Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.015
Filter
1.
Clin Exp Med ; 24(1): 98, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727918

ABSTRACT

The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.


Subject(s)
Choroid , Macular Degeneration , Mast Cells , Humans , Choroid/pathology , Macular Degeneration/pathology , Macular Degeneration/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Bruch Membrane/pathology , Bruch Membrane/metabolism
2.
J Biomed Sci ; 31(1): 48, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730462

ABSTRACT

Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.


Subject(s)
Blood-Retinal Barrier , Extracellular Vesicles , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/physiopathology , Extracellular Vesicles/metabolism , Humans , Diabetic Retinopathy/physiopathology , Diabetic Retinopathy/metabolism , Retinal Diseases/physiopathology , Retinal Diseases/metabolism , Macular Degeneration/physiopathology , Macular Degeneration/metabolism , Animals
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732004

ABSTRACT

Age-related macular degeneration (AMD) is an age-related disorder that is a global public health problem. The non-enzymatic Maillard reaction results in the formation of advanced glycation end products (AGEs). Accumulation of AGEs in drusen plays a key role in AMD. AGE-reducing drugs may contribute to the prevention and treatment of AGE-related disease. Fructosamine oxidase (FAOD) acts on fructosyl lysine and fructosyl valine. Based upon the published results of fructosamine 3-kinase (FN3K) and FAOD obtained in cataract and presbyopia, we studied ex vivo FAOD treatment as a non-invasive AMD therapy. On glycolaldehyde-treated porcine retinas, FAOD significantly reduced AGE autofluorescence (p = 0.001). FAOD treatment results in a breakdown of AGEs, as evidenced using UV fluorescence, near-infrared microspectroscopy on stained tissue sections of human retina, and gel permeation chromatography. Drusen are accumulations of AGEs that build up between Bruch's membrane and the retinal pigment epithelium. On microscopy slides of human retina affected by AMD, a significant reduction in drusen surface to 45 ± 21% was observed following FAOD treatment. Enzymatic digestion followed by mass spectrometry of fructose- and glucose-based AGEs (produced in vitro) revealed a broader spectrum of substrates for FAOD, as compared to FN3K, including the following: fructosyllysine, carboxymethyllysine, carboxyethyllysine, and imidazolone. In contrast to FN3K digestion, agmatine (4-aminobutyl-guanidine) was formed following FAOD treatment in vitro. The present study highlights the therapeutic potential of FAOD in AMD by repairing glycation-induced damage.


Subject(s)
Glycation End Products, Advanced , Macular Degeneration , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Humans , Glycation End Products, Advanced/metabolism , Animals , Swine , Retina/metabolism , Retina/drug effects , Retina/pathology , Amino Acid Oxidoreductases
4.
Front Immunol ; 15: 1366841, 2024.
Article in English | MEDLINE | ID: mdl-38711521

ABSTRACT

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Subject(s)
Aminopyridines , Choroidal Neovascularization , Disease Models, Animal , Microglia , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Microglia/metabolism , Microglia/drug effects , Mice , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Mice, Inbred C57BL , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Inflammation , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Pyrroles/pharmacology , Pyrroles/therapeutic use , Cellular Senescence/drug effects
5.
Free Radic Biol Med ; 219: 17-30, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579938

ABSTRACT

Non-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and dynamics, together with the levels of phosphorylated AMPK (p-AMPK). AMPK activation with metformin restored RPE p-AMPK levels, and mitochondrial dynamics, structure, and function at 4 weeks post-SCGx, as well as visual function and RPE/outer retina structure at 10 weeks post-SCGx. These results demonstrate a key role of the temporal RPE mitochondrial homeostasis as an early target for NE-AMD-induced damage, and that pharmacological AMPK activation could preserve mitochondrial morphology, dynamics, and function, and, consequently, avoid the functional and structural damage induced by NE-AMD.


Subject(s)
AMP-Activated Protein Kinases , Disease Models, Animal , Macular Degeneration , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Retinal Pigment Epithelium , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mice , Macular Degeneration/pathology , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , AMP-Activated Protein Kinases/metabolism , Humans , Metformin/pharmacology
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674018

ABSTRACT

Long-lasting anti-vascular endothelial growth factor (anti-VEGF) agents have become an option to reduce treatment frequency, with ongoing research exploring optimal responses and safety profiles. This review delves into molecular targets, pharmacological aspects, and strategies for achieving effective and enduring disease control in neovascular age-related macular degeneration (AMD). The molecular pathways involved in macular neovascularization, including angiogenesis and arteriogenesis, are explored. VEGF, PlGF, Ang-1, and Ang-2 play crucial roles in regulating angiogenesis, influencing vessel growth, maturation, and stability. The complex interplay of these factors, along with growth factors like TGFß and bFGF, contributes to the pathogenesis of neovascular membranes. Current anti-VEGF therapies, including bevacizumab, ranibizumab, aflibercept, brolucizumab, and faricimab, are discussed with a focus on their pharmacokinetics and clinical applications. Strategies to achieve sustained disease control in AMD involve smaller molecules, increased drug dosages, and novel formulations. This narrative review provides a comprehensive overview of the molecular targets and pharmacological aspects of neovascular AMD treatment.


Subject(s)
Angiogenesis Inhibitors , Macular Degeneration , Molecular Targeted Therapy , Humans , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Molecular Targeted Therapy/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
7.
Invest Ophthalmol Vis Sci ; 65(4): 34, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38648039

ABSTRACT

Purpose: The purpose of this study was to determine if levels of the HtrA1 protein in serum or vitreous humor are influenced by genetic risk for age-related macular degeneration (AMD) at the 10q26 locus, age, sex, AMD status, and/or AMD disease severity, and, therefore, to determine the contribution of systemic and ocular HtrA1 to the AMD disease process. Methods: A custom-made sandwich ELISA assay (SCTM ELISA) for detection of the HtrA1 protein was designed and compared with three commercial assays (R&D Systems, MyBiosource 1 and MyBiosource 2) using 65 serum samples. Concentrations of HtrA1 were thereafter determined in serum and vitreous samples collected from 248 individuals and 145 human donor eyes, respectively. Results: The SCTM ELISA demonstrated high specificity, good recovery, and parallelism within its linear detection range and performed comparably to the R&D Systems assay. In contrast, we were unable to demonstrate the specificity of the two assays from MyBioSource using either recombinant or native HtrA1. Analyses of concentrations obtained using the validated SCTM assay revealed that genetic risk at the 10q26 locus, age, sex, or AMD status are not significantly associated with altered levels of the HtrA1 protein in serum or in vitreous humor (P > 0.05). Conclusions: HtrA1 levels in serum and vitreous do not reflect the risk for AMD associated with the 10q26 locus or disease status. Localized alteration in HTRA1 expression in the retinal pigment epithelium, rather than systemic changes in HtrA1, is the most likely driver of elevated risk for developing AMD among individuals with risk variants at the 10q26 locus.


Subject(s)
High-Temperature Requirement A Serine Peptidase 1 , Macular Degeneration , Serine Endopeptidases , Vitreous Body , Aged , Female , Humans , Male , Chromosomes, Human, Pair 10/genetics , Enzyme-Linked Immunosorbent Assay/methods , Genetic Predisposition to Disease , High-Temperature Requirement A Serine Peptidase 1/blood , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/diagnosis , Risk Factors , Sensitivity and Specificity , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Vitreous Body/metabolism
8.
Mol Vis ; 30: 74-91, 2024.
Article in English | MEDLINE | ID: mdl-38601018

ABSTRACT

Sorsby fundus dystrophy (SFD) is a rare, inherited form of macular degeneration caused by mutations in the gene encoding tissue inhibitor of metalloproteinases 3 (TIMP-3). There are 21 mutations currently associated with SFD, with some variants (e.g., Ser179Cys, Tyr191Cys, and Ser204Cys) having been studied much more than others. We review what is currently known about the identified SFD variants in terms of their dimerization, metalloproteinase inhibition, and impact on angiogenesis, with a focus on disparities between reports and areas requiring further study. We also explore the potential molecular mechanisms leading to the accumulation of extracellular TIMP-3 in SFD and consider how accumulated TIMP-3 causes macular damage. Recent reports have identified extraocular pathologies in a small number of SFD patients. We discuss these intriguing findings and consider the apparent discrepancy between the widespread expression of TIMP-3 and the primarily retinal manifestations of SFD. The potential benefits of novel experimental approaches (e.g., metabolomics and stem cell models) in terms of investigating SFD pathology are presented. The review thus highlights gaps in our current molecular understanding of SFD and suggests ways to support the development of novel therapies.


Subject(s)
Macular Degeneration , Tissue Inhibitor of Metalloproteinase-3 , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mutation/genetics , Retina/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
9.
Biochemistry (Mosc) ; 89(2): 201-211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622090

ABSTRACT

Visomitin eye drops are the first and, so far, the only drug based on SkQ1 - the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev. SkQ1 is considered as a potential tool to combat the aging program. We have previously shown that it is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats, including retinopathy, similar to the age-related macular degeneration (AMD). Here, we assessed the effect of Visomitin instillations on progression of the AMD-like pathology and p38 MAPK and ERK1/2 activity in the OXYS rat retina (from the age of 9 to 12 months). Wistar and OXYS rats treated with placebo (composition identical to Visomitin with the exception of SkQ1) were used as controls. Ophthalmological examination showed that in the OXYS rats receiving placebo, retinopathy progressed and severity of clinical manifestations did not differ from the intact OXYS rats. Visomitin suppressed progression of the AMD-like pathology in the OXYS rats and significantly improved structural and functional parameters of the retinal pigment epithelium cells and state of microcirculation in the choroid, which, presumably, contributed to preservation of photoreceptors, associative and ganglion neurons. It was found that the activity of p38 MAPK and ERK1/2 in the retina of 12-month-old OXYS rats is higher than that of the Wistar rats of the same age, as indicated by the increased content of phosphorylated forms of p38 MAPK and ERK1/2 and their target protein tau (at position T181 and S396). Visomitin decreased phosphorylation of p38 MAPK, ERK1/2, and tau indicating suppression of activity of these MAPK signaling cascades. Thus, Visomitin eye drops are able to suppress progression of the AMD-like pathology in the OXYS rats and their effect is associated with the decrease in activity of the MAPK signaling cascades.


Subject(s)
Benzalkonium Compounds , MAP Kinase Signaling System , Macular Degeneration , Methylcellulose , Plastoquinone , Humans , Rats , Animals , Infant , Rats, Wistar , Ophthalmic Solutions/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Aging/metabolism , Signal Transduction , Drug Combinations
10.
J Cell Mol Med ; 28(8): e18051, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571282

ABSTRACT

We previously showed that mice with knockout in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene encoding the PGC-1α protein, and nuclear factor erythroid 2 like 2 (NFE2L2) gene, exhibited some features of the age-related macular degeneration (AMD) phenotype. To further explore the mechanism behind the involvement of PGC-1α in AMD pathogenesis we used young (3-month) and old (12-month) mice with knockout in the PPARGC1A gene and age-matched wild-type (WT) animals. An immunohistochemical analysis showed age-dependent different expression of markers of oxidative stress defence, senescence and autophagy in the retinal pigment epithelium of KO animals as compared with their WT counterparts. Multivariate inference testing showed that senescence and autophagy proteins had the greatest impact on the discrimination between KO and WT 3-month animals, but proteins of antioxidant defence also contributed to that discrimination. A bioinformatic analysis showed that PGC-1α might coordinate the interplay between genes encoding proteins involved in antioxidant defence, senescence and autophagy in the ageing retina. These data support importance of PGC-1α in AMD pathogenesis and confirm the utility of mice with PGC-1α knockout as an animal model to study AMD pathogenesis.


Subject(s)
Antioxidants , Macular Degeneration , Mice , Animals , Antioxidants/metabolism , Mitochondria/metabolism , Oxidative Stress , Aging , Macular Degeneration/metabolism , Autophagy/genetics , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
11.
Invest Ophthalmol Vis Sci ; 65(4): 5, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558091

ABSTRACT

Purpose: We aimed to determine the impact of artificial sweeteners (AS), especially saccharin, on the progression and treatment efficacy of patients with neovascular age-related macular degeneration (nAMD) under anti-vascular endothelial growth factor (anti-VEGF-A) treatment. Methods: In a cross-sectional study involving 46 patients with nAMD undergoing intravitreal anti-VEGF therapy, 6 AS metabolites were detected in peripheral blood using liquid chromatography - tandem mass spectrometry (LC-MS/MS). Disease features were statistically tested against these metabolite levels. Additionally, a murine choroidal neovascularization (CNV) model, induced by laser, was used to evaluate the effects of orally administered saccharin, assessing both imaging outcomes and gene expression patterns. Polymerase chain reaction (PCR) methods were used to evaluate functional expression of sweet taste receptors in a retinal pigment epithelium (RPE) cell line. Results: Saccharin levels in blood were significantly higher in patients with well-controlled CNV activity (P = 0.004) and those without subretinal hyper-reflective material (P = 0.015). In the murine model, saccharin-treated mice exhibited fewer leaking laser scars, lesser occurrence of bleeding, smaller fibrotic areas (P < 0.05), and a 40% decrease in mononuclear phagocyte accumulation (P = 0.06). Gene analysis indicated downregulation of inflammatory and VEGFR-1 response genes in the treated animals. Human RPE cells expressed taste receptor type 1 member 3 (TAS1R3) mRNA and reacted to saccharin stimulation with changes in mRNA expression. Conclusions: Saccharin appears to play a protective role in patients with nAMD undergoing intravitreal anti-VEGF treatment, aiding in better pathological lesion control and scar reduction. The murine study supports this observation, proposing saccharin's potential in mitigating pathological VEGFR-1-induced immune responses potentially via the RPE sensing saccharin in the blood stream.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Humans , Mice , Animals , Vascular Endothelial Growth Factor Receptor-1 , Saccharin/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Sweetening Agents , Cross-Sectional Studies , Chromatography, Liquid , Tandem Mass Spectrometry , Choroidal Neovascularization/metabolism , Macular Degeneration/metabolism , RNA, Messenger/genetics , Intravitreal Injections , Angiogenesis Inhibitors/therapeutic use
12.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673745

ABSTRACT

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Subject(s)
Glutathione Transferase , Glutathione , Macular Degeneration , Humans , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Oxidative Stress
13.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38567515

ABSTRACT

The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-ß2, IL-6, and IL-1ß, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Rats , Animals , Retinal Pigment Epithelium/metabolism , Metabolic Reprogramming , Cytokines/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Lactates/metabolism
14.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38683564

ABSTRACT

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Subject(s)
Complement Factor H , Haploinsufficiency , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Macular Degeneration , Muscle Proteins , Retinal Pigment Epithelium , Humans , Complement Factor H/genetics , Complement Factor H/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Female , Induced Pluripotent Stem Cells/metabolism , Complement C3b Inactivator Proteins/genetics , Complement C3b Inactivator Proteins/metabolism , Complement Activation/genetics , Pedigree , Blotting, Western , Complement System Proteins/metabolism , Complement System Proteins/genetics , Retinal Drusen/genetics , Retinal Drusen/metabolism , Middle Aged
15.
Front Immunol ; 15: 1330913, 2024.
Article in English | MEDLINE | ID: mdl-38633250

ABSTRACT

Purpose: To determine and compare the serum levels of complement Factor H (FH), monomeric C-Reactive Protein (mCRP) and pentameric C-Reactive protein (pCRP) in patients with age-related macular degeneration (AMD) and to correlate them with clinical, structural and functional parameters. Methods: Cross-sectional observational study. One hundred thirty-nine individuals (88 patients and 51 healthy controls) from two referral centers were included and classified into three groups: early or intermediate AMD (n=33), advanced AMD (n=55), and age and sex matched healthy controls (n=51). Serum levels of FH, mCRP, and pCRP were determined and correlated with clinical and imaging parameters. Results: Patients with intermediate AMD presented FH levels significantly lower than controls [186.5 (72.1-931.8) µg/mL vs 415.2 (106.1-1962.2) µg/mL; p=0.039] and FH levels <200 µg/mL were associated with the presence of drusen and pigmentary changes in the fundoscopy (p=0.002). While no differences were observed in pCRP and mCRP levels, and mCRP was only detected in less than 15% of the included participants, women had a significantly higher detection rate of mCRP than men (21.0% vs. 3.8%, p=0.045). In addition, the ratio mCRP/FH (log) was significantly lower in the control group compared to intermediate AMD (p=0.031). Visual acuity (p<0.001), macular volume (p<0.001), and foveal thickness (p=0.034) were significantly lower in the advanced AMD group, and choroidal thickness was significantly lower in advanced AMD compared to early/intermediate AMD (p=0.023). Conclusion: Intermediate AMD was associated in our cohort with decreased serum FH levels together with increased serum mCRP/FH ratio. All these objective serum biomarkers may suggest an underlying systemic inflammatory process in early/intermediate AMD patients.


Subject(s)
C-Reactive Protein , Complement Factor H , Macular Degeneration , Female , Humans , Male , Biomarkers , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Complement Factor H/analysis , Complement Factor H/metabolism , Cross-Sectional Studies , Macular Degeneration/diagnosis , Macular Degeneration/metabolism
16.
Mol Ther ; 32(5): 1445-1460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504520

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.


Subject(s)
Cadherin Related Proteins , Cadherins , Disease Models, Animal , Genetic Therapy , Nerve Tissue Proteins , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Retinal Rod Photoreceptor Cells , Animals , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Cadherins/genetics , Cadherins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/etiology , Humans , Genetic Therapy/methods , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Macular Degeneration/metabolism
17.
J Neuroinflammation ; 21(1): 75, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532410

ABSTRACT

BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.


Subject(s)
Macular Degeneration , Sulfonamides , beta Catenin , Humans , Male , Animals , Mice , beta Catenin/metabolism , Wnt-5a Protein , Mice, Inbred C57BL , Retinal Pigment Epithelium/metabolism , Epithelial-Mesenchymal Transition , Macular Degeneration/metabolism , Fibrosis , RNA, Small Interfering/metabolism
18.
Cells ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38534392

ABSTRACT

Age-related macular degeneration (AMD), characterized by macular retinal degeneration, poses a significant health concern due to the lack of effective treatments for prevalent dry AMD. The progression of AMD is closely linked to reactive oxygen species and Fas signaling, emphasizing the need for targeted interventions. In this study, we utilized a NaIO3-induced retinal degeneration mouse model to assess the efficacy of Fas-blocking peptide (FBP). Intravitreal administration of FBP successfully suppressed Fas-mediated inflammation and apoptosis, effectively arresting AMD progression in mice. We developed a 6R-conjugated FBP (6R-FBP) for eye drop administration. 6R-FBP, administered as an eye drop, reached the retinal region, attenuating degeneration by modulating the expression of inflammatory cytokines and blocking Fas-mediated apoptosis in rodent and rabbit NaIO3-induced retinal degeneration models to address practical concerns. Intravitreal FBP and 6R-FBP eye drops effectively reduced retinal degeneration and improved retinal thickness in rodent and rabbit models. This study highlights the therapeutic potential of FBP, particularly 6R-FBP as an eye drop, in inhibiting Fas-mediated cell signaling and protecting against retinal cell death and inflammation in dry AMD. Future investigations should explore the translational prospects of this approach in primates with eye structures comparable to those of humans.


Subject(s)
Macular Degeneration , Retinal Degeneration , Humans , Mice , Animals , Rabbits , Ophthalmic Solutions/therapeutic use , Macular Degeneration/metabolism , Peptides/therapeutic use , Inflammation
19.
Curr Opin Pharmacol ; 75: 102439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447458

ABSTRACT

To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.


Subject(s)
ERRalpha Estrogen-Related Receptor , Macular Degeneration , Humans , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Aging/physiology , Receptors, Cytoplasmic and Nuclear , Eye/metabolism
20.
J Neuroinflammation ; 21(1): 74, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528525

ABSTRACT

The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.


Subject(s)
Macular Degeneration , Retinal Detachment , Mice , Animals , Humans , Retinal Pigment Epithelium/metabolism , Retinal Detachment/metabolism , Retina/metabolism , Macular Degeneration/metabolism , Phagocytosis/genetics , Bone Morphogenetic Protein Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...