Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Biotechnol J ; 19(5): e2300581, 2024 May.
Article in English | MEDLINE | ID: mdl-38719587

ABSTRACT

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Subject(s)
Escherichia coli , Interleukin-3 , Protein Disulfide-Isomerases , Recombinant Fusion Proteins , Humans , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Interleukin-3/metabolism , Interleukin-3/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Cell Line, Tumor , Solubility
2.
Nat Commun ; 15(1): 3576, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678040

ABSTRACT

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.


Subject(s)
Cryoelectron Microscopy , Maltose-Binding Proteins , Nucleocapsid , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/genetics , Virus Assembly , Capsid/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics
3.
ACS Chem Biol ; 19(5): 1040-1044, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38620022

ABSTRACT

Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 µM) than the linear form (39 ± 6 µM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.


Subject(s)
Peptide Library , Peptides, Cyclic , Peptides, Cyclic/chemistry , Cysteine/chemistry , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Cyclization , Peptides/chemistry , Amino Acid Sequence
4.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397029

ABSTRACT

To delve into the structure-function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli's membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs' expression in E. coli.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Protein Sorting Signals , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
J Biol Chem ; 299(9): 105086, 2023 09.
Article in English | MEDLINE | ID: mdl-37495113

ABSTRACT

Reductive dehalogenases are corrinoid and iron-sulfur cluster-containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen-sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in Escherichia coli. Combining the use of maltose-binding protein as a solubility-enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron-sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption is tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. Electron paramagnetic resonance spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady-state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.


Subject(s)
Hydrolases , NADP , Rhodobacteraceae , Escherichia coli/genetics , NADP/metabolism , Oxygen/chemistry , Vitamin B 12/metabolism , Phenols/chemistry , Phenols/metabolism , Electron Spin Resonance Spectroscopy , Hydrolases/chemistry , Hydrolases/genetics , Hydrolases/isolation & purification , Hydrolases/metabolism , Rhodobacteraceae/enzymology , Rhodobacteraceae/genetics , Protein Structure, Tertiary , Models, Molecular , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Coenzymes/metabolism
6.
J Biotechnol ; 369: 1-13, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37164269

ABSTRACT

Shellfish are a leading cause of allergies worldwide, affecting about one-tenth of the general population. The sarcoplasmic calcium-binding protein, also known as allergen Pen m 4, is an important factor in shrimp allergies. Our objective was to assess the most effective techniques for producing a recombinant Pen m 4 protein as a potential tool for diagnosing shrimp allergies. In this study, for the first time, we produced a functional recombinant Pen m 4 protein in a eukaryotic system, Pichia pastoris, and analyzed it against Escherichia coli-produced equivalents in enzyme-linked immunosorbent and reverse-phase protein microarray assays. A dual tag system based on the maltose-binding protein was successfully used to increase the yield of Pen m 4 by 1.3-2.3-fold in both bacteria and yeast, respectively. Immunological characterization showed that N-glycosylation is neither crucial for the folding of Pen m 4 nor its recognition by specific IgE. However, the Ca2+-depletion assay indicated a dependence on calcium ion presence in blood samples. Results demonstrate how a comparative analysis can elucidate essential allergen manufacturing points. In conclusion, E. coli-produced Pen m 4 protein fused with the maltose-binding protein should be the preferred option for further studies in Penaeus monodon allergy diagnostics.


Subject(s)
Escherichia coli , Hypersensitivity , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Maltose-Binding Proteins/metabolism , Immunoglobulin E , Recombinant Proteins/chemistry , Allergens/genetics , Allergens/chemistry , Pichia/genetics , Pichia/metabolism
7.
Sci Rep ; 12(1): 18157, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307539

ABSTRACT

Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.


Subject(s)
Escherichia coli , Vascular Endothelial Growth Factor C , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Cysteine/metabolism , Recombinant Proteins/metabolism , Maltose-Binding Proteins/metabolism
8.
J Microbiol ; 60(9): 960-967, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835960

ABSTRACT

In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregation-prone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltose-binding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Peptides/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
9.
Biophys J ; 121(11): 2046-2059, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35526093

ABSTRACT

To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which are transported into the periplasm via a specific porin. Previous observations have shown that, under various conditions, E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here, we present results from experiments and modeling suggesting that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits the range of dynamic sensing. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Bacterial Proteins/metabolism , Chemotaxis , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Maltose/metabolism , Maltose-Binding Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Porins/metabolism
10.
Methods Mol Biol ; 2466: 83-92, 2022.
Article in English | MEDLINE | ID: mdl-35585312

ABSTRACT

Affinity chromatography enables the separation and isolation of proteins of interest from complex milieu of biochemicals. Nickel-charged affinity resins and amylose resins are two commonly used matrices for the isolation of proteins with histidine tag (6× His-tag) and maltose binding protein (MBP) tag, respectively. Herein we describe the isolation of the Protruding domain (P-domain) of Norovirus's major capsid protein, VP1, through a highly efficient batch purification technique. By fusing the P-domain to a 6×His-MBP tag followed by a TEV cleavage site, we can effectively purify the P-domain in three chromatography steps (positive nickel affinity, negative nickel affinity, and negative amylose affinity).


Subject(s)
Escherichia coli , Norovirus , Amylose , Chromatography, Affinity/methods , Escherichia coli/metabolism , Maltose-Binding Proteins/metabolism , Nickel/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
11.
Appl Environ Microbiol ; 88(7): e0009722, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35285717

ABSTRACT

There is a high demand for the production of recombinant proteins in Escherichia coli for biotechnological applications, but their production is still limited by their insolubility. Fusion tags have been successfully used to enhance the solubility of aggregation-prone proteins; however, smaller and more powerful tags are desired for increasing the yield and quality of target proteins. Here, the NEXT tag, a 53-amino-acid-long solubility enhancer, is described. The NEXT tag showed outstanding ability to improve both in vivo and in vitro solubilities, with minimal effect on passenger proteins. The C-terminal region of the tag was mostly responsible for in vitro solubility, while the N-terminal region was essential for in vivo soluble expression. The NEXT tag appeared to be intrinsically disordered and seemed to exclude neighboring molecules and prevent protein aggregation by acting as an entropic bristle. This novel peptide tag should have general use as a fusion partner to increase the yield and quality of difficult-to-express proteins. IMPORTANCE Production of recombinant proteins in Escherichia coli still suffers from the insolubility problem. Conventional solubility enhancers with large sizes, represented by maltose-binding protein (MBP), have remained the first-choice tags; however, the success of the soluble expression of tagged proteins is largely unpredictable. In addition, the large tags can negatively affect the function of target proteins. In this work, the NEXT tag, an intrinsically disordered peptide, was introduced as a small but powerful alternative to MBP. The NEXT tag could significantly improve both the expression level and the solubility of target proteins, including a thermostable carbonic anhydrase and a polyethylene terephthalate (PET)-degrading enzyme that are remarkable enzymes for environmental bioremediation.


Subject(s)
Escherichia coli , Peptides , Escherichia coli/genetics , Escherichia coli/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Solubility
12.
Peptides ; 150: 170735, 2022 04.
Article in English | MEDLINE | ID: mdl-35007660

ABSTRACT

Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are peptide hormones and their receptors play a critical role in migraine progression and blood pressure control, respectively. CGRP and AM receptors are structurally related since they are the complex of the calcitonin receptor-like receptor (CLR) with the different types of receptor activity-modifying protein (RAMP). Several crystal structures of the CGRP and AM receptor extracellular domain (ECD) used maltose-binding protein (MBP) as a tag protein to facilitate crystallization. Unexpectedly, the recent crystal structures of CGRP receptor ECD showed that the N-terminal tag MBP located in proximity of bound/mutated peptide ligands. This study provided evidence that MBP N-terminally tagged to the CGRP receptor ECD formed chemical interaction with the mutated peptide ligands. Interestingly, N-glycosylation of the CGRP receptor ECD was predicted to prevent MBP docking to the mutated peptide ligands. I found that the N-glycosylation of CLR ECD N123 was the most critical for inhibiting MBP interaction with the mutated peptide ligands. The MBP tag protein interaction was also dependent on the sequence of the peptide ligands. In contrast to the CGRP receptor, the MBP tag was not involved in peptide ligand binding at AM receptor ECD. Here, I provided evidence that N-glycosylation of the CGRP receptor ECD inhibited the tag protein interaction suggesting an additional function of N-glycosylation in the MBP-fused CGRP receptor ECD. This study reveals the importance of using tag protein-free versions of the CGRP receptor for the accurate assessment of peptide binding affinity.


Subject(s)
Calcitonin Gene-Related Peptide , Receptor Activity-Modifying Protein 1/chemistry , Receptors, Calcitonin Gene-Related Peptide , Adrenomedullin/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Glycosylation , Humans , Ligands , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Receptor Activity-Modifying Protein 2/genetics , Receptor Activity-Modifying Protein 2/metabolism , Receptors, Adrenomedullin/chemistry , Receptors, Adrenomedullin/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism
13.
Protein Expr Purif ; 189: 105991, 2022 01.
Article in English | MEDLINE | ID: mdl-34628000

ABSTRACT

Advances in structural biology have been fueled in part by developing techniques for large-scale heterologous expression and purification of proteins. Nevertheless, this step is still a bottleneck in biophysical studies of many proteins. Often, fusion proteins are used to increase expression levels, solubility, or both. Here, we compare a recently reported fusion tag, NT*, with Maltose Binding Protein (MBP), a well-known fusion tag and solubility enhancer. NT* shows high expression and solubility when used as an N-terminal fusion partner for several aggregation-prone peptides. Its efficacy in enhancing the solubility of aggregation-prone globular proteins has, however, not been tested. We find here that although the overall expression levels for NT* fusions are much higher than those for the MBP fusion, MBP was far superior for enhancing the solubility of the passenger protein. Nevertheless, the effective yield after purification from the soluble fraction of both MBP-fusion and NT*-fusion was comparable, mainly due to higher expression levels in NT*-fusion and a smaller fraction of the passenger protein net weight being locked in the fusion protein. We conclude that NT* is an excellent fusion tag to improve the overall expression of globular proteins but does not increase the passenger protein's solubility compared to MBP. Proteins that are partially soluble or can be refolded in-vitro will significantly benefit from N-terminal NT* fusions. MBP, however, still remains one of the very few options for an N-terminal fusion if the solubility of the protein after expression is critical for preserving its proper fold or activity.


Subject(s)
Dual-Specificity Phosphatases/genetics , Endopeptidases/genetics , Green Fluorescent Proteins/genetics , Maltose-Binding Proteins/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Recombinant Fusion Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Cloning, Molecular , Dual-Specificity Phosphatases/metabolism , Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Green Fluorescent Proteins/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Maltose-Binding Proteins/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Folding , Recombinant Fusion Proteins/metabolism , Solubility , Tetrahydrofolate Dehydrogenase/metabolism
14.
Protein Expr Purif ; 189: 105986, 2022 01.
Article in English | MEDLINE | ID: mdl-34600111

ABSTRACT

To date, there is no functional characterization of EmGGPPS (from Elizabethkingia meningoseptica sp.F2) as enzymes catalyzing GGPP. In this research, maltose-binding protein (MBP), disulfide bond A (DbsA), disulfide bond C (DbsC), and two other small protein tags, GB1 (Protein G B1 domain) and ZZ (Protein A IgG ZZ repeat domain), were used as fusion partners to construct an EmGGPPS fusion expression system. The results indicated that the expression of MBP-EmGGPPS was higher than that of the other four fusion proteins in E. coli BL21 (DE3). Additionally, using EmGGPPS as a catalyst for the production of GGPP was verified using a color complementation assay in Escherichia coli. In parallel with it, the enzyme activity experiment in vitro showed that the EmGGPPS protein could produce GGPP, GPP and FPP. Finally, we successfully demonstrated MK-4 production in engineered E. coli by overexpression of EmGGPPS.


Subject(s)
Farnesyltranstransferase/genetics , Flavobacteriaceae/enzymology , Maltose-Binding Proteins/genetics , Polyisoprenyl Phosphates/biosynthesis , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Cloning, Molecular , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Farnesyltranstransferase/metabolism , Flavobacteriaceae/genetics , Gene Expression , Maltose-Binding Proteins/metabolism , Plasmids/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Vitamin K 2/analogs & derivatives , Vitamin K 2/metabolism
15.
Protein Expr Purif ; 189: 105989, 2022 01.
Article in English | MEDLINE | ID: mdl-34626801

ABSTRACT

Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis. Fortilin is unique because it provides a novel drug target for atherosclerosis that goes beyond lowering cholesterol and utilization of a solution nuclear magnetic resonance (NMR) spectroscopy, structure-based drug discovery approach requires milligram quantities of pure, bioactive, recombinant fortilin. Here, we designed expression constructs with different affinity tags and protease cleavage sites to find optimal conditions to obtain the quantity and purity of protein necessary for structure activity relationship studies. Plasmids encoding fortilin with maltose binding protein (MBP), 6-histidine (6His) and glutathione-S-transferase (GST), N- terminal affinity tags were expressed and purified from Escherichia coli (E. coli). Cleavage sites with tobacco etch virus (TEV) protease and human rhinovirus (HRV) 3C protease were assessed. Despite high levels of expression of soluble protein, the fusion constructs were resistant to proteinases without the inclusion of amino acids between the cleavage site and N-terminus. We surveyed constructs with increasing lengths of glycine/serine (GGS) linkers between the cleavage site and fortilin and found that inclusion of at least one GGS insert led to successful protease cleavage and pure fortilin with conserved binding to calcium as measured by NMR.


Subject(s)
Calcium/chemistry , Recombinant Fusion Proteins/genetics , Tumor Protein, Translationally-Controlled 1/genetics , 3C Viral Proteases/chemistry , Binding Sites , Calcium/metabolism , Cloning, Molecular , Endopeptidases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Models, Molecular , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Solubility , Tumor Protein, Translationally-Controlled 1/chemistry , Tumor Protein, Translationally-Controlled 1/metabolism
16.
Protein Expr Purif ; 189: 105978, 2022 01.
Article in English | MEDLINE | ID: mdl-34562586

ABSTRACT

Urate oxidase is a promising biological medicine for hyperuricemia treatment, but immunogenicity obstructs the development of its clinical application. The recombinant porcine-human chimeric uricase mutant named dHU-wPU is a humanized chimeric uricase based on wild porcine uricase (wPU), which can effectively reduce the limitation of potential immunogenicity with a high homology (92.76%) to deduced human uricase (dHU). Unfortunately, the insoluble expression form of dHU-wPU in E. coli increases the difficulty of production. In this study, we described a more convenient method to efficiently obtain recombinant dHU-wPU protein from E. coli. Combination small ubiquitin-related modifier protein (SUMO) and maltose-binding protein (MBP) was employed to achieve the soluble expression of dHU-wPU. MBP-SUMO-dHU-wPU fusion protein was not only overexpressed in a soluble form, but also showed high purification and cleavage efficiency. Subsequently, we optimized the culture conditions of shake flasks and expanded the production of MBP-SUMO-dHU-wPU fusion protein in a 5 L bioreactor. Finally, about 15 mg of recombinant dHU-wPU was obtained from 1 L M9 fermentation culture by using two-step affinity chromatography, with a SDS-PAGE purity over 90%. In vitro activity analysis showed that dHU-wPU had better ability to catalyze uric acid than wPU.


Subject(s)
Cloning, Molecular/methods , Maltose-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , SUMO-1 Protein/genetics , Urate Oxidase/genetics , Animals , Bioreactors , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Hyperuricemia/genetics , Hyperuricemia/metabolism , Hyperuricemia/pathology , Hyperuricemia/therapy , Maltose-Binding Proteins/metabolism , Mutation , Plasmids/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SUMO-1 Protein/metabolism , Solubility , Swine , Urate Oxidase/metabolism , Uric Acid/metabolism
17.
Biochem Biophys Res Commun ; 590: 1-6, 2022 01 29.
Article in English | MEDLINE | ID: mdl-34959191

ABSTRACT

The thermal shift assay (TSA) is a powerful tool used to detect molecular interactions between proteins and ligands. Using temperature as a physical denaturant and an extrinsic fluorescent dye, the TSA tracks protein unfolding. This method precisely determines the midpoint of the unfolding transition (Tm), which can shift upon the addition of a ligand. Though experimental protocols have been well developed, the thermal shift assay data traditionally yielded qualitative results. Quantitative methods for Kd determination relied either on empirical and inaccurate usage of Tm or on isothermal approaches, which do not take full advantage of the melting point precision provided by the TSA. We present a new analysis method based on a model that relies on the equilibrium system between the native and molten globule state of the protein using the van't Hoff equation. We propose the Kd can be determined by plotting Tm values versus the logarithm of ligand concentrations and fitting the data to an equation we derived. After testing this procedure with the monomeric maltose-binding protein and an allosterically regulated homotetrameric enzyme (ADP-glucose pyrophosphorylase), we observed that binding results correlated very well with previously established parameters. We demonstrate how this method could potentially offer a broad applicability to a wide range of protein classes and the ability to detect both active and allosteric site binding compounds.


Subject(s)
Proteins/metabolism , Temperature , Adenosine Diphosphate Glucose/metabolism , Escherichia coli/enzymology , Glucose-1-Phosphate Adenylyltransferase/metabolism , Humans , Kinetics , Ligands , Maltose/metabolism , Maltose-Binding Proteins/metabolism , Mutagenesis/genetics , Protein Unfolding , Trisaccharides/metabolism
18.
Sci Rep ; 11(1): 21453, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728710

ABSTRACT

Fibroblast growth factor receptors (FGFRs) generate various transduction signals by interaction with fibroblast growth factors (FGFs) and are involved in various biological functions such as cell proliferation, migration, and differentiation. Malfunction of these proteins may lead to the development of various diseases, including cancer. Accordingly, FGFRs are considered an alternative therapeutic target for protein and/or gene therapy. However, the screening of antagonists or agonists of FGFRs is challenging due to their complex structural features associated with protein expression. Herein, we conducted the development of a protease-free cleavable tag (PFCT) for enhancing the solubility of difficult-to express protein by combining maltose-binding protein (MBP) and the C-terminal region of Npu intein. To validate the availability of the resulting tag for the functional production of extracellular domains of FGFRs (Ec_FGFRs), we performed fusion of PFCT with the N-terminus of Ec_FGFRs and analyzed the expression patterns. Almost all PFCT-Ec_FGFR fusion proteins were mainly detected in the soluble fraction except for Ec_FGFR4. Upon addition of the N-terminal region of Npu intein, approximately 85% of the PFCT-Ec_FGFRs was separated into PFCT and Ec_FGFR via intein-mediated cleavage. Additionally, the structural integrity of Ec_FGFR was confirmed by affinity purification using heparin column. Taken together, our study demonstrated that the PFCT could be used for soluble expression and selective separation of Ec_FGFRs.


Subject(s)
Extracellular Space/metabolism , Maltose-Binding Proteins/metabolism , Peptide Fragments/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Recombinant Fusion Proteins/metabolism , Humans , Maltose-Binding Proteins/genetics , Peptide Fragments/genetics , Protein Domains , Receptors, Fibroblast Growth Factor/genetics , Recombinant Fusion Proteins/genetics
19.
Elife ; 102021 10 08.
Article in English | MEDLINE | ID: mdl-34623258

ABSTRACT

With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.


Subject(s)
Copper/chemistry , Fluorescence Resonance Energy Transfer , Maltose-Binding Proteins/metabolism , beta-Alanine/analogs & derivatives , Amino Acid Sequence , Fluorometry , HEK293 Cells , Humans , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Models, Chemical , Mutation , Protein Conformation, alpha-Helical , Structure-Activity Relationship , Time Factors , beta-Alanine/chemistry
20.
PLoS One ; 16(9): e0254468, 2021.
Article in English | MEDLINE | ID: mdl-34473728

ABSTRACT

Cell-penetrating peptides (CPPs) are capable of transporting molecules to which they are tethered across cellular membranes. Unsurprisingly, CPPs have attracted attention for their potential drug delivery applications, but several technical hurdles remain to be overcome. Chief among them is the so-called 'endosomal escape problem,' i.e. the propensity of CPP-cargo molecules to be endocytosed but remain entrapped in endosomes rather than reaching the cytosol. Previously, a CPP fused to calmodulin that bound calmodulin binding site-containing cargos was shown to efficiently deliver cargos to the cytoplasm, effectively overcoming the endosomal escape problem. The CPP-adaptor, "TAT-CaM," evinces delivery at nM concentrations and more rapidly than we had previously been able to measure. To better understand the kinetics and mechanism of CPP-adaptor-mediated cargo delivery, a real-time cell penetrating assay was developed in which a flow chamber containing cultured cells was installed on the stage of a confocal microscope to allow for observation ab initio. Also examined in this study was an improved CPP-adaptor that utilizes naked mole rat (Heterocephalus glaber) calmodulin in place of human and results in superior internalization, likely due to its lesser net negative charge. Adaptor-cargo complexes were delivered into the flow chamber and fluorescence intensity in the midpoint of baby hamster kidney cells was measured as a function of time. Delivery of 400 nM cargo was observed within seven minutes and fluorescence continued to increase linearly as a function of time. Cargo-only control experiments showed that the minimal uptake which occurred independently of the CPP-adaptor resulted in punctate localization consistent with endosomal entrapment. A distance analysis was performed for cell-penetration experiments in which CPP-adaptor-delivered cargo showing wider dispersions throughout cells as compared to an analogous covalently-bound CPP-cargo. Small molecule endocytosis inhibitors did not have significant effects upon delivery. The real-time assay is an improvement upon static endpoint assays and should be informative in a broad array of applications.


Subject(s)
Calmodulin/metabolism , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems/methods , Endosomes/metabolism , Maltose-Binding Proteins/metabolism , Small Molecule Libraries/administration & dosage , tat Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Biological Assay/methods , Calmodulin/chemistry , Cell Line , Cricetinae , Cytosol/metabolism , Drug Delivery Systems/instrumentation , Endosomes/drug effects , Humans , Microscopy, Fluorescence/methods , Rats , Small Molecule Libraries/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...