Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
J Econ Entomol ; 116(3): 855-863, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37032527

ABSTRACT

The use of toxic baits has become one of the main methods of management of fruit flies in Brazil. The application of toxic baits may cause side effects on the native parasitoid Doryctobracon areolatus (Hymenoptera: Braconidae). Based on the results, formulations made from the food attractants 3% Biofruit, 1.5% Ceratrap, 1.25% Flyral, 3% Isca Samaritá, 3% Isca Samaritá Tradicional, and 7% sugarcane molasses associated with the Malathion 1000 EC and the ready-to-use toxic bait Gelsura (containing the active ingredient alpha-cypermethrin) were classified as harmful (class 4) to D. areolatus (mortality > 85% at 96 HAE). In contrast, for toxic baits formulated with insecticide phosmet, the mortality ranged from 38% to 72%, classified as slightly harmful or moderately harmful. However, when phosmet was added to the 3% Samaritá Tradicional bait, the mortality was only 3.9% (class 1-harmless), similar to the toxicity observed for the Success 0.02 CB ready-to-use bait (0.24 g a.i. spinosad/l) (<5% mortality). Although toxic baits were formulated with spinosyn-based insecticides, all toxic bait formulations were classified as harmless or slightly harmful (<50% mortality) to D. areolatus, with the exception of 1.5% Ceratrap + spinetoram and 7% Sugarcane molasses + spinosad (≈ 60% mortality-moderately harmful). In addition, these formulations did not show sublethal effects in reducing the parasitism and emergence rate of the F1 generation of D. areolatus in A. fraterculus larvae. The results serve as a basis for the correct use of toxic food baits without affecting the biological control.


Subject(s)
Hymenoptera , Insecticides , Phosmet , Tephritidae , Animals , Phosmet/pharmacology , Insecticides/pharmacology , Malathion/pharmacology , Drosophila , Edible Grain
2.
Salud Publica Mex ; 65(1, ene-feb): 19-27, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36750076

ABSTRACT

OBJECTIVE: To identify the enzyme-mediated insecticide resistance in Aedes aegypti in Tapachula, Mexico. MATERIALS AND METHODS: Biochemical assays were undertaken to determine the enzyme levels in mosquitoes from 22 sites collected in 2018 and 2020 in Tapachula. Results of 2018 were correlated with the resistance to insecticides pub-lished. RESULTS: Mosquitoes had higher levels than those of the susceptible strain in 2018 and 2020 respectively of α-esterases in 15 and 12 sites; ß-esterases in 7 and 6 sites; glutathione-S-transferases in 11 and 19 sites; ρNPA-esterases in 21 and 17 sites; and cytochromes P450 in 20 and 22 sites. In mosquitoes of 2018, there was a moderate correlation between previously documented Malathion resistance ratios and the insensitive acetylcholinesterase (r=0.459, p= 0.03). CONCLUSIONS: The elevated enzyme levels found indicate its contribution to the resistance to pyrethroids and organo-phosphates already published in mosquitoes from Tapachula. Bioassays using enzyme inhibitors resulted in greater mor-tality, confirming that metabolism contributes to resistance.


Subject(s)
Aedes , Dengue , Animals , Humans , Acetylcholinesterase , Esterases , Insecticide Resistance , Mexico , Malathion/pharmacology
3.
J Med Entomol ; 59(1): 372-375, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34617566

ABSTRACT

Severe human arboviral diseases can be transmitted by the mosquito Aedes aegypti (Linnaeus), including dengue, chikungunya, Zika, and yellow fever. Adult control using spatial sprays with adulticides is recommended only when dengue outbreaks occur. In Argentina, mainly pyrethroids, like cis-permethrin, have been used as an adulticide, especially since 2008. The evolution and spread of resistance to insecticides is a major concern for vector control. This study reports for the first time pyrethroid resistance in Ae. aegypti adults from Argentina, in the city of Salvador Mazza (Salta). WHO discriminating doses of 0.75% were used for permethrin, 0.05% for deltamethrin, and 5% for malathion. Also the discriminating dose for cis-permethrin (0.6%) was calculated and evaluated for the first time. We found a resistance ratio 50 (RR50) of 10.3 (9.7-10.4) for cis-permethrin, which is considered as high resistance. Our results also indicated resistance to deltamethrin (22.6% mortality) and permethrin (53.6% mortality), and a total susceptibility to malathion (100% mortality). Results from this study highlight the importance of the correct use of insecticides within an Integrated Vector Management (IVM) approach and of early detection of resistance to enable Ae. aegypti control in Argentina. More studies are needed to determine the spread of mosquito resistance to pyrethroids.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Pyrethrins/pharmacology , Animals , Arbovirus Infections/transmission , Argentina/epidemiology , Disease Vectors , Humans , Insecticides/pharmacology , Malathion/pharmacology , Mosquito Vectors/drug effects , Zika Virus Infection/transmission
4.
J Med Entomol ; 59(1): 314-319, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34536077

ABSTRACT

Mass-trapping has been used to control outbreaks of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Puerto Rico since 2011. We investigated the effect of multi-year, insecticide-free mass trapping had on the insecticide susceptibility profile of Ae. aegypti. Eggs collected in southern Puerto Rico were used to generate F1 populations that were tested for susceptibility to permethrin, sumethrin, bifenthrin, deltamethrin, and malathion according to CDC bottle bioassays protocols. All populations of Ae. aegypti were resistant to the synthetic pyrethroids and mosquitoes from two locations were partially resistant to malathion. Population genetic analysis, using a double digest restriction sites associated DNA sequencing (ddRADseq) approach, indicated a large amount of migration between study sites effectively homogenizing the mosquito populations. Mass-trapping using noninsecticidal autocidal gravid ovitraps did not restore susceptibility to five active ingredients that are found in commercial insecticides. Migration between communities was high and would have brought outside alleles, including resistant alleles to the treatment communities. Further investigation suggests that household use of commercially available insecticide products may continue to select for resistance in absence of public health space spraying of insecticides.


Subject(s)
Aedes , Genetics, Population , Insecticide Resistance/genetics , Aedes/drug effects , Aedes/genetics , Animal Distribution , Animals , Genes, Insect , Insecticides/pharmacology , Malathion/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Permethrin/pharmacology , Puerto Rico , Pyrethrins/pharmacology
5.
PLoS Negl Trop Dis ; 15(2): e0008492, 2021 02.
Article in English | MEDLINE | ID: mdl-33591988

ABSTRACT

Vector control largely relies on neurotoxic chemicals, and insecticide resistance (IR) directly threatens their effectiveness. In some cases, specific alleles cause IR, and knowledge of the genetic diversity and gene flow among mosquito populations is crucial to track their arrival, rise, and spread. Here we evaluated Aedes aegypti populations' susceptibility status, collected in 2016 from six different municipalities of Rio de Janeiro state (RJ), to temephos, pyriproxyfen, malathion, and deltamethrin. We collected eggs of Ae. aegypti in Campos dos Goytacazes (Cgy), Itaperuna (Ipn), Iguaba Grande (Igg), Itaboraí (Ibr), Mangaratiba (Mgr), and Vassouras (Vsr). We followed the World Health Organization (WHO) guidelines and investigated the degree of susceptibility/resistance of mosquitoes to these insecticides. We used the Rockefeller strain as a susceptible positive control. We genotyped the V1016I and F1534C knockdown resistance (kdr) alleles using qPCR TaqMan SNP genotyping assay. Besides, with the use of Ae. aegypti SNP-chip, we performed genomic population analyses by genotyping more than 15,000 biallelic SNPs in mosquitoes from each population. We added previous data from populations from other countries to evaluate the ancestry of RJ populations. All RJ Ae. aegypti populations were susceptible to pyriproxyfen and malathion and highly resistant to deltamethrin. The resistance ratios for temephos was below 3,0 in Cgy, Ibr, and Igg populations, representing the lowest rates since IR monitoring started in this Brazilian region. We found the kdr alleles in high frequencies in all populations, partially justifying the observed resistance to pyrethroid. Population genetics analysis showed that Ae. aegypti revealed potential higher migration among some RJ localities and low genetic structure for most of them. Future population genetic studies, together with IR data in Ae aegypti on a broader scale, can help us predict the gene flow within and among the Brazilian States, allowing us to track the dynamics of arrival and changes in the frequency of IR alleles, and providing critical information to improving vector control program.


Subject(s)
Aedes/drug effects , Disease Vectors , Insecticide Resistance , Insecticides/pharmacology , Aedes/genetics , Aedes/physiology , Animals , Biological Assay , Brazil , Gene Expression Profiling , Genotyping Techniques , Guinea Pigs , Larva/drug effects , Malathion/pharmacology , Mutation , Nitriles/pharmacology , Pyrethrins/pharmacology , Pyridines/pharmacology , Temefos/pharmacology
6.
Parasit Vectors ; 13(1): 531, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109249

ABSTRACT

BACKGROUND: Chemical mosquito control using malathion has been applied in Brazil since 1985. To obtain chemical control effectiveness, vector susceptibility insecticide monitoring is required. This study aimed to describe bioassay standardizations and determine the susceptibility profile of Ae. aegypti populations to malathion and pyriproxyfen, used on a national scale in Brazil between 2017 and 2018, and discuss the observed impacts in arbovirus control. METHODS: The diagnostic-doses (DD) of pyriproxyfen and malathion were determined as the double of adult emergence inhibition (EI) and lethal doses for 99% of the Rockefeller reference strain, respectively. To monitor natural populations, sampling was performed in 132 Brazilian cities, using egg traps. Colonies were raised in the laboratory for one or two generations (F1 or F2) and submitted to susceptibility tests, where larvae were exposed to the pyriproxyfen DD (0.03 µg/l) and adults, to the malathion DD determined in the present study (20 µg), in addition to the one established by the World Health Organization (WHO) DD (50 µg) in a bottle assay. Dose-response (DR) bioassays with pyriproxyfen were performed on populations that did not achieve 98% EI in the DD assays. RESULTS: Susceptibility alterations to pyriproxyfen were recorded in six (4.5%) Ae. aegypti populations from the states of Bahia and Ceará, with Resistance Ratios (RR95) ranging from 1.51 to 3.58. Concerning malathion, 73 (55.3%) populations distributed throughout the country were resistant when exposed to the local DD 20 µg/bottle. On the other hand, no population was resistant, and only 10 (7.6%) populations in eight states were considered as exhibiting decreased susceptibility (mortality ratios between 90 and 98%) when exposed to the WHO DD (50 µg/bottle). CONCLUSIONS: The feasibility of conducting an insecticide resistance monitoring action on a nation-wide scale was confirmed herein, employing standardized and strongly coordinated sampling methods and laboratory bioassays. Brazilian Ae. aegypti populations exhibiting decreased susceptibility to pyriproxyfen were identified. The local DD for malathion was more sensitive than the WHO DD for early decreased susceptibility detection.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Insecticides , Animals , Arbovirus Infections/transmission , Biological Assay , Brazil/epidemiology , Disease Vectors , Insecticides/pharmacology , Larva/drug effects , Malathion/pharmacology , Mosquito Control , Mosquito Vectors/drug effects , Pyridines/pharmacology
7.
Article in English | MEDLINE | ID: mdl-32928373

ABSTRACT

Organophosphate (OP) pesticides are biotransformed into metabolites such as dialkylphosphates (DAPs). We have evaluated the genotoxicity of malathion and its metabolite dimethylthiophosphate (DMTP) in the human hepatic cell lines HepG2 and WRL-68 and in peripheral blood mononuclear cells (PBMC). In the Cytokinesis-Block Micronucleus assay (CBMN), malathion and DMTP increased the frequencies of micronuclei (MN) and nucleoplasmic bridges (NPB). Malathion was primarily clastogenic whereas DMTP was aneuploidogenic. When HepG2 or WRL-68 cells were treated with DMTP in the presence of sulconazole, a non-specific cytochrome P450 inhibitor, MN frequency was reduced, indicating that DMTP genotoxicity requires P450-cataliyzed metabolism.


Subject(s)
Cytokinesis/drug effects , Malathion/pharmacology , Mutagenicity Tests , Mutagens/pharmacology , Cell Nucleus/drug effects , DNA Damage/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/pathology , Malathion/toxicity , Mutagens/toxicity , Pesticides/pharmacology , Pesticides/toxicity
8.
Trop Med Int Health ; 25(10): 1271-1282, 2020 10.
Article in English | MEDLINE | ID: mdl-32746492

ABSTRACT

OBJECTIVE: In Brazil, the most common method of controlling outbreaks of arbovirus is by the use of chemical sprays, which kill the insect vector, Aedes aegypti. The main objective of this study was to evaluate the resistance of Ae. aegypti to the insecticide, malathion, in situ. The location of this study was the municipality of Foz do Iguaçu, in the state of Paraná, Brazil. METHODS: Ultra-low-volume (ULV) fogging equipment was used, by vehicle, to apply the insecticide in situ, and mosquito populations after treatment were compared with those of control areas. The resistance of strains collected from the municipality was compared to the Rockefeller strain under laboratory conditions. RESULTS: We found 220 adult female specimens and 7423 eggs of Ae. aegypti in the areas subjected to UBV treatment, whereas 245 adult females and 10 557 eggs were found in the control areas. The UBV treatment area showed no significant difference compared to the control area, for all the indices. Mortality of the Rockefeller colony varied more quickly when there were slight variations in malathion concentration than the Foz do Iguaçu population.


OBJECTIF: Au Brésil, la méthode la plus courante de lutte contre les épidémies d'arbovirus consiste à utiliser des pulvérisations chimiques qui tuent l'insecte vecteur, Aedes aegypti. L'objectif principal de cette étude était d'évaluer la résistance de Ae. aegypti à l'insecticide, le malathion, in situ. Le lieu de cette étude était la municipalité de Foz do Iguaçu, dans l'état du Paraná, au Brésil. MÉTHODES: Un équipement de brumisation à très faible volume (ULV) a été utilisé, par véhicule, pour appliquer l'insecticide in situ et les populations de moustiques après le traitement ont été comparées à celles des zones témoins. La résistance des souches collectées dans la municipalité a été comparée à la souche Rockefeller dans des conditions de laboratoire. RÉSULTATS: Nous avons trouvé 220 spécimens femelles adultes et 7.423 œufs d'Ae. aegypti dans les zones soumises au traitement ULV, alors que 245 femelles adultes et 10.557 œufs ont été trouvés dans les zones témoins. La zone de traitement ULV n'a montré aucune différence significative par rapport à la zone témoin, pour tous les indices. La mortalité de la colonie de Rockefeller variait plus rapidement lorsqu'il y avait de légères variations dans la concentration de malathion que la population de Foz do Iguaçu.


Subject(s)
Aedes/drug effects , Dengue/prevention & control , Insecticide Resistance , Insecticides/pharmacology , Malathion/pharmacology , Mosquito Vectors/drug effects , Animals , Brazil/epidemiology , Incidence , Mosquito Control
9.
Parasit Vectors ; 12(1): 494, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640810

ABSTRACT

BACKGROUND: Epidemics of dengue, chikungunya and Zika are a growing threat to areas where Aedes aegypti are present. The efficacy of chemical control of Ae. aegypti is threatened by the increasing frequency of insecticide resistance. The objective of this study was to determine the susceptibility status as well as the biochemical and molecular mechanisms underlying insecticide resistance in three populations of Ae. aegypti in high risk areas of dengue, chikungunya, and Zika in Peru. METHODS: Bioassays were conducted on adult Ae. aegypti to evaluate their susceptibility to insecticides used currently or historically for mosquito control in Peru, including six pyrethroids, three organophosphates and one organochlorine, in populations of Ae. aegypti from the districts of Chosica (Department of Lima), Punchana (Department of Loreto) and Piura (Department of Piura). Resistance mechanisms were determined by biochemical assays to assess activity levels of key detoxification enzyme groups (nonspecific esterases, multi-function oxidases, glutathione S-transferases and insensitive acetylcholinesterase). Real-time PCR assays were used to detect two kdr mutations (V1016I and F1534C) on the voltage-gated sodium channel gene. RESULTS: Resistance to DDT was detected in all three populations, and resistance to pyrethroids was detected in all populations except the population from Chosica, which still exhibited susceptibility to deltamethrin. Resistance to organophosphates was also detected, with the exception of populations from Punchana and Piura, which still demonstrated susceptibility to malathion. In general, no increase or alteration of activity of any enzyme group was detected. Both 1016I and 1534C alleles were detected in Punchana and Piura, while only the 1534C allele was detected in Chosica. CONCLUSIONS: The results suggest that resistance to multiple classes of insecticides exist in areas important to Ae. aegypti-borne disease transmission in Peru. The F1534C mutation was present in all 3 populations and the V1016I mutation was present in 2 populations. To our knowledge, this is the first report of the presence of 1016I and 1534C in Ae. aegypti in Peru. The absence of highly elevated enzymatic activity suggests that target site resistance is a key mechanism underlying insecticide resistance in these populations, although further research is needed to fully understand the role of metabolic resistance mechanisms in these populations.


Subject(s)
Aedes/physiology , Insecticide Resistance/physiology , Insecticides/pharmacology , Mosquito Vectors/physiology , Aedes/drug effects , Animals , Biological Assay , DDT/pharmacology , Malathion/pharmacology , Mosquito Vectors/drug effects , Nitriles/pharmacology , Organophosphates/pharmacology , Peru , Pyrethrins/pharmacology
10.
J Am Mosq Control Assoc ; 35(2): 113-122, 2019 06.
Article in English | MEDLINE | ID: mdl-31442135

ABSTRACT

In Ecuador, the status of insecticide resistance for Aedes aegypti, the principal arboviral vector in the country, has not been previously evaluated. The aim of this research was to describe the resistance status of Ae. aegypti to the principal insecticides used for vector control in provinces with high reports of arboviral clinical cases. This was a descriptive study performed on Ae. aegypti collected from 2016 to 2017 in 14 localities of Ecuador. The larvae were reared and tested using bioassays applying the adulticides malathion and deltamethrin, and the larvicide temephos. The lethal concentrations were obtained for field-collected specimens and compared to the susceptible reference strain ROCK, MRA-734. Mosquitoes from all the localities showed resistance to deltamethrin and susceptibility to malathion. On the other hand, mosquitoes demonstrated resistance to the larvicide temephos in 5 of the 14 localities analyzed. The results obtained in this research may be used by healthcare decision-makers to improve vector control in Ecuador. Rotation of insecticides and alternative biological vector control strategies should be considered to manage the resistance observed in Ae. aegypti to deltamethrin and temephos. New strategies to use insecticides should also be aimed to prevent selective pressure with malathion.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Insecticides/pharmacology , Larva/drug effects , Malathion/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Temefos/pharmacology , Animals , Ecuador , Female
11.
PLoS Negl Trop Dis ; 12(8): e0006734, 2018 08.
Article in English | MEDLINE | ID: mdl-30125295

ABSTRACT

BACKGROUND: Resistance to pyrethroids and to the organophosphate temephos is widespread in Brazilian populations of the dengue vector, Aedes aegypti. Thereof, since 2009 Insect Growth Regulators are employed as larvicides, and malathion is used against adults. METHODOLOGY/PRINCIPAL FINDINGS: We performed laboratory selection with malathion of two A. aegypti field populations initially susceptible to this organophosphate but resistant to temephos and deltamethrin. A fixed malathion dose inducing at least 80% mortality in the first generation, was used throughout the selection process, interrupted after five generations, when the threshold of 20% mortality was reached. For each population, three experimental and two control groups, not exposed to insecticides, were kept independently. For both populations, quantitative bioassays revealed, in the selected groups, acquisition of resistance to malathion and negative impact of malathion selection on deltamethrin and temephos resistance levels. In the control groups resistance to all evaluated insecticides decreased except, unexpectedly, to deltamethrin. Analysis of the main resistance mechanisms employed routine methodologies: biochemical and molecular assays for, respectively, metabolic resistance and quantification of the NaV pyrethroid target main kdr mutations at positions 1016 and 1534. No diagnostic alteration could be specifically correlated with malathion selection, neither with the unusual deltamethrin increase in resistance levels observed in the control groups. CONCLUSIONS/SIGNIFICANCE: Our results confirm the multifactorial character of insecticide resistance and point to the need of high throughput methodologies and to the study of additional field vector populations in order to unravel resistance mechanisms.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Malathion/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Temefos/pharmacology , Animals , Biological Assay , Insecticides/pharmacology
12.
Pest Manag Sci ; 74(1): 135-140, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28719016

ABSTRACT

BACKGROUND: Control of the Asian citrus psyllid Diaphorina citri Kuwayama, the most important pest of citrus worldwide, is based on the use of insecticides, though unsatisfactory results have recently been reported. In this study, insecticide resistance of D. citri to three insecticides (bifenthrin, malathion, and chlorpyrifos) was examined. RESULTS: Three populations (designated Dci-CParácuaro, Dci-El Junco, and Dci-Antúnez) of both adults and fourth-instar D. citri individuals were collected in 2014 at two different times and on one occasion, respectively, from three locations (Crucero de Parácuaro, El Junco, and Antúnez). These locations represent the major commercial Mexican lemon production areas in the Apatzingán Valley in the state of Michoacán, Mexico. The three populations of D. citri adults and fourth-instar nymphs at the different collection times showed low levels of resistance (≤7-fold) to bifenthrin, but were very resistant to malathion (≤345- and ≤432-fold for adults and fourth instars, respectively) and chlorpyrifos (≤2435- and ≤1424-fold for adults and fourth instars, respectively). CONCLUSION: Resistance levels to the tested insecticides were highly variable but homogeneous among seasons and localities. Resistance management programmes that include crop sanitation, use of biological and cultural control practices, and rotation of insecticide classes should be established, particularly in areas where D. citri has developed resistance to malathion and chlorpyrifos. © 2017 Society of Chemical Industry.


Subject(s)
Hemiptera/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Chlorpyrifos/pharmacology , Hemiptera/growth & development , Malathion/pharmacology , Mexico , Nymph/drug effects , Pyrethrins/pharmacology
13.
Med Vet Entomol ; 31(4): 340-350, 2017 12.
Article in English | MEDLINE | ID: mdl-28752548

ABSTRACT

In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.


Subject(s)
Aedes/drug effects , Genetic Fitness , Insecticide Resistance/genetics , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Aedes/genetics , Aedes/growth & development , Aedes/physiology , Animals , Brazil , Female , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/physiology , Malathion/pharmacology , Male , Nitriles/pharmacology , Pyrethrins/pharmacology , Reproduction , Temefos/pharmacology
14.
PLoS One ; 12(6): e0179673, 2017.
Article in English | MEDLINE | ID: mdl-28650966

ABSTRACT

The emergence of novel diseases spread by the Aedes aegypti mosquito in Jamaica and the Caribbean, has prompted studies on insecticide resistance towards effective management of the vector. Though Jamaica has been using the organophosphate insecticide malathion in its vector control program for more than 30 years, resistance to the pesticide has not been tested in over a decade. We analyzed resistance to malathion and the pyrethroid insecticide, permethrin on mosquitoes collected across St. Andrew, Jamaica, and analyzed the molecular basis of resistance. The Center for Disease Control (CDC) bioassay revealed that Ae. aegypti mosquitoes from St. Andrew, Jamaica were resistant to permethrin (15 µg/bottle) with mortalities at 0-8% at 30 minute exposure time, while contact with malathion (50 µg/bottle) revealed ≤ 50% mortality at 15 minutes, which increased to 100% at 45 minutes. The standard susceptible New Orleans (NO) strain exhibited 100% mortality within15 minutes. The activities of multifunction oxidases and p-nitro phenyl-acetate esterases were significantly greater in most Jamaican populations in comparison to the NO strain, while activities of glutathione-S-transferase, acetylcholinesterase, α-esterase and ß-esterase activity were relatively equal, or lower than that of the control strain. The frequency of knockdown resistance mutations in the voltage dependent sodium channel gene were measured. All collections were fixed for Cys1,534 while 56% of mosquitoes were Ile1,016/Val1,016 heterozygotes, and 33% were Ile1,016 homozygotes. Aedes aegypti from St. Andrew Jamaica are resistant to permethrin with variations in the mode of mechanism, and possibly developing resistance to malathion. Continued monitoring of resistance is critically important to manage the spread of the vector in the country.


Subject(s)
Aedes/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Mosquito Control/methods , Permethrin/pharmacology , Animals , Jamaica , Mutation , Voltage-Gated Sodium Channels/genetics
15.
Infect Dis Poverty ; 6(1): 38, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28187780

ABSTRACT

BACKGROUND: In the Guadeloupe and Saint Martin islands, Aedes aegypti mosquitoes are the only recognized vectors of dengue, chikungunya, and Zika viruses. For around 40 years, malathion was used as a mosquito adulticide and temephos as a larvicide. Since the European Union banned the use of these two insecticide molecules in the first decade of the 21st century, deltamethrin and Bacillus thuringiensis var. israelensis are the remaining adulticide and larvicide, respectively, used in Guadeloupe. In order to improve the management of vector control activities in Guadeloupe and Saint Martin, we investigated Ae. aegypti resistance to and mechanisms associated with deltamethrin, malathion, and temephos. METHODS: Ae. aegypti mosquitoes were collected from six different localities of Guadeloupe and Saint Martin. Larvae were used for malathion and temephos bioassays, and adult mosquitoes for deltamethrin bioassays, following World Health Organization recommendations. Knockdown resistance (Kdr) genotyping for V1016I and F1534C mutations, and expression levels of eight enzymes involved in detoxification mechanisms were examined in comparison with the susceptible reference Bora Bora strain. RESULTS: Resistance ratios (RR50) calculated for Ae. aegypti larvae showed high resistance levels to temephos (from 8.9 to 33.1-fold) and low resistance levels to malathion (from 1.7 to 4.4-fold). Adult females displayed moderate resistance levels to deltamethrin regarding the time necessary to affect 50% of individuals, varying from 8.0 to 28.1-fold. Molecular investigations on adult mosquitoes showed high resistant allele frequencies for V1016I and F1534C (from 85 to 96% and from 90 to 98%, respectively), as well as an overexpression of the glutathione S-transferase gene, GSTe2, the carboxylesterase CCEae3a, and the cytochrome genes 014614, CYP6BB2, CYP6M11, and CYP9J23. CONCLUSIONS: Ae. aegypti populations from Guadeloupe and Saint Martin exhibit multiple resistance to organophosphates (temephos and malathion), and pyrethroids (deltamethrin). The mechanisms associated with these resistance patterns show strong frequencies of F1534C and V1016I Kdr mutations, and an over-expression of CCEae3a, GSTe2, and four cytochrome P450 genes (014614, CYP9J23, CYP6M11, CYP6BB2). These results will form the baseline for a deeper understanding of the insecticide resistance levels and associated mechanisms of Ae. aegypti populations and will be used to improve vector control strategies in Guadeloupe and Saint Martin.


Subject(s)
Aedes/drug effects , Disease Vectors , Insecticide Resistance , Insecticides/pharmacology , Malathion/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Temefos/pharmacology , Aedes/genetics , Aedes/physiology , Animals , Biological Assay , Female , Gene Expression Profiling , Genotyping Techniques , Larva/drug effects , Mutation, Missense , West Indies
16.
Mycoses ; 59(5): 281-90, 2016 May.
Article in English | MEDLINE | ID: mdl-26864989

ABSTRACT

This study aimed to investigate the influence of tetraconazole and malathion, both used in agricultural activities, on resistance to fluconazole, itraconazole and voriconazole in Candida parapsilosis ATCC 22019. The susceptibility to tetraconazole, malathion, fluconazole, itraconazole and voriconazole, through broth microdilution. Then, 12 independent replicates, were separated and exposed to four treatment groups, each one containing three replicates: G1: tetraconazole; G2: malathion; G3: fluconazole (positive control); G4: negative control. Replicates from G1, G2 and G3, were exposed to weekly increasing concentrations of tetraconazole, malathion and fluconazole, respectively, ranging from MIC/2 to 32 × MIC, throughout 7 weeks. The exposure to tetraconazole, but not malathion, decreased susceptibility to clinical azoles, especially fluconazole. The tetraconazole-induced fluconazole resistance is partially mediated by the increased activity of ATP-dependent efflux pumps, considering the increase in antifungal susceptibility after the addition of the efflux pump inhibitor, promethazine, and the increase in rhodamine 6G efflux and CDR gene expression in the G1 replicates. Moreover, MDR expression was only detected in G1 and G3 replicates, suggesting that MDR pumps are also involved in tetraconazole-induced fluconazole resistance. It is noteworthy that tetraconazole and fluconazole-treated replicates behaved similarly, therefore, resistance to azoles of clinical use may be a consequence of using azoles in farming activities.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Chlorobenzenes/pharmacology , Fluconazole/pharmacology , Fungicides, Industrial/pharmacology , Triazoles/pharmacology , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Anti-Allergic Agents/pharmacology , Candida/genetics , Drug Resistance, Microbial , Ergosterol/analysis , Gene Expression Regulation, Fungal , Humans , Itraconazole/pharmacology , Malathion/pharmacology , Microbial Sensitivity Tests , Promethazine/pharmacology , Rhodamines , Sterol 14-Demethylase/genetics , Voriconazole/pharmacology
17.
Pharmacology ; 94(3-4): 157-62, 2014.
Article in English | MEDLINE | ID: mdl-25301379

ABSTRACT

BACKGROUND AND PURPOSE: There is a remarkable paucity of studies analyzing the role of the endothelium-derived relaxing factors on the vascular effects of organophosphates. This study was carried out to evaluate the vascular effects of malathion and the role of nitric oxide (NO) and prostacyclin (PGI2). METHODS: Vascular reactivity measuring isometric forces in vitro ('organ chambers') and flow cytometry (cells loaded with DAF-FM DA) were used. RESULTS: In rat thoracic aorta segments contracted with phenylephrine (Phe) (10(-7) mol/l), malathion (10(-10) to 10(-5) mol/l) induced concentration-dependent relaxation in arteries with intact endothelium (n = 7; p < 0.05). Malathion-mediated relaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME; 10(-4) mol/l), a nonspecific NO synthase inhibitor, and/or indomethacin (10(-5) mol/l), a nonspecific cyclooxygenase inhibitor (n = 10, p < 0.05). In thoracic aorta rings, with and without endothelium, Phe (10(-10) to 10(-5) mol/l) evoked concentration-dependent contraction, which was reduced in the presence of malathion. In rings with or without endothelium, incubated with malathion, L-NAME and indomethacin, the Phe-induced contraction was restored. The role of NO was confirmed using flow cytometry. Malathion evokes endothelium-dependent relaxation through the M1 muscarinic receptor, since this relaxation was clearly blocked by atropine (M1 and M2 blocker) and pirenzepine (M1 blocker), but was less blocked by gallamine (M2 blocker) or 4-DAMP (M3 blocker). CONCLUSIONS: These findings suggest that the organophosphate compound effects on vascular reactivity depend of NO and PGI2.


Subject(s)
Aorta, Thoracic/drug effects , Malathion/pharmacology , Nitric Oxide/physiology , Pesticides/pharmacology , Vasodilator Agents/pharmacology , Animals , Aorta, Thoracic/physiology , Atropine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Epoprostenol/physiology , Gallamine Triethiodide/pharmacology , In Vitro Techniques , Indomethacin/pharmacology , Male , Muscarinic Antagonists/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Phenylephrine/pharmacology , Piperidines/pharmacology , Pirenzepine/pharmacology , Rats, Wistar
18.
J Med Entomol ; 50(5): 1031-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24180108

ABSTRACT

Resistance to the insecticides deltamethrin and malathion and the enzymes associated with metabolic resistance mechanisms were determined in four field populations of Aedes aegypti (L.) from western Venezuela during 2008 and 2010 using the bottle assay and the microplate biochemical techniques. For deltamethrin, mortality rates after 1 h exposure and after a 24-h recovery period were determined to calculate the 50% knock-downconcentration (KC50) and the lethal concentration (LC50), respectively. For malathion, mortality was recorded at 24 h to determine the LC50. For deltamethrin, resistance ratios of knock-down resistance and postrecovery were determined by calculating the RRKC50 and RRLC50, comparing the KC50 and LC50 values of the field populations and those of the susceptible New Orleans strain. Knock-down resistance to deltamethrin was moderate in the majority of the populations in 2008 (RRKC50 values were between 5- and 10-fold), and only one population showed high resistance in 2010 (RRKC50 > 10-fold). Moderate and high postrecovery resistance to deltamethrin was observed in the majority of the populations for 2008 and 2010, respectively. There was significantly increased expression of glutathione-S-tranferases and mixed-function oxidases. All populations showed low resistance to malathion in 2008 and 2010 with significantly higher levels of alpha-esterases for 2008 and 2010 and beta-esterases for 2008.


Subject(s)
Aedes/drug effects , Insecticide Resistance , Insecticides/pharmacology , Malathion/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Aedes/enzymology , Aedes/metabolism , Animals , Esterases/metabolism , Female , Seasons , Venezuela
20.
Rev Panam Salud Publica ; 32(1): 1-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22910718

ABSTRACT

OBJECTIVE: To examine the effects of increasing larval rearing temperatures on the resistance status of Trinidadian populations of Aedes aegypti to organophosphate (OP) insecticides. METHODS: In 2007-2008, bioassays and biochemical assays were conducted on A. aegypti larvae collected in 2006 from eight geographically distinct areas in Trinidad (Trinidad and Tobago). Larval populations were reared at four temperatures (28 ± 2ºC, 32ºC, 34ºC, and 36ºC) prior to bioassays with OP insecticides (fenthion, malathion, and temephos) and biochemical assays for esterase enzymes. RESULTS: Most larval populations reared at 28 ± 2ºC were susceptible to fenthion (>98% mortality) but resistant to malathion and temephos (< 80% mortality). A positive association was found between resistance to OP insecticides and increased activities of α- and ß-esterases in larval populations reared at 28 ± 2ºC. Although larval populations reared at higher temperatures showed variations in resistance to OPs, there was a general increase in susceptibility. However, increases or decreases in activity levels of enzymes did not always correspond with an increase or decrease in the proportion of resistant individuals reared at higher temperatures. CONCLUSIONS: Although global warming may cause an increase in dengue transmission, based on the current results, the use of insecticides for dengue prevention and control may yet be effective if temperatures increase as projected.


Subject(s)
Aedes/drug effects , Fenthion/pharmacology , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/pharmacology , Malathion/pharmacology , Temefos/pharmacology , Temperature , Aedes/enzymology , Aedes/growth & development , Animals , Dengue/prevention & control , Esterases/analysis , Esterases/physiology , Global Warming , Hot Temperature , Insect Proteins/analysis , Insect Proteins/physiology , Insect Vectors/enzymology , Insect Vectors/growth & development , Insecticide Resistance/physiology , Larva/drug effects , Larva/enzymology , Species Specificity , Trinidad and Tobago
SELECTION OF CITATIONS
SEARCH DETAIL