Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.333
Filter
1.
Malar J ; 23(1): 145, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741094

ABSTRACT

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Malaria, Vivax/drug therapy , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Primaquine/administration & dosage , Primaquine/therapeutic use , Primaquine/adverse effects , Risk Assessment , Treatment Outcome , Drug Therapy, Combination , Plasmodium vivax/drug effects , Chloroquine/therapeutic use , Chloroquine/adverse effects , Chloroquine/administration & dosage
2.
Malar J ; 23(1): 140, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725027

ABSTRACT

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase , Malaria, Vivax , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Chloroquine/therapeutic use , French Guiana/epidemiology , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/complications , Kinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Plasmodium vivax/physiology , Primaquine/therapeutic use , Retrospective Studies , Aged, 80 and over
3.
Sci Adv ; 10(16): eadk4492, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640243

ABSTRACT

Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Aminoquinolines/adverse effects , Malaria/drug therapy , Malaria, Vivax/drug therapy , Malaria, Vivax/chemically induced , Liver
4.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587391

ABSTRACT

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Subject(s)
Aminoquinolines , Antimalarials , Doxycycline , Piperazines , Plasmodium cynomolgi , Plasmodium vivax , Doxycycline/pharmacology , Antimalarials/pharmacology , Aminoquinolines/pharmacology , Plasmodium vivax/drug effects , Plasmodium cynomolgi/drug effects , Chloroquine/pharmacology , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Quinolines/pharmacology , Inhibitory Concentration 50 , Humans , Parasitic Sensitivity Tests
5.
Antimicrob Agents Chemother ; 68(5): e0009324, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597636

ABSTRACT

Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.


Subject(s)
Antimalarials , Lumefantrine , Malaria, Falciparum , Malaria, Vivax , Mefloquine , Piperazines , Quinolines , Humans , Female , Mefloquine/blood , Mefloquine/therapeutic use , Mefloquine/pharmacokinetics , Antimalarials/blood , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Pregnancy , Quinolines/blood , Quinolines/pharmacokinetics , Quinolines/therapeutic use , Lumefantrine/therapeutic use , Lumefantrine/blood , Malaria, Falciparum/drug therapy , Malaria, Falciparum/blood , Adult , Malaria, Vivax/drug therapy , Malaria, Vivax/blood , Young Adult , Ethanolamines/blood , Ethanolamines/pharmacokinetics , Ethanolamines/therapeutic use , Fluorenes/blood , Fluorenes/therapeutic use , Fluorenes/pharmacokinetics , Adolescent
6.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Article in English | MEDLINE | ID: mdl-38367843

ABSTRACT

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Subject(s)
Antimalarials , Apicoplasts , Azithromycin , Liver , Plasmodium cynomolgi , Plasmodium vivax , Azithromycin/pharmacology , Plasmodium vivax/drug effects , Plasmodium cynomolgi/drug effects , Antimalarials/pharmacology , Liver/parasitology , Liver/drug effects , Apicoplasts/drug effects , Animals , Hepatocytes/parasitology , Hepatocytes/drug effects , Humans , Organelle Biogenesis , Malaria, Vivax/parasitology , Malaria, Vivax/drug therapy , Mice , Malaria/parasitology , Malaria/drug therapy
7.
Trials ; 25(1): 154, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424577

ABSTRACT

BACKGROUND: Plasmodium vivax remains a major challenge for malaria control and elimination due to its ability to cause relapsing illness. To prevent relapses the Indian National Center for Vector Borne Diseases Control (NCVBDC) recommends treatment with primaquine at a dose of 0.25 mg/kg/day provided over 14 days. Shorter treatment courses may improve adherence and treatment effectiveness. METHODS: This is a hospital-based, randomised, controlled, open-label trial in two centres in India. Patients above the age of 16 years, with uncomplicated vivax malaria, G6PD activity of ≥ 30% of the adjusted male median (AMM) and haemoglobin levels ≥ 8 g/dL will be recruited into the study and randomised in a 1:1 ratio to receive standard schizonticidal treatment plus 7-day primaquine at 0.50 mg/kg/day or standard care with schizonticidal treatment plus 14-day primaquine at 0.25 mg/kg/day. Patients will be followed up for 6 months. The primary endpoint is the incidence risk of any P. vivax parasitaemia at 6 months. Safety outcomes include the incidence risk of severe anaemia (haemoglobin < 8 g/dL), the risk of blood transfusion, a > 25% fall in haemoglobin and an acute drop in haemoglobin of > 5 g/dL during primaquine treatment. DISCUSSION: This study will evaluate the efficacy and safety of a 7-day primaquine regimen compared to the standard 14-day regimen in India. Results from this trial are likely to directly inform national treatment guidelines. TRIAL REGISTRATION: Trial is registered on CTRI portal, Registration No: CTRI/2022/12/048283.


Subject(s)
Antimalarials , Malaria, Vivax , Adolescent , Adult , Humans , Male , Antimalarials/adverse effects , Antimalarials/therapeutic use , Hemoglobins , India , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
8.
Parasitol Int ; 100: 102868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387679

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked hereditary disorders worldwide. G6PD deficiency provides resistance against severe malaria, but paradoxically, G6PD deficiency is also a stumbling block in fighting against malaria. Primaquine (PQ), a drug for the radical cure of Plasmodium vivax, can cause lethal acute hemolytic anemia in malaria patients with inherited G6PD deficiency. In this study, we analyzed the phenotypic and genotypic G6PD deficiency status in 1721 individuals (963 males and 758 females) residing in three malaria-endemic areas within the Gia Lai province, Vietnam. The G6PD activity in individuals ranged from 3.04 to 47.82 U/g Hb, with the adjusted male median (AMM) of 7.89 U/g Hb. Based on the G6PD activity assay results, no phenotypic G6PD deficiency was detected. However, the multiplex polymerase chain reaction to detect G6PD variations in the gene level revealed that 26 individuals (7 males, 19 females) had Viangchan mutations (871 G > A). Sequencing analyses suggested that all the males were hemizygous Viangchan, whereas one was homozygous, and 18 were heterozygous Viangchan in females. These results suggested a relatively low prevalence of G6PD deficiency mutation rate (1.51%) in the minor ethnic populations residing in the Gia Lai province, Vietnam. However, considering these areas are high-risk malaria endemic, concern for proper and safe use of PQ as a radical cure of malaria is needed by combining a G6PD deficiency test before PQ prescription.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Female , Humans , Male , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/therapeutic use , Prevalence , Vietnam/epidemiology , Primaquine/therapeutic use , Malaria/drug therapy , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Antimalarials/adverse effects
9.
Elife ; 122024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319064

ABSTRACT

Background: Primaquine is an 8-aminoquinoline antimalarial. It is the only widely available treatment to prevent relapses of Plasmodium vivax malaria. The 8-aminoquinolines cause dose-dependent haemolysis in glucose-6-phosphate dehydrogenase deficiency (G6PDd). G6PDd is common in malaria endemic areas but testing is often not available. As a consequence primaquine is underused. Methods: We conducted an adaptive pharmacometric study to characterise the relationship between primaquine dose and haemolysis in G6PDd. The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing. Hemizygous G6PDd healthy adult Thai and Burmese male volunteers were admitted to the Hospital for Tropical Diseases in Bangkok. In Part 1, volunteers were given ascending dose primaquine regimens whereby daily doses were increased from 7.5 mg up to 45 mg over 15-20 days. In Part 2 conducted at least 6 months later, a single primaquine 45 mg dose was given. Results: 24 volunteers were enrolled in Part 1, and 16 in Part 2 (13 participated in both studies). In three volunteers, the ascending dose regimen was stopped because of haemolysis (n=1) and asymptomatic increases in transaminases (n=2; one was hepatitis E positive). Otherwise the ascending regimens were well tolerated with no drug-related serious adverse events. In Part 1, the median haemoglobin concentration decline was 3.7 g/dL (range: 2.1-5.9; relative decline of 26% [range: 15-40%]). Primaquine doses up to 0.87 mg/kg/day were tolerated subsequently without clinically significant further falls in haemoglobin. In Part 2, the median haemoglobin concentration decline was 1.7 g/dL (range 0.9-4.1; relative fall of 12% [range: 7-30% decrease]). The ascending dose primaquine regimens gave seven times more drug but resulted in only double the haemoglobin decline. Conclusions: In patients with Southeast Asian G6PDd variants, full radical cure treatment can be given in under 3 weeks compared with the current 8-week regimen. Funding: Medical Research Council of the United Kingdom (MR/R015252/1) and Wellcome (093956/Z/10/C, 223253/Z/21/Z). Clinical trial number: Thai Clinical Trial Registry: TCTR20170830002 and TCTR20220317004.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Adult , Humans , Male , Antimalarials/therapeutic use , Healthy Volunteers , Hemoglobins , Hemolysis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/adverse effects , Thailand
10.
Malar J ; 23(1): 56, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395925

ABSTRACT

BACKGROUND: Cambodia aims to eliminate all forms of malaria by 2025. In 2020, 90% of all malaria cases were Plasmodium vivax. Thus, preventing P. vivax and relapse malaria is a top priority for elimination. 14-day primaquine, a World Health Organization-recommended radical cure treatment regimen, specifically targets dormant hypnozoites in the liver to prevent relapse. Cambodia introduced P. vivax radical cure with primaquine after glucose-6-phosphate dehydrogenase (G6PD) qualitative testing in 2019. This paper presents Cambodia's radical cure Phase I implementation results and assesses the safety, effectiveness, and feasibility of the programme prior to nationwide scale up. METHODS: Phase I implementation was carried out in 88 select health facilities (HFs) across four provinces. Males over 20kgs with confirmed P. vivax or mixed (P. vivax and Plasmodium falciparum) infections were enrolled. A descriptive analysis evaluated the following: successful referral to health facilities, G6PD testing results, and self-reported 14-day treatment adherence. P. vivax incidence was compared before and after radical cure rollout and a controlled interrupted time series analysis compared the estimated relapse rate between implementation and non-implementation provinces before and after radical cure. RESULTS: In the 4 provinces from November 2019 to December 2020, 3,239 P. vivax/mixed infections were reported, 1,282 patients underwent G6PD deficiency testing, and 959 patients received radical cure, achieving 29.6% radical cure coverage among all P. vivax/mixed cases and 98.8% coverage among G6PD normal patients. Among those who initiated radical cure, 747 patients (78%) completed treatment. Six patients reported side effects. In implementation provinces, an average 31.8 relapse cases per month were estimated signaling a 90% (286 cases) reduction in relapse compared to what would be expected if radical cure was not implemented. CONCLUSIONS: Plasmodium vivax radical cure is a crucial tool for malaria elimination in Cambodia. The high coverage of radical cure initiation and adherence among G6PD normal patients demonstrated the high feasibility of providing radical cure at point of care in Cambodia. Incomplete referral from community to HFs and limited capacity of HF staff to conduct G6PD testing in high burden areas led to lower coverage of G6PD testing. Phase I implementation informed approaches to improve referral completion and patient adherence during the nationwide expansion of radical cure in 2021.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Male , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Primaquine/therapeutic use , Antimalarials/therapeutic use , Glucosephosphate Dehydrogenase , Cambodia/epidemiology , Malaria/drug therapy , Plasmodium vivax , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Recurrence
11.
Lancet Glob Health ; 12(3): e467-e477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365417

ABSTRACT

BACKGROUND: To achieve malaria elimination, Brazil must implement Plasmodium vivax radical cure. We aimed to investigate the operational feasibility of point-of-care, quantitative, glucose-6-phosphate dehydrogenase (G6PD) testing followed by chloroquine plus tafenoquine or primaquine. METHODS: This non-interventional, observational study was done at 43 health facilities in Manaus (Amazonas State) and Porto Velho (Rondônia State), Brazil, implementing a new P vivax treatment algorithm incorporating point-of-care quantitative G6PD testing to identify G6PD status and single-dose tafenoquine (G6PD normal, aged ≥16 years, and not pregnant or breastfeeding) or primaquine (intermediate or normal G6PD, aged ≥6 months, not pregnant, or breastfeeding >1 month). Following training of health-care providers, we collated routine patient records from the malaria epidemiological surveillance system (SIVEP-Malaria) retrospectively for all consenting patients aged at least 6 months with parasitologically confirmed P vivax malaria mono-infection or P vivax plus P falciparum mixed infection, presenting between Sept 9, 2021, and Aug 31, 2022. The primary endpoint was the proportion of patients aged at least 16 years with P vivax mono-infection treated or not treated appropriately with tafenoquine in accordance with their G6PD status. The trial is registered with ClinicalTrials.gov, NCT05096702, and is completed. FINDINGS: Of 6075 patients enrolled, 6026 (99·2%) had P vivax mono-infection, 2685 (44·6%) of whom were administered tafenoquine. G6PD status was identified in 2685 (100%) of 2685 patients treated with tafenoquine. The proportion of patients aged at least 16 years with P vivax mono-infection who were treated or not treated appropriately with tafenoquine in accordance with their G6PD status was 99·7% (95% CI 99·4-99·8; 4664/4680). INTERPRETATION: Quantitative G6PD testing before tafenoquine administration was operationally feasible, with high adherence to the treatment algorithm, supporting deployment throughout the Brazilian health system. FUNDING: Brazilian Ministry of Health, Municipal and State Health Secretariats; Fiocruz; Medicines for Malaria Venture; Bill & Melinda Gates Foundation; Newcrest Mining; and the UK Government. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Female , Humans , Pregnancy , Antimalarials/therapeutic use , Brazil , Feasibility Studies , Glucosephosphate Dehydrogenase/analysis , Malaria, Vivax/drug therapy , Plasmodium vivax , Point-of-Care Systems , Primaquine/therapeutic use , Retrospective Studies
12.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38411047

ABSTRACT

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Falciparum/drug therapy , NADPH-Ferrihemoprotein Reductase , Chloroquine/pharmacology , Cytochrome P-450 CYP2D6/genetics , Artemisinins/pharmacology , Primaquine/pharmacology , Primaquine/therapeutic use , Malaria/drug therapy , Plasmodium falciparum , Plasmodium vivax/genetics
13.
Elife ; 132024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323802

ABSTRACT

A single 300 mg dose of tafenoquine, in combination with chloroquine, is currently approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥16 years. Recently, however, Watson et al. suggested that the approved dose of tafenoquine is insufficient for radical cure, and that a higher 450 mg dose could reduce P. vivax recurrences substantially (Watson et al., 2022). In this response, we challenge Watson et al.'s assertion based on empirical evidence from dose-ranging and pivotal studies (published) as well as real-world evidence from post-approval studies (ongoing, therefore currently unpublished). We assert that, collectively, these data confirm that the benefit-risk profile of a single 300 mg dose of tafenoquine, co-administered with chloroquine, for the radical cure of P. vivax malaria in patients who are not G6PD-deficient, continues to be favourable where chloroquine is indicated for P. vivax malaria. If real-world evidence of sub-optimal efficacy in certain regions is observed or dose-optimisation with other blood-stage therapies is required, then well-designed clinical studies assessing safety and efficacy will be required before higher doses are approved for clinical use.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Humans , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Meta-Analysis as Topic
14.
Elife ; 132024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323801

ABSTRACT

In our recent paper on the clinical pharmacology of tafenoquine (Watson et al., 2022), we used all available individual patient pharmacometric data from the tafenoquine pre-registration clinical efficacy trials to characterise the determinants of anti-relapse efficacy in tropical vivax malaria. We concluded that the currently recommended dose of tafenoquine (300 mg in adults, average dose of 5 mg/kg) is insufficient for cure in all adults, and a 50% increase to 450 mg (7.5 mg/kg) would halve the risk of vivax recurrence by four months. We recommended that clinical trials of higher doses should be carried out to assess their safety and tolerability. Sharma and colleagues at the pharmaceutical company GSK defend the currently recommended adult dose of 300 mg as the optimum balance between radical curative efficacy and haemolytic toxicity (Sharma et al., 2024). We contend that the relative haemolytic risks of the 300 mg and 450 mg doses have not been sufficiently well characterised to justify this opinion. In contrast, we provided evidence that the currently recommended 300 mg dose results in sub-maximal efficacy, and that prospective clinical trials of higher doses are warranted to assess their risks and benefits.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Adult , Humans , Antimalarials/therapeutic use , Hemolysis , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Prospective Studies , Meta-Analysis as Topic
15.
PLoS Med ; 21(1): e1004255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38194420

ABSTRACT

BACKGROUND: Malaria transmission modelling has demonstrated the potential impact of semiquantitative glucose-6-phosphate dehydrogenase (G6PD) testing and treatment with single-dose tafenoquine for Plasmodium vivax radical cure but has not investigated the associated costs. This study evaluated the cost-effectiveness of P. vivax treatment with tafenoquine after G6PD testing using a transmission model. METHODS AND FINDINGS: We explored the cost-effectiveness of using tafenoquine after G6PD screening as compared to usual practice (7-day low-dose primaquine (0.5 mg/kg/day) without G6PD screening) in Brazil using a 10-year time horizon with 5% discounting considering 4 scenarios: (1) tafenoquine for adults only assuming 66.7% primaquine treatment adherence; (2) tafenoquine for adults and children aged >2 years assuming 66.7% primaquine adherence; (3) tafenoquine for adults only assuming 90% primaquine adherence; and (4) tafenoquine for adults only assuming 30% primaquine adherence. The incremental cost-effectiveness ratios (ICERs) were estimated by dividing the incremental costs by the disability-adjusted life years (DALYs) averted. These were compared to a willingness to pay (WTP) threshold of US$7,800 for Brazil, and one-way and probabilistic sensitivity analyses were performed. All 4 scenarios were cost-effective in the base case analysis using this WTP threshold with ICERs ranging from US$154 to US$1,836. One-way sensitivity analyses showed that the results were most sensitive to severity and mortality due to vivax malaria, the lifetime and number of semiquantitative G6PD analysers needed, cost per malaria episode and per G6PD test strips, and life expectancy. All scenarios had a 100% likelihood of being cost-effective at the WTP threshold. The main limitations of this study are due to parameter uncertainty around our cost estimates for low transmission settings, the costs of G6PD screening, and the severity of vivax malaria. CONCLUSIONS: In our modelling study that incorporated impact on transmission, tafenoquine prescribed after a semiquantitative G6PD testing was highly likely to be cost-effective in Brazil. These results demonstrate the potential health and economic importance of ensuring safe and effective radical cure.


Subject(s)
Malaria, Vivax , Primaquine , Adult , Child , Humans , Primaquine/adverse effects , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Brazil , Cost-Effectiveness Analysis , Glucosephosphate Dehydrogenase
16.
Parasit Vectors ; 17(1): 28, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254128

ABSTRACT

BACKGROUND: Plasmodium vivax malaria, with the widest geographic distribution, can cause severe disease and death. Primaquine is the main licensed antimalarial drug that can kill hypnozoites. The dose-dependent acute haemolysis in individuals with glucose-6-phospate dehydrogenase (G6PD) deficiency is the main safety concern when using primaquine. The recommended treatment regimen for P. vivax malaria is chloroquine plus primaquine for 14 days (CQPQ14) in Myanmar. The study aimed to evaluate the therapeutic efficacy, safety and adherence for the regimen of artemisinin-naphthoquine plus primaquine for 3 days (ANPQ3) in patients with P. vivax infections compared to those with CQPQ14. METHODS: The patients in the ANPQ3 group were given fixed-dose artemisinin-naphthoquine (a total 24.5 mg/kg bodyweight) plus a lower total primaquine dose (0.9 mg/kg bodyweight) for 3 days. The patients in the CQPQ14 group were given a total chloroquine dose of 30 mg/kg body weight for 3 days plus a total primaquine dose of 4.2 mg/kg bodyweight for 14 days. All patients were followed up for 365 days. RESULTS: A total of 288 patients completed follow-up, 172 in the ANPQ3 group and 116 in the CQPQ14 group. The first recurrence patients were detected by day 58 in both groups. By day 182, 16 recurrences had been recorded: 12 (7.0%) patients in the ANPQ3 group and 4 (3.4%) in the CQPQ14 group. The difference in recurrence-free patients was 3.5 (-8.6 to 1.5) percentage points between ANPQ3 and CQPQ14 group (P = 0.2946). By day 365, the percentage of recurrence-free patients was not significant between the two groups (P = 0.2257). Mean fever and parasite clearance time of ANPQ3 group were shorter than those in CQPQ14 group (P ≤ 0.001). No severe adverse effect was observed in ANPQ3 group, but five (3.9%) patients had acute haemolysis in CQPQ14 group (P = 0.013). Medication percentage of ANPQ3 group was significantly higher than that of CQPQ14 group (P < 0.0001). CONCLUSIONS: Both ANPQ3 and CQPQ14 promised clinical cure efficacy, and the radical cure efficacy was similar between the ANPQ3 and CQPQ14 group. ANPQ3 clears fever and parasites faster than CQPQ14. ANPQ3 is safer and shows better patient adherence to the regimen for treatment of P. vivax malaria along the China-Myanmar border. TRIAL REGISTRATION: ChiCTR-INR-17012523. Registered 31 August 2017, https://www.chictr.org.cn/showproj.html?proj=21352.


Subject(s)
1-Naphthylamine/analogs & derivatives , Aminoquinolines , Artemisinins , Malaria, Vivax , Humans , Primaquine/adverse effects , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Hemolysis , Artemisinins/adverse effects , Chloroquine/adverse effects , Fever
17.
Lancet Infect Dis ; 24(2): 172-183, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37748496

ABSTRACT

BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Primaquine/therapeutic use , Antimalarials/adverse effects , Plasmodium vivax , Artesunate/therapeutic use , Prospective Studies , Retrospective Studies , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Malaria, Vivax/epidemiology , Malaria/drug therapy , Recurrence
18.
Lancet Infect Dis ; 24(2): 184-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37748497

ABSTRACT

BACKGROUND: Primaquine radical cure is used to treat dormant liver-stage parasites and prevent relapsing Plasmodium vivax malaria but is limited by concerns of haemolysis. We undertook a systematic review and individual patient data meta-analysis to investigate the haematological safety of different primaquine regimens for P vivax radical cure. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2-3 and between day 0 and days 5-7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680. FINDINGS: Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2-3 were -0·6 g/dL (95% CI -0·7 to -0·5), -0·7 g/dL (-0·8 to -0·5), -0·6 g/dL (-0·7 to -0·4), and -0·5 g/dL (-0·7 to -0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2-3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias. INTERPRETATION: Treatment of patients with G6PD activity of 30% or higher with 0·25-0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25-1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.


Subject(s)
Antimalarials , Malaria, Vivax , Primaquine , Humans , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/therapeutic use , Artesunate/therapeutic use , Australia , Hemoglobins , Hemolysis , Malaria, Vivax/drug therapy , Plasmodium vivax , Primaquine/adverse effects , Prospective Studies , Retrospective Studies
20.
Indian J Med Microbiol ; 47: 100496, 2024.
Article in English | MEDLINE | ID: mdl-37949233

ABSTRACT

PURPOSE: The study was aimed at detecting the mutation patterns in the drug targets in Plasmodium vivax that confer resistance to the common antimalarial agents used in India. METHODS: A total of 27 Plasmodium vivax isolates collected from whole blood samples over a three year period were subjected to PCR amplification followed by sequencing of the genes pvmdr1, pvdhfr, pvdhps and pvk12, which serve as the molecular targets to detect resistance to chloroquine, pyrimethamine, sulfadoxine and artemisinin respectively. RESULTS: The study found T958 M F1076L double mutants of pvmdr1 in 52 %(14/27) isolates, S58R S117 N double mutants of pvdhfr in 67 % (18/27) isolates, A383G A553G double mutant pvdhps in 59 % (16/27) isolates and wild type of pvk12 gene in all the isolates. CONCLUSIONS: There was a rise in the proportion of double mutants of pvmdr1 and pvdhfr over time. Those cases with double mutant pvmdr1 gene in their isolates were found to have a prolonged hospital stay compared to those without, indicating reduced clinical response to chloroquine.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium vivax/genetics , Tertiary Healthcare , Malaria, Vivax/drug therapy , Polymerase Chain Reaction , Sequence Analysis, DNA , Protozoan Proteins/genetics , Chloroquine/pharmacology , Chloroquine/therapeutic use , Mutation , Drug Resistance , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...