Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.058
Filter
1.
Clin Exp Med ; 24(1): 98, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727918

ABSTRACT

The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.


Subject(s)
Choroid , Macular Degeneration , Mast Cells , Humans , Choroid/pathology , Macular Degeneration/pathology , Macular Degeneration/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Bruch Membrane/pathology , Bruch Membrane/metabolism
2.
Aging (Albany NY) ; 16(9): 8044-8069, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38742956

ABSTRACT

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.


Subject(s)
Cellular Senescence , Computational Biology , Macular Degeneration , Cellular Senescence/genetics , Macular Degeneration/genetics , Macular Degeneration/diagnosis , Macular Degeneration/pathology , Humans , Gene Regulatory Networks , Gene Expression Profiling , Machine Learning , MicroRNAs/genetics , MicroRNAs/metabolism
3.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690727

ABSTRACT

Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.


Subject(s)
Complement Activation , Complement System Proteins , Macular Degeneration , Humans , Macular Degeneration/immunology , Macular Degeneration/pathology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Complement Activation/immunology , Animals , Eye/immunology , Eye/pathology
4.
Front Immunol ; 15: 1366841, 2024.
Article in English | MEDLINE | ID: mdl-38711521

ABSTRACT

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Subject(s)
Aminopyridines , Choroidal Neovascularization , Disease Models, Animal , Microglia , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Microglia/metabolism , Microglia/drug effects , Mice , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Mice, Inbred C57BL , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Inflammation , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Pyrroles/pharmacology , Pyrroles/therapeutic use , Cellular Senescence/drug effects
5.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710714

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Subject(s)
Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
6.
Sci Rep ; 14(1): 10044, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698112

ABSTRACT

Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.


Subject(s)
Induced Pluripotent Stem Cells , Macaca fascicularis , Retinal Pigment Epithelium , Animals , Retinal Pigment Epithelium/transplantation , Retinal Pigment Epithelium/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Macular Degeneration/pathology
7.
Bioorg Chem ; 147: 107405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696843

ABSTRACT

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Subject(s)
Macular Degeneration , Peptides, Cyclic , Receptors, CCR3 , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Apoptosis/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Angiogenesis
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732004

ABSTRACT

Age-related macular degeneration (AMD) is an age-related disorder that is a global public health problem. The non-enzymatic Maillard reaction results in the formation of advanced glycation end products (AGEs). Accumulation of AGEs in drusen plays a key role in AMD. AGE-reducing drugs may contribute to the prevention and treatment of AGE-related disease. Fructosamine oxidase (FAOD) acts on fructosyl lysine and fructosyl valine. Based upon the published results of fructosamine 3-kinase (FN3K) and FAOD obtained in cataract and presbyopia, we studied ex vivo FAOD treatment as a non-invasive AMD therapy. On glycolaldehyde-treated porcine retinas, FAOD significantly reduced AGE autofluorescence (p = 0.001). FAOD treatment results in a breakdown of AGEs, as evidenced using UV fluorescence, near-infrared microspectroscopy on stained tissue sections of human retina, and gel permeation chromatography. Drusen are accumulations of AGEs that build up between Bruch's membrane and the retinal pigment epithelium. On microscopy slides of human retina affected by AMD, a significant reduction in drusen surface to 45 ± 21% was observed following FAOD treatment. Enzymatic digestion followed by mass spectrometry of fructose- and glucose-based AGEs (produced in vitro) revealed a broader spectrum of substrates for FAOD, as compared to FN3K, including the following: fructosyllysine, carboxymethyllysine, carboxyethyllysine, and imidazolone. In contrast to FN3K digestion, agmatine (4-aminobutyl-guanidine) was formed following FAOD treatment in vitro. The present study highlights the therapeutic potential of FAOD in AMD by repairing glycation-induced damage.


Subject(s)
Glycation End Products, Advanced , Macular Degeneration , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Humans , Glycation End Products, Advanced/metabolism , Animals , Swine , Retina/metabolism , Retina/drug effects , Retina/pathology , Amino Acid Oxidoreductases
9.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38775688

ABSTRACT

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Subject(s)
Choroidal Neovascularization , Indenes , Inflammasomes , Interleukin-1beta , Microglia , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Monocytes/metabolism , Mice, Knockout , Sulfones/pharmacology , Mice, Inbred C57BL , Furans/pharmacology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Macrophages/immunology , Sulfonamides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Lasers/adverse effects , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/genetics
10.
PLoS One ; 19(4): e0301377, 2024.
Article in English | MEDLINE | ID: mdl-38558077

ABSTRACT

BACKGROUND: Falls in older adults are a significant public health concern, and age-related macular degeneration (AMD) and glaucoma have been identified as potential visual risk factors. This study was designed to assess equilibrium function, fall risk, and fall-related self-efficacy (an individual's belief in their capacity to act in ways necessary to reach specific goals) in patients with AMD and glaucoma. METHODS: This observational study was performed at the Otorhinolaryngology Department of Shinseikai Toyama Hospital. The cohort comprised 60 participants (AMD; n = 30; median age, 76.0 years; and glaucoma; n = 30; median age, 64.5 years). Visual acuity and visual fields were assessed using the decimal best-corrected visual acuity and Humphrey visual field tests, respectively. The evaluation metrics included pathological eye movement analysis, bedside head impulse test, single-leg upright test, eye-tracking test, optokinetic nystagmus, and posturography. Furthermore, we administered questionnaires for fall risk determinants including the Dizziness Handicap Inventory, Activities-Specific Balance Confidence Scale, Falls Efficacy Scale-International, and Hospital Anxiety and Depression Scale. The collected data were analyzed using descriptive statistics, and Spearman's correlation analysis was employed to examine the interrelations among the equilibrium function, fall risk, and other pertinent variables. RESULTS: Most participants exhibited standard outcomes in equilibrium function evaluations. Visual acuity and field deficits had a minimal impact on subjective dizziness manifestations, degree of disability, and fall-related self-efficacy. Both groups predominantly showed high self-efficacy. No significant correlation was observed between visual acuity or field deficits and body equilibrium function or fall risk. However, greater peripheral visual field impairment was associated with a tendency for sensory reweighting from visual to somatosensory. CONCLUSION: Self-efficacy was higher and fall risk was relatively lower among patients with mild-to-moderate visual impairment, with a tendency for sensory reweighting from visual to somatosensory in those with greater peripheral visual field impairment. Further studies are required to validate these findings.


Subject(s)
Glaucoma , Macular Degeneration , Humans , Aged , Middle Aged , Dizziness/complications , Visual Acuity , Visual Fields , Glaucoma/complications , Scotoma , Macular Degeneration/pathology
11.
Free Radic Biol Med ; 219: 17-30, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579938

ABSTRACT

Non-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and dynamics, together with the levels of phosphorylated AMPK (p-AMPK). AMPK activation with metformin restored RPE p-AMPK levels, and mitochondrial dynamics, structure, and function at 4 weeks post-SCGx, as well as visual function and RPE/outer retina structure at 10 weeks post-SCGx. These results demonstrate a key role of the temporal RPE mitochondrial homeostasis as an early target for NE-AMD-induced damage, and that pharmacological AMPK activation could preserve mitochondrial morphology, dynamics, and function, and, consequently, avoid the functional and structural damage induced by NE-AMD.


Subject(s)
AMP-Activated Protein Kinases , Disease Models, Animal , Macular Degeneration , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Retinal Pigment Epithelium , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mice , Macular Degeneration/pathology , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , AMP-Activated Protein Kinases/metabolism , Humans , Metformin/pharmacology
12.
BMC Ophthalmol ; 24(1): 177, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632537

ABSTRACT

BACKGROUND: Kidney and eye diseases may be closely linked. Tears of the retinal pigment epithelium (RPE) have been reported to be related to kidney diseases, such as IgA nephropathy and light-chain deposition disease. However, pigment epithelium tears associated with membranous nephropathy have not been reported or systematically analysed. CASE PRESENTATION: A 68-year-old man presented with decreased right eye visual acuity. Optical coherence tomography (OCT) revealed cystic macular edema, localized serous detachment of the retina and loss of the outer retinal structure in the right eye and retinal pigment epithelium detachment (PED) combined with serous detachment of the retina in the left eye. Fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) revealed giant RPE tears in the right eye and exudative age-related macular degeneration in the left eye. The patient also suffered from severe membranous nephropathy-autoimmune glomerulonephritis. Renal biopsy immunofluorescence revealed a roughly granular pattern, with immunoglobulin G (IgA), immunoglobulin G (IgG), IgM, complement C3(Components 3), λ light chain and κ light chain subepithelial staining. CONCLUSIONS: It is hypothesized that severe membranous nephropathy caused immune complex deposition on the surface of Bruch membrane, resulting in weakened adhesion between the RPE and Bruch membrane and impaired RPE pump function, combined with age-related macular degeneration, leading to giant RPE tears in the right eye. Close attention should be given to the ocular condition of patients with membranous nephropathy to facilitate timely treatment and avoid serious consequences.


Subject(s)
Glomerulonephritis, Membranous , Macular Degeneration , Retinal Detachment , Retinal Perforations , Male , Humans , Aged , Retinal Pigment Epithelium/pathology , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/pathology , Macular Degeneration/pathology , Fluorescein Angiography/methods , Retinal Perforations/etiology , Retinal Detachment/etiology , Tomography, Optical Coherence/methods , Epithelium , Immunoglobulin G
13.
Sci Rep ; 14(1): 9600, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671028

ABSTRACT

Aim of this study was to evaluate the efficacy of switching treatment to faricimab in neovascular age-related macular degeneration (nAMD) from other anti-VEGF agents. Fifty-eight eyes of fifty-one patients with nAMD and a full upload series of four faricimab injections were included. Demographic data, multimodal imaging and treatment parameters were recorded. The primary outcome measures were changes in central subfield thickness (CST) and subfoveal choroidal thickness (SFCT). A subgroup analysis was performed for eyes with prior ranibizumab (R) or aflibercept (A) treatment. Mean injection intervals before and after switching were comparable (33.8 ± 11.2 vs. 29.3 ± 2.6 days; p = 0.08). Mean CST of 361.4 ± 108.1 µm prior to switching decreased significantly to 318.3 ± 97.7 µm (p < 0.01) after the third faricimab injection, regardless of prior anti-VEGF treatment (p < 0.01). Although SFCT slightly improved for the whole cohort from 165.8 ± 76.8 µm to 161.0 ± 82,8 µm (p = 0.029), subgroup analysis did not confirm this positive effect (subgroup R: p = 0.604; subgroup A: p = 0.306). In patients with a suboptimal response to aflibercept or ranibizumab in nAMD, farcimab can improve CST and slightly improve or maintain SFCT. Further prospective randomized trials are warranted.


Subject(s)
Angiogenesis Inhibitors , Choroid , Ranibizumab , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Humans , Male , Female , Aged , Ranibizumab/administration & dosage , Ranibizumab/therapeutic use , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/therapeutic use , Choroid/drug effects , Choroid/diagnostic imaging , Choroid/pathology , Aged, 80 and over , Treatment Outcome , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Receptors, Vascular Endothelial Growth Factor/administration & dosage , Retina/pathology , Retina/drug effects , Retina/diagnostic imaging , Intravitreal Injections , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Tomography, Optical Coherence , Visual Acuity/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Drug Substitution
14.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673745

ABSTRACT

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Subject(s)
Glutathione Transferase , Glutathione , Macular Degeneration , Humans , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Oxidative Stress
15.
Mol Vis ; 30: 74-91, 2024.
Article in English | MEDLINE | ID: mdl-38601018

ABSTRACT

Sorsby fundus dystrophy (SFD) is a rare, inherited form of macular degeneration caused by mutations in the gene encoding tissue inhibitor of metalloproteinases 3 (TIMP-3). There are 21 mutations currently associated with SFD, with some variants (e.g., Ser179Cys, Tyr191Cys, and Ser204Cys) having been studied much more than others. We review what is currently known about the identified SFD variants in terms of their dimerization, metalloproteinase inhibition, and impact on angiogenesis, with a focus on disparities between reports and areas requiring further study. We also explore the potential molecular mechanisms leading to the accumulation of extracellular TIMP-3 in SFD and consider how accumulated TIMP-3 causes macular damage. Recent reports have identified extraocular pathologies in a small number of SFD patients. We discuss these intriguing findings and consider the apparent discrepancy between the widespread expression of TIMP-3 and the primarily retinal manifestations of SFD. The potential benefits of novel experimental approaches (e.g., metabolomics and stem cell models) in terms of investigating SFD pathology are presented. The review thus highlights gaps in our current molecular understanding of SFD and suggests ways to support the development of novel therapies.


Subject(s)
Macular Degeneration , Tissue Inhibitor of Metalloproteinase-3 , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mutation/genetics , Retina/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
16.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676042

ABSTRACT

The accurate segmentation and quantification of retinal fluid in Optical Coherence Tomography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging due to significant variations in the size, position, and shape of fluid, as well as their complex, curved boundaries. To address these challenges, we propose a novel multi-scale feature fusion attention network (FNeXter), based on ConvNeXt and Transformer, for OCT fluid segmentation. In FNeXter, we introduce a novel global multi-scale hybrid encoder module that integrates ConvNeXt, Transformer, and region-aware spatial attention. This module can capture long-range dependencies and non-local similarities while also focusing on local features. Moreover, this module possesses the spatial region-aware capabilities, enabling it to adaptively focus on the lesions regions. Additionally, we propose a novel self-adaptive multi-scale feature fusion attention module to enhance the skip connections between the encoder and the decoder. The inclusion of this module elevates the model's capacity to learn global features and multi-scale contextual information effectively. Finally, we conduct comprehensive experiments to evaluate the performance of the proposed FNeXter. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in the task of fluid segmentation.


Subject(s)
Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Retina/diagnostic imaging , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Macular Degeneration/diagnostic imaging , Macular Degeneration/pathology
17.
JAMA Ophthalmol ; 142(4): 310-319, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38451488

ABSTRACT

Importance: The relevance of visualizing scleral fiber orientation may offer insights into the pathogenesis of pathologic myopia, including dome-shaped maculopathy (DSM). Objective: To investigate the orientation and density of scleral collagen fibers in highly myopic eyes with and without DSM by polarization-sensitive optical coherence tomography (PS-OCT). Design, Setting, and Participants: This case series included patients with highly myopic eyes (defined as a refractive error ≥6 diopters or an axial length ≥26.5 mm) with and without a DSM examined at a single site in May and June 2019. Analysis was performed from September 2019 to October 2023. Exposures: The PS-OCT was used to study the birefringence and optic axis of the scleral collagen fibers. Main Outcomes and Measures: The orientation and optic axis of scleral fibers in inner and outer layers of highly myopic eyes were assessed, and the results were compared between eyes with and without a DSM. Results: A total of 72 patients (51 [70.8%] female; mean [SD] age, 61.5 [12.8] years) were included, and 89 highly myopic eyes were examined (mean [SD] axial length, 30.4 [1.7] mm); 52 (58.4%) did not have a DSM and 37 (41.6%) had a DSM (10 bidirectional [27.0%] and 27 horizontal [73.0%]). Among the 52 eyes without DSM, the 13 eyes with simple high myopia had primarily inner sclera visible, displaying radially oriented fibers in optic axis images. In contrast, the entire thickness of the sclera was visible in 39 eyes with pathologic myopia. In these eyes, the optic axis images showed vertically oriented fibers within the outer sclera. Eyes presenting with both horizontal and bidirectional DSMs had clusters of fibers with low birefringence at the site of the DSM. In the optic axis images, horizontally or obliquely oriented scleral fibers were aggregated in the inner layer at the DSM. The vertical fibers located posterior to the inner fiber aggregation were not thickened and appeared thin compared with the surrounding areas. Conclusions and Relevance: This study using PS-OCT revealed inner scleral fiber aggregation without outer scleral thickening at the site of the DSM in highly myopic eyes. Given the common occurrence of scleral pathologies, such as DSM, and staphylomas in eyes with pathologic myopia, recognizing these fiber patterns could be important. These insights may be relevant to developing targeted therapies to address scleral abnormalities early and, thus, mitigate potential damage to the overlying neural tissue.


Subject(s)
Macular Degeneration , Myopia, Degenerative , Retinal Diseases , Humans , Female , Middle Aged , Male , Sclera/pathology , Tomography, Optical Coherence/methods , Visual Acuity , Retinal Diseases/pathology , Macular Degeneration/pathology , Collagen
18.
Aging (Albany NY) ; 16(6): 5435-5451, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38484366

ABSTRACT

This study aimed to identify key long noncoding RNAs (lncRNAs) in age-related macular degeneration (AMD) patients and to identify relevant pathological mechanisms of AMD development. We identified 407 differentially expressed mRNAs and 429 differentially expressed lncRNAs in retinal pigment epithelium (RPE) and retina in the macular region of AMD patients versus controls (P < 0.05 and |log2FC| > 0.585) from GSE135092. A total of 14 key differentially expressed mRNAs were obtained through external data validation from GSE115828. A miRNA-mRNA and miRNA-lncRNA network containing 52 lncRNA nodes, 49 miRNA nodes, 14 mRNA nodes and 351 edges was constructed via integrated analysis of these components. Finally, the LINC00276-miR-619-5p-IFIT3 axis was identified via protein-protein network analysis. In the t-BH-induced ARPE-19 senescent cell model, LINC00276 and IFIT3 were downregulated. Overexpression of LINC00276 could accelerate cell migration in combination with IFIT3 upregulation. This compelling finding suggests that LINC00276 plays an influential role in the progression of AMD, potentially through modulating senescence processes, thereby setting a foundation for future investigative efforts to verify this relationship.


Subject(s)
Macular Degeneration , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Macular Degeneration/genetics , Macular Degeneration/pathology , Computational Biology , RNA, Messenger/genetics , Gene Regulatory Networks
19.
Mol Ther ; 32(5): 1445-1460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504520

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.


Subject(s)
Cadherin Related Proteins , Cadherins , Disease Models, Animal , Genetic Therapy , Nerve Tissue Proteins , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Retinal Rod Photoreceptor Cells , Animals , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Cadherins/genetics , Cadherins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/etiology , Humans , Genetic Therapy/methods , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Macular Degeneration/metabolism
20.
Exp Eye Res ; 242: 109862, 2024 May.
Article in English | MEDLINE | ID: mdl-38490292

ABSTRACT

The continual exposure of retinal tissues to oxidative stress leads to discernible anatomical and physiological alterations. Specifically, the onslaught of oxidative damage escalates the irreversible death of retinal pigmented epithelium (RPE) cells, pinpointed as the fundamental pathological event in dry age-related macular degeneration (AMD). There is a conspicuous lack of effective therapeutic strategies to counteract this degenerative process. This study screened a library of antioxidants for their ability to protect RPE cells against oxidative stress and identified L-ergothioneine (EGT) as a potent cytoprotective agent. L-ergothioneine provided efficient protection against oxidative stress-damaged RPE and maintained cell redox homeostasis and normal physiological functions. It maintained the normal structure of the retina in mice under oxidative stress conditions. Transcriptomic analysis revealed that EGT counteracted major gene expression changes induced by oxidative stress. It upregulated antioxidant gene expression and inhibited NRF2 translocation. The inhibition of NRF2 abolished EGT's protective effects, suggesting that NRF2 activation contributes to its mechanism of action. In conclusion, we identified EGT as a safe and effective small-molecule compound that is expected to be a novel antioxidative agent for treating AMD.


Subject(s)
Antioxidants , Ergothioneine , NF-E2-Related Factor 2 , Oxidative Stress , Retinal Pigment Epithelium , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Ergothioneine/pharmacology , Antioxidants/pharmacology , Oxidative Stress/drug effects , Mice , Mice, Inbred C57BL , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Cells, Cultured , Humans , Blotting, Western , Disease Models, Animal , Gene Expression Regulation/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...