial lung disease, and likely underlying rheumatologic condition she was started on high dose pulse steroids and mycophenolate. An MRI was performed due to her transaminitis and shoulder pain revealing significant myositis. Intravenous immunoglobulin was then initiated. The myositis antibody panel sent early in her workup was significant for anti-MDA5 and anti-SSA-52 antibodies. Despite high dose pulse steroids, mycophenolate, and IVIG, her disease progressed requiring escalating therapies. Ultimately, she responded with resolution of her MAS as well as significant and steady improvement in her feeding intolerance, interstitial lung disease, cardiac dysfunction, myositis, arthritis, and cutaneous findings. CONCLUSIONS: JDM in the pediatric patient is rare, as is MAS. In patients with complex rheumatologic conditions and lack of response to treatment, it is important to continually assess the patient's clinical status with MAS in mind, as this may change the treatment approach. Without proper recognition of this complication, patients can have a significant delay in diagnosis leading to life-threatening consequences.


Subject(s)
Autoantibodies/blood , Dermatomyositis , Glucocorticoids/administration & dosage , Immunoglobulins, Intravenous/administration & dosage , Interferon-Induced Helicase, IFIH1/immunology , Macrophage Activation Syndrome , Multiple Organ Failure , Mycophenolic Acid/administration & dosage , Adolescent , Clinical Deterioration , Dermatomyositis/complications , Dermatomyositis/diagnosis , Dermatomyositis/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunologic Factors/administration & dosage , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/immunology , Magnetic Resonance Imaging/methods , Multiple Organ Failure/diagnosis , Multiple Organ Failure/drug therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Pulse Therapy, Drug/methods , Treatment Outcome
7.
Nat Rev Rheumatol ; 17(11): 678-691, 2021 11.
Article in English | MEDLINE | ID: mdl-34611329

ABSTRACT

Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.


Subject(s)
Immune System Diseases/immunology , Inflammation/immunology , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , Chemokine CXCL9/blood , Chemokine CXCL9/immunology , Crohn Disease/blood , Crohn Disease/drug therapy , Crohn Disease/immunology , Disease Models, Animal , Humans , Immune System Diseases/blood , Immune System Diseases/drug therapy , Immunity/immunology , Inflammation/blood , Inflammation/drug therapy , Interferon-gamma/biosynthesis , Interferon-gamma/blood , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/drug therapy , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/immunology , Mice , Neopterin/blood , Neopterin/immunology , STAT1 Transcription Factor/blood , STAT1 Transcription Factor/immunology
8.
Front Immunol ; 12: 750114, 2021.
Article in English | MEDLINE | ID: mdl-34691064

ABSTRACT

Background: Interleukin (IL)-18 is markedly elevated in systemic inflammatory diseases that cause the 'cytokine storm' such as adult-onset Still's disease (AOSD) and hemophagocytic lymphohistiocytosis (HLH). The differences in IL-18 between AOSD and HLH, especially in adults, is uncertain. Macrophage activation syndrome (MAS), a form of secondary HLH, is often difficult to differentiate cases of AOSD that include MAS from other secondary HLH. In this case-control study, we investigated whether serum IL-18 levels could be a useful biomarker for the differential diagnosis of AOSD with or without MAS (AOSD group) and other secondary HLH in adults (adult HLH group). Patients and Methods: We enrolled 46 patients diagnosed with AOSD including 9 patients with MAS and 31 patients in the adult HLH group, which excluded AOSD-associated MAS. The clinical features and laboratory data were compared between the AOSD and adult HLH groups. In addition, we subdivided the AOSD group (with or without MAS) and the adult HLH group (whether lymphoma-associated or not) and compared the four groups. A logistic regression analysis was used to identify factors with high efficacy in differentiating the two groups, followed by a receiver operating characteristic (ROC) curve analysis to evaluate the differential diagnostic ability of IL-18. We analyzed the correlation between IL-18 and various laboratory parameters in the AOSD group. Results: Serum IL-18 levels of patients in the AOSD groups were significantly higher than those of the adult HLH groups, and were closely correlated with ferritin, soluble interleukin-2 receptor (sIL-2R), and other laboratory data. Univariate and multivariate logistic regression analyses revealed that IL-18, sIL-2R, and 'arthralgia or arthritis' are independent factors useful in the differential diagnosis of AOSD from adult HLH. In the differential diagnosis of both groups, the area under the curve obtained from the ROC curve of IL-18 with a cutoff value of 18,550 pg/mL was 0.91 (95% confidence interval 0.83-1.00; sensitivity 90.3%, specificity 93.5%), and the differential diagnosis ability of IL-18 was superior to that of other laboratory data. Conclusions: IL-18 could be a useful biomarker for the differential diagnosis of AOSD and adult HLH.


Subject(s)
Interleukin-18/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Macrophage Activation Syndrome/diagnosis , Still's Disease, Adult-Onset/diagnosis , Adult , Aged , Biomarkers/blood , Diagnosis, Differential , Female , Ferritins/blood , Humans , Interleukin-18/immunology , Interleukin-6/blood , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/immunology , Male , Middle Aged , Receptors, Interleukin-2/blood , Still's Disease, Adult-Onset/blood , Still's Disease, Adult-Onset/immunology
9.
Int J Immunopathol Pharmacol ; 35: 20587384211048026, 2021.
Article in English | MEDLINE | ID: mdl-34569339

ABSTRACT

COVID-19 is a highly heterogeneous and complex medical disorder; indeed, severe COVID-19 is probably amongst the most complex of medical conditions known to medical science. While enormous strides have been made in understanding the molecular pathways involved in patients infected with coronaviruses an overarching and comprehensive understanding of the pathogenesis of COVID-19 is lacking. Such an understanding is essential in the formulation of effective prophylactic and treatment strategies. Based on clinical, proteomic, and genomic studies as well as autopsy data severe COVID-19 disease can be considered to be the connection of three basic pathologic processes, namely a pulmonary macrophage activation syndrome with uncontrolled inflammation, a complement-mediated endothelialitis together with a procoagulant state with a thrombotic microangiopathy. In addition, platelet activation with the release of serotonin and the activation and degranulation of mast cells contributes to the hyper-inflammatory state. Auto-antibodies have been demonstrated in a large number of hospitalized patients which adds to the end-organ damage and pro-thrombotic state. This paper provides a clinical overview of the major pathogenetic mechanism leading to severe COVID-19 disease.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/immunology , COVID-19/physiopathology , Complement Activation , Complement System Proteins/metabolism , Cytokines/blood , Disease Progression , Host-Pathogen Interactions , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/physiopathology , Inflammation/virology , Inflammation Mediators/blood , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/physiopathology , Macrophage Activation Syndrome/virology , Platelet Activation , SARS-CoV-2/immunology , Serotonin/blood , Severity of Illness Index , Thrombotic Microangiopathies/blood , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/physiopathology , Thrombotic Microangiopathies/virology
10.
Curr Rheumatol Rep ; 23(8): 58, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34216296

ABSTRACT

PURPOSE OF REVIEW: In this article, I have reviewed current reports that explore differences and similarities between multisystem inflammatory syndrome in children (MIS-C) and other known multisystem inflammatory diseases seen in children, particularly Kawasaki disease. RECENT FINDINGS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus causing the COVID-19 disease which emerged in China in December 2019 and spread rapidly to the entire country and quickly to other countries. Currently, there is a pandemic of SARS-CoV-2 infection that results in 20% of patients admitted to hospital with illness, with 3% developing intractable acute respiratory distress syndrome (ARDS) with high mortality. However, pediatric COVID-19 is still reported to be a mild disease, affecting only 8% of children. Pathogenesis in children is comparable to adults. There are suggested impaired activation of IFN-alpha and IFN regulator 3, decreased cell response causing impaired viral defense, yet the clinical course is mild, and almost all children recover from the infection without major complications. Interestingly, there is a subset of patients that develop a late but marked immunogenic response to COVID-19 and develop MIS-C. Clinical features of MIS-C resemble certain pediatric rheumatologic diseases, such as Kawasaki disease (mucocutaneous lymph node syndrome) which affects small-medium vessels. Other features of MIS-C resemble those of macrophage activation syndrome (MAS). However, recent research suggests distinct clinical and laboratory differences between MIS-C, Kawasaki disease, and MAS. Since the start of the SARS-CoV-2 pandemic, MIS-C has become the candidate for the most common cause of acquired heart disease in children.


Subject(s)
COVID-19/immunology , Macrophage Activation Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/immunology , Systemic Inflammatory Response Syndrome/immunology , COVID-19/physiopathology , Humans , Immunity, Cellular/immunology , Interferon Regulatory Factor-3/immunology , Interferon-alpha/immunology , Macrophage Activation Syndrome/physiopathology , Mucocutaneous Lymph Node Syndrome/physiopathology , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome/physiopathology
11.
J Med Virol ; 93(9): 5474-5480, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33963559

ABSTRACT

In this study, laboratorial parameters of hospitalized novel coronavirus (COVID-19) patients, who were complicated with severe pneumonia, were compared with the findings of cytokine storm developing in macrophage activation syndrome (MAS)/secondary hemophagocytic lymphohistiocytosis (sHLH). Severe pneumonia occurred as a result of cytokine storm in some patients who needed intensive care unit (ICU), and it is aimed to determine the precursive parameters in this situation. Also in this study, the aim is to identify laboratory criteria that predict worsening disease and ICU intensification, as well as the development of cytokine storm. This article comprises a retrospective cohort study of patients admitted to a single institution with COVID-19 pneumonia. This study includes 150 confirmed COVID-19 patients with severe pneumonia. When they were considered as severe pneumonia patients, the clinic and laboratory parameters of this group are compared with H-score criteria. Patients are divided into two subgroups; patients with worsened symptoms who were transferred into tertiary ICU, and patients with stable symptoms followed in the clinic. For the patients with confirmed COVID-19 infection, after they become complicated with severe pneumonia, lymphocytopenia (55.3%), anemia (12.0%), thrombocytopenia (19.3%), hyperferritinemia (72.5%), hyperfibrinogenemia (63.7%) and elevated lactate dehydrogenase (LDH) (90.8%), aspartate aminotransaminase (AST) (31.3%), alanine aminotransaminase (ALT) (20.7%) are detected. There were no significant changes in other parameters. Blood parameters between the pre-ICU period and the ICU period (in which their situation had been worsened and acute respiratory distress syndrome [ARDS] was developed) were also compared. In the latter group lymphocyte levels were found significantly reduced (p = 0.01), and LDH, highly sensitive troponin (hs-troponin), procalcitonin, and triglyceride levels were significantly increased (p < 0.05). In addition, there was no change in hemoglobin, leukocyte, platelet, ferritin, and liver function test levels, including patients who developed ARDS, similar to the cytokine storm developed in MAS/sHLH. COVID-19 pneumonia has similar findings as hyperinflammatory syndromes but does not seem to have typical features as in cytokine storm developed in MAS/sHLH. In the severe patient group who has started to develop ARDS signs, a decrease in lymphocyte level in addition to the elevated LDH, hs-troponin, procalcitonin, and triglyceride levels can be a predictor in progression to ICU admission and could help in the planning of anti-cytokine therapy.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/pathology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/pathology , SARS-CoV-2/pathogenicity , Aged , Alanine Transaminase/blood , Anemia/blood , Anemia/diagnosis , Anemia/immunology , Anemia/pathology , Aspartate Aminotransferases/blood , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Diagnosis, Differential , Disease Progression , Female , Fibrinogen/metabolism , Humans , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Hyperferritinemia/immunology , Hyperferritinemia/pathology , Intensive Care Units , L-Lactate Dehydrogenase/blood , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphopenia/blood , Lymphopenia/diagnosis , Lymphopenia/immunology , Lymphopenia/pathology , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/immunology , Male , Middle Aged , Procalcitonin/blood , Retrospective Studies , Thrombocytopenia/blood , Thrombocytopenia/diagnosis , Thrombocytopenia/immunology , Thrombocytopenia/pathology , Triglycerides/blood , Troponin/blood
12.
J Trop Pediatr ; 67(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33787904

ABSTRACT

LAY SUMMARY: Clinical and laboratory parameters of multisystem inflammatory syndrome in children (MIS-C) mimic Kawasaki disease (KD). KD has been described in association with dengue, scrub typhus and leptospirosis. However, MIS-C with concomitant infection has rarely been reported in literature. A 14-year-old-girl presented with fever and rash with history of redness of eyes, lips and tongue. Investigations showed anemia, lymphopenia, thrombocytosis with elevated erythrocyte sedimentation rate, C-reactive protein, pro-brain natriuretic peptide, Interleukin-6, ferritin and d-dimer. Scrub typhus immunoglobulin M was positive. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) level was also elevated. A diagnosis of MIS-C with concomitant scrub typhus was proffered. Child received azithromycin, intravenous immunoglobulin and methylprednisolone. After an afebrile period of 2.5 days, child developed unremitting fever and rash. Repeat investigations showed anemia, worsening lymphopenia, thrombocytopenia, transaminitis, hypertriglyceridemia, hyperferritinemia and hypofibrinogenemia which were consistent with a diagnosis of macrophage activation syndrome (MAS). KD, MIS-C and MAS represent three distinct phenotypes of hyperinflammation seen in children during coronavirus disease pandemic. Several tropical infections may mimic or coexist with MIS-C which can be a diagnostic challenge for the treating physician. Identification of coexistence or differentiation between the two conditions is important in countries with high incidence of tropical infections to guide appropriate investigations and treatment.


Subject(s)
COVID-19/complications , Macrophage Activation Syndrome/diagnosis , Scrub Typhus/diagnosis , Systemic Inflammatory Response Syndrome , Adolescent , Azithromycin/therapeutic use , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/therapy , Child , Female , Fever/etiology , Humans , Immunoglobulin G/blood , Immunoglobulins, Intravenous/therapeutic use , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/immunology , Methylprednisolone/administration & dosage , Methylprednisolone/therapeutic use , Pandemics , SARS-CoV-2 , Scrub Typhus/complications , Scrub Typhus/drug therapy , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology
13.
Nat Rev Rheumatol ; 17(3): 145-157, 2021 03.
Article in English | MEDLINE | ID: mdl-33547426

ABSTRACT

A hyperinflammatory 'cytokine storm' state termed macrophage activation syndrome (MAS), culminating from a complex interplay of genetics, immunodeficiency, infectious triggers and dominant innate immune effector responses, can develop across disparate entities including systemic juvenile idiopathic arthritis (sJIA) and its counterpart adult-onset Still disease (AOSD), connective tissue diseases, sepsis, infection, cancers and cancer immunotherapy. Classifying MAS using the immunological disease continuum model, with strict boundaries that define the limits of innate and adaptive immunity, at one boundary is MAS with loss of immune function, as occurs in the 'perforinopathies' and some cases of sJIA-AOSD. Conversely, at the other boundary, immune hypersensitivity with gain of immune function in MHC class II-associated sJIA-AOSD and with chimeric antigen receptor (CAR) T cell therapy also triggers MAS. This provides a benchmark for evaluating severe inflammation in some patients with COVID-19 pneumonia, which cripples primary type I interferon immunity and usually culminates in a lung-centric 'second wave' cytokine-driven alveolitis with associated immunothrombosis; this phenomenon is generally distinct from MAS but can share features with the proposed 'loss of immune function' MAS variant. This loss and gain of function MAS model offers immune cartography for a novel mechanistic classification of MAS with therapeutic implications.


Subject(s)
COVID-19/epidemiology , Cytokines/metabolism , Macrophage Activation Syndrome/immunology , Macrophages/immunology , Pandemics , SARS-CoV-2 , COVID-19/immunology , Cytokines/immunology , Humans , Macrophage Activation Syndrome/etiology
14.
Clin Exp Immunol ; 203(2): 174-182, 2021 02.
Article in English | MEDLINE | ID: mdl-33128796

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, hyperinflammatory disorder, characterized by multiorgan failure, fever and cytopenias. The diagnosis of HLH and its subtype Macrophage Activation Syndrome (MAS) remains a challenge. Interleukin 18 (IL-18) is emerging as a potential biomarker for HLH/MAS but is currently not a part of diagnostic criteria. This systematic review aimed to assess the potential role of IL-18 in the diagnosis and monitoring of HLH and MAS, and was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and Embase were searched on 30 January 2020. Studies included all subtypes of HLH and a range of underlying disorders in both children and adults. A total of 14 studies were included. Generally, serum IL-18 was elevated in both primary and secondary HLH (> 1000 pg/ml) compared with other inflammatory conditions and with healthy individuals; thus, serum IL-18 may be able to discriminate between HLH and other inflammatory conditions. Significantly increased IL-18 (> 10 000 pg/ml) was also consistently described in MAS compared with other subtypes of HLH. The ability of IL-18 to distinguish MAS from systemic juvenile idiopathic arthritis (JIA) is less unambiguous, as IL-18 levels > 100 000 pg/ml were described in sJIA patients both with and without MAS. IL-18 may help to differentiate between HLH subtypes and other inflammatory conditions. As HLH and MAS are rare disorders, only few and relatively small studies exist on the subject. Larger, prospective multi-center studies are called for to assess the diagnostic precision of IL-18 for HLH and MAS.


Subject(s)
Interleukin-18/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Macrophage Activation Syndrome/diagnosis , Macrophages/immunology , Monitoring, Immunologic/methods , Animals , Diagnosis, Differential , Humans , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophage Activation , Macrophage Activation Syndrome/immunology , Phenotype
15.
Arthritis Rheumatol ; 73(5): 885-895, 2021 05.
Article in English | MEDLINE | ID: mdl-33191652

ABSTRACT

OBJECTIVE: Macrophage activation syndrome (MAS) is characterized by increased serum levels of ferritin and heme oxygenase 1 (HO-1), and yet no known function is ascribed to these molecules in MAS. Because HO-1 is antiinflammatory, we hypothesized that pharmacologic activation of HO-1 could ameliorate MAS disease activity. Dimethyl fumarate (DMF), a treatment approved by the US Food and Drug Administration for multiple sclerosis, activates HO-1. Monomethyl fumarate (MMF) is the active metabolite of DMF. We therefore evaluated whether MMF could elicit HO-1-dependent therapeutic improvements in a murine model of MAS. METHODS: We induced MAS by repeated activation of Toll-like receptor 9 (TLR-9) in wild-type and myeloid-specific HO-1-deficient mice. MMF was administered twice daily to test its efficacy. We assessed organ weights, serum cytokine levels, histologic features of the spleen and liver tissue, and complete blood cell counts to evaluate disease activity. Statistical testing was performed using Student's t-test or by 2-way analysis of variance as appropriate. RESULTS: The presence of HO-1 was required for the majority of TLR-9-induced interleukin-10 (IL-10). IL-10 production in TLR-9-induced MAS was found to correlate with the myeloid-HO-1 gene dose in myeloid cells (P < 0.001). MMF treatment increased the levels of HO-1 in splenic macrophages by ~2-fold (P < 0.01), increased serum levels of IL-10 in an HO-1-dependent manner in mice with TLR-9-induced MAS (P < 0.005), and improved multiple disease parameters in both an HO-1-dependent and HO-1-independent manner. CONCLUSION: TLR-9-induced production of IL-10 is regulated by HO-1 activity both in vitro and in vivo. Therapeutic enhancement of the HO-1/IL-10 axis in a murine model was able to significantly ameliorate MAS disease activity. These results suggest that HO-1 may be viable as a MAS therapeutic target, and treatment with DMF and MMF should be considered in future investigations of MAS therapy.


Subject(s)
Cytokines/drug effects , Fumarates/pharmacology , Heme Oxygenase-1/drug effects , Macrophage Activation Syndrome/immunology , Macrophages/drug effects , Membrane Proteins/drug effects , Animals , Cytokines/immunology , Disease Models, Animal , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Interleukin-10/immunology , Liver/drug effects , Liver/pathology , Macrophage Activation Syndrome/metabolism , Macrophage Activation Syndrome/pathology , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Oligodeoxyribonucleotides/pharmacology , Organ Size/drug effects , Spleen/drug effects , Spleen/pathology , Toll-Like Receptor 9/agonists
16.
Res Vet Sci ; 134: 137-146, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33383491

ABSTRACT

"Humanized" immunodeficient mice generated via the transplantation of CD34+ human hematopoietic stem cells (hHSC) are an important preclinical model system. The triple transgenic NOD.Cg-PrkdcscidIl2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSGS) mouse line is increasingly used as recipient for CD34+ hHSC engraftment. NSGS mice combine the features of the highly immunodeficient NSG mice with transgenic expression of the human myeloid stimulatory cytokines GM-CSF, IL-3, and Kit ligand. While generating humanized NSGS (huNSGS) mice from two independent cohorts, we encountered a fatal macrophage activation syndrome (MAS)-like phenotype resulting from the transplantation of CD34+ hHSC. huNSGS mice exhibiting this phenotype declined clinically starting at approximately 10 weeks following CD34+ hHSC engraftment, with all mice requiring euthanasia by 16 weeks. Gross changes comprised small, irregular liver, splenomegaly, cardiomegaly, and generalized pallor. Hematological abnormalities included severe thrombocytopenia and anemia. Pathologically, huNSGS spontaneously developed a disseminated histiocytosis with infiltrates of activated macrophages and hemophagocytosis predominantly affecting the liver, spleen, bone marrow, and pancreas. The infiltrates were chimeric with a mixture of human and mouse macrophages. Immunohistochemistry suggested activation of the inflammasome in both human and murine macrophages. Active Epstein-Barr virus infection was not a feature. Although the affected mice exhibited robust chimerism of the spleen and bone marrow, the phenotype often developed in the face of low chimerism of the peripheral blood. Given the high penetrance and early lethality associated with the MAS-like phenotype here described, we urge caution when considering the use of huNSGS mice for the development of long-term studies.


Subject(s)
Macrophage Activation Syndrome/pathology , Macrophages/microbiology , Animals , Antigens, CD34 , DNA-Activated Protein Kinase/immunology , Epstein-Barr Virus Infections/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Herpesvirus 4, Human , Histiocytosis/immunology , Humans , Interleukin Receptor Common gamma Subunit/immunology , Macrophage Activation Syndrome/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Recombinant Proteins/immunology , Stem Cell Factor/immunology
17.
J Clin Invest ; 130(10): 5425-5443, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32925169

ABSTRACT

Late-onset inflammatory toxicities resembling hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) occur after chimeric antigen receptor T cell (CAR T cell) infusion and represent a therapeutic challenge. Given the established link between perforin deficiency and primary HLH, we investigated the role of perforin in anti-CD19 CAR T cell efficacy and HLH-like toxicities in a syngeneic murine model. Perforin contributed to both CD8+ and CD4+ CAR T cell cytotoxicity but was not required for in vitro or in vivo leukemia clearance. Upon CAR-mediated in vitro activation, perforin-deficient CAR T cells produced higher amounts of proinflammatory cytokines compared with WT CAR T cells. Following in vivo clearance of leukemia, perforin-deficient CAR T cells reexpanded, resulting in splenomegaly with disruption of normal splenic architecture and the presence of hemophagocytes, which are findings reminiscent of HLH. Notably, a substantial fraction of patients who received anti-CD22 CAR T cells also experienced biphasic inflammation, with the second phase occurring after the resolution of cytokine release syndrome, resembling clinical manifestations of HLH. Elevated inflammatory cytokines such as IL-1ß and IL-18 and concurrent late CAR T cell expansion characterized the HLH-like syndromes occurring in the murine model and in humans. Thus, a murine model of perforin-deficient CAR T cells recapitulated late-onset inflammatory toxicities occurring in human CAR T cell recipients, providing therapeutically relevant mechanistic insights.


Subject(s)
Immunotherapy, Adoptive/adverse effects , Perforin/deficiency , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cytokines/biosynthesis , Disease Models, Animal , Humans , In Vitro Techniques , Inflammation Mediators/metabolism , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , Perforin/genetics , T-Lymphocytes/pathology
18.
J Clin Invest ; 130(11): 5942-5950, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32701511

ABSTRACT

BACKGROUNDPediatric SARS-CoV-2 infection can be complicated by a dangerous hyperinflammatory condition termed multisystem inflammatory syndrome in children (MIS-C). The clinical and immunologic spectrum of MIS-C and its relationship to other inflammatory conditions of childhood have not been studied in detail.METHODSWe retrospectively studied confirmed cases of MIS-C at our institution from March to June 2020. The clinical characteristics, laboratory studies, and treatment response were collected. Data were compared with historic cohorts of Kawasaki disease (KD) and macrophage activation syndrome (MAS).RESULTSTwenty-eight patients fulfilled the case definition of MIS-C. Median age at presentation was 9 years (range: 1 month to 17 years); 50% of patients had preexisting conditions. All patients had laboratory confirmation of SARS-CoV-2 infection. Seventeen patients (61%) required intensive care, including 7 patients (25%) who required inotrope support. Seven patients (25%) met criteria for complete or incomplete KD, and coronary abnormalities were found in 6 cases. Lymphopenia, thrombocytopenia, and elevation in inflammatory markers, D-dimer, B-type natriuretic peptide, IL-6, and IL-10 levels were common but not ubiquitous. Cytopenias distinguished MIS-C from KD and the degree of hyperferritinemia and pattern of cytokine production differed between MIS-C and MAS. Immunomodulatory therapy given to patients with MIS-C included intravenous immune globulin (IVIG) (71%), corticosteroids (61%), and anakinra (18%). Clinical and laboratory improvement were observed in all cases, including 6 cases that did not require immunomodulatory therapy. No mortality was recorded in this cohort.CONCLUSIONMIS-C encompasses a broad phenotypic spectrum with clinical and laboratory features distinct from KD and MAS.FUNDINGThis work was supported by the National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases; the National Institute of Allergy and Infectious Diseases; Rheumatology Research Foundation Investigator Awards and Medical Education Award; Boston Children's Hospital Faculty Career Development Awards; the McCance Family Foundation; and the Samara Jan Turkel Center.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Betacoronavirus/metabolism , Immunoglobulins, Intravenous/administration & dosage , Immunomodulation , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Systemic Inflammatory Response Syndrome , Adolescent , Biomarkers/blood , COVID-19 , Child , Child, Preschool , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Infant , Interleukin-10/blood , Interleukin-6/blood , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/immunology , Male , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Natriuretic Peptide, Brain/blood , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology
19.
Eur Rev Med Pharmacol Sci ; 24(13): 7320-7323, 2020 07.
Article in English | MEDLINE | ID: mdl-32706070

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening condition and a medical emergency with a high-risk of mortality. It belongs to a group of diseases known as "hemophagocytic lymphohistiocytosis", characterized by a cytokine storm, with secretion of tumor necrosis factor, interleukins and interferon-gamma, and an inappropriate activation of macrophages and T-lymphocytes. Some inflammatory and systemic autoimmune diseases, such as systemic juvenile idiopathic arthritis, Still's disease and systemic lupus erythematosus, can develop into macrophage activation syndrome. This is the first episode of macrophage activation syndrome (MAS) in a young healthy woman. She arrived at the Emergency Department complaining of four days of weakness and fever not responsive to paracetamol. She had no significant past medical history, her mother suffered from rheumatoid arthritis. In the Emergency Department, we performed laboratory exams, autoimmune and infectious disease screening, bone marrow biopsy. The final diagnosis was of macrophage activation syndrome. Macrophage activation syndrome, in extremely rare cases, can arise independently years before the manifestation of an autoimmune disease. Persistent fever, high level of inflammatory markers and pancytopenia should raise suspicion in healthy people, especially when associated with a family history of autoimmune disease. Early diagnosis and consequent early treatment are fundamental to avoid progressive tissue damage that can lead to organ failure and death.


Subject(s)
Macrophage Activation Syndrome/diagnosis , Macrophage Activation , Macrophages/immunology , Adult , Disease Progression , Fatal Outcome , Female , Humans , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/therapy , Multiple Organ Failure/etiology , Treatment Failure
20.
Pediatr Rheumatol Online J ; 18(1): 56, 2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32653009

ABSTRACT

BACKGROUND: Hyperferritinemic syndromes are systemic inflammatory disorders characterized by a dysfunctional immune response, which leads to excessive activation of the monocyte-macrophage system with hypercytokinemia and may pursue a rapidly fatal course. CASE PRESENTATION: We describe two patients of 11 and 9 years of age with hyperferritinemic syndromes, one with impending macrophage activation syndrome (MAS) and one with overt MAS, who were refractory or intolerant to conventional therapies, but improved dramatically with canakinumab. CONCLUSIONS: Our report indicates that canakinumab may be efficacious in the management of hyperferritinemic syndromes, including MAS.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Hyperferritinemia , Lymphohistiocytosis, Hemophagocytic/complications , Macrophage Activation Syndrome/complications , Antirheumatic Agents/administration & dosage , Child , Female , Ferritins/analysis , Humans , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Hyperferritinemia/drug therapy , Hyperferritinemia/etiology , Interleukin-1beta/antagonists & inhibitors , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/immunology , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...