Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 744
Filter
1.
Nature ; 625(7996): 788-796, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029793

ABSTRACT

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Subject(s)
Cerebellum , Evolution, Molecular , Mammals , Neurogenesis , Animals , Humans , Mice , Cell Lineage/genetics , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/growth & development , Fetus/cytology , Fetus/embryology , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Opossums/embryology , Opossums/growth & development , Purkinje Cells/cytology , Purkinje Cells/metabolism , Single-Cell Gene Expression Analysis , Species Specificity , Transcriptome , Mammals/embryology , Mammals/growth & development
2.
J Biol Chem ; 299(9): 105130, 2023 09.
Article in English | MEDLINE | ID: mdl-37543366

ABSTRACT

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Subject(s)
Molecular Sequence Annotation , RNA, Long Noncoding , RNA-Seq , Animals , Embryonic Development/genetics , Mammals/embryology , Mammals/genetics , Molecular Sequence Annotation/methods , Promoter Regions, Genetic/genetics , Reproducibility of Results , Retroviridae/genetics , RNA, Long Noncoding/genetics , RNA-Seq/methods , Transcription Initiation Site , Transcriptome/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
3.
Nat Cell Biol ; 24(9): 1341-1349, 2022 09.
Article in English | MEDLINE | ID: mdl-36100738

ABSTRACT

Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.


Subject(s)
Cadherins , Endoderm , Mammals/embryology , Animals , Blastocyst , Cadherins/genetics , Cadherins/metabolism , Embryonic Stem Cells/metabolism , Germ Layers
4.
Nat Rev Genet ; 22(11): 691-711, 2021 11.
Article in English | MEDLINE | ID: mdl-34354263

ABSTRACT

Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.


Subject(s)
DNA Transposable Elements , Mammals/embryology , Animals , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Genome , Humans , Mammals/genetics , Mammals/metabolism , Zygote/metabolism
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34183440

ABSTRACT

Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.


Subject(s)
Body Patterning , Drosophila melanogaster/embryology , Nerve Net/embryology , Neurons/physiology , Visual Pathways/embryology , Animals , Cell Adhesion Molecules/metabolism , Cell Movement , Mammals/embryology , Neuroglia/cytology , Receptors, Notch/metabolism , Signal Transduction , Time Factors
6.
Stem Cell Reports ; 16(5): 1021-1030, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979591

ABSTRACT

In recent years, a diverse array of in vitro cell-derived models of mammalian development have been described that hold immense potential for exploring fundamental questions in developmental biology, particularly in the case of the human embryo where ethical and technical limitations restrict research. These models open up new avenues toward biomedical advances in in vitro fertilization, clinical research, and drug screening with potential to impact wider society across many diverse fields. These technologies raise challenging questions with profound ethical, regulatory, and social implications that deserve due consideration. Here, we discuss the potential impacts of embryo-like models, and their biomedical potential and current limitations.


Subject(s)
Biomedical Research , Embryo, Mammalian/physiology , Mammals/embryology , Models, Biological , Societies , Animals , Drug Discovery , Humans
7.
Stem Cell Reports ; 16(5): 1078-1092, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979595

ABSTRACT

Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.


Subject(s)
Embryo, Mammalian/metabolism , Germ Cells/metabolism , Mammals/embryology , Animals , Epigenesis, Genetic , Gene Regulatory Networks , Humans , Models, Biological
8.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525665

ABSTRACT

The Death-domain associated protein 6 (DAXX) is an evolutionarily conserved and ubiquitously expressed multifunctional protein that is implicated in many cellular processes, including transcription, cellular proliferation, cell cycle regulation, Fas-induced apoptosis, and many other events. In the nucleus, DAXX interacts with transcription factors, epigenetic modifiers, and chromatin-remodeling proteins such as the transcription regulator ATRX-the α-thalassemia/mental retardation syndrome X-linked ATP-dependent helicase II. Accordingly, DAXX is considered one of the main players involved in chromatin silencing and one of the most important factors that maintain integrity of the genome. In this brief review, we summarize available data regarding the general and specific functions of DAXX in mammalian early development, with special emphasis on the function of DAXX as a chaperone of the histone variant H3.3. Since H3.3 plays a key role in the developmental processes, especially in the pronounced rearrangements of heterochromatin compartment during oogenesis and embryogenesis, DAXX can be considered as an important factor supporting proper development. Specifically, loss of DAXX affects the recruitment of ATRX, transcription of tandem repeats and telomere functions, which results in a decrease in the viability of early embryos.


Subject(s)
Co-Repressor Proteins/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Oocytes/growth & development , Animals , Co-Repressor Proteins/genetics , Embryonic Development , Epigenesis, Genetic , Female , Histones/metabolism , Humans , Mammals/embryology , Molecular Chaperones/genetics , Oocytes/metabolism , X-linked Nuclear Protein/metabolism
9.
Cells ; 10(1)2021 01 10.
Article in English | MEDLINE | ID: mdl-33435191

ABSTRACT

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


Subject(s)
Cell Adhesion Molecules/metabolism , Neocortex/embryology , Neocortex/metabolism , Animals , Humans , Mammals/embryology , Neurodevelopmental Disorders/metabolism , Organogenesis , Synapses/metabolism
10.
Int J Dev Biol ; 65(4-5-6): 357-364, 2021.
Article in English | MEDLINE | ID: mdl-32930350

ABSTRACT

Cell differentiation, proliferation, and morphogenesis are generally driven by instructive signals that are sent and interpreted by adjacent tissues, a process known as induction. Cell recruitment is a particular case of induction in which differentiated cells produce a signal that drives adjacent cells to differentiate into the same type as the inducers. Once recruited, these new cells may become inducers to continue the recruitment process, closing a feed-forward loop that propagates the growth of a specific cell-type population. So far, little attention has been given to cell recruitment as a developmental mechanism. Here, we review the components of cell recruitment and discuss its contribution to development in three different examples: the Drosophila wing, the vertebrate inner ear, and the mammalian thyroid gland. Finally, we posit some open questions about the role of cell recruitment in organ patterning and growth.


Subject(s)
Drosophila , Mammals , Morphogenesis , Vertebrates , Animals , Drosophila/embryology , Ear, Inner/embryology , Gene Expression Regulation, Developmental , Mammals/embryology , Thyroid Gland/embryology , Vertebrates/embryology , Wings, Animal/embryology
11.
Cell ; 183(6): 1467-1478, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33306953

ABSTRACT

Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development.


Subject(s)
Embryo, Mammalian/physiology , Mammals/embryology , Animals , Blastocyst/cytology , Body Patterning , Cell Lineage , Embryo, Mammalian/cytology , Embryonic Development
12.
Dev Cell ; 55(3): 328-340.e5, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33091369

ABSTRACT

Despite the noisy nature of single cells, multicellular organisms robustly generate different cell types from one zygote. This process involves dynamic cross regulation between signaling and gene expression that is difficult to capture with fixed-cell approaches. To study signaling dynamics and fate specification during preimplantation development, we generated a transgenic mouse expressing the ERK kinase translocation reporter and measured ERK activity in single cells of live embryos. Our results show primarily active ERK in both the inner cell mass and trophectoderm cells due to fibroblast growth factor (FGF) signaling. Strikingly, a subset of mitotic events results in a short pulse of ERK inactivity in both daughter cells that correlates with elevated endpoint NANOG levels. Moreover, endogenous tagging of Nanog in embryonic stem cells reveals that ERK inhibition promotes enhanced stabilization of NANOG protein after mitosis. Our data show that cell cycle, signaling, and differentiation are coordinated during preimplantation development.


Subject(s)
Blastocyst/cytology , Blastocyst/enzymology , Cell Cycle , Cell Lineage , MAP Kinase Signaling System , Mammals/embryology , Animals , Germ Layers/cytology , Humans , Mice , Mitosis , Models, Biological , Nanog Homeobox Protein/metabolism , Protein Stability , Reproducibility of Results
13.
Curr Opin Cell Biol ; 66: 89-96, 2020 10.
Article in English | MEDLINE | ID: mdl-32645551

ABSTRACT

Pluripotent stem cells derived from the early mammalian embryo offer a convenient model system for studying cell fate decisions in embryogenesis. The last 10 years have seen a boom in the popularity of two-dimensional micropatterns and three-dimensional stem cell culture systems as a way to recreate the architecture and interactions of particular cell populations during development. These methods enable the controlled exploration of cellular organization and patterning during development, using cell lines instead of embryos. They have established a new class of in vitro model system for pre-implantation and peri-implantation embryogenesis, ranging from models of the blastocyst stage, through gastrulation and toward early organogenesis. This review aims to set these systems in context and to highlight the strengths and suitability of each approach in modelling early mammalian development.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Development , Mammals/embryology , Models, Biological , Pluripotent Stem Cells/metabolism , Animals , Humans , Organoids/cytology , Organoids/embryology
14.
Int J Dev Biol ; 64(1-2-3): 109-121, 2020.
Article in English | MEDLINE | ID: mdl-32658999

ABSTRACT

Historically, research in India on early mammalian development had only begun, rather modestly, in the last century, unlike the USA and UK. In India, initial studies were on gonadal and reproductive tissue development and function and they were limited to anatomical and histological characterization. This was followed by research on fertility regulation and contraception. Since the 1960s, a major initiative took place regarding endocrine biochemistry and the use of antifertility agents in inhibiting gonadal function and early development. Post-independence, the Indian government´s funding support enabled universities and institutions to embark on various research disciplines in biology but with no particular emphasis on developmental biology per se. Subsequently, India made significant progress in the area of mammalian reproduction and development, but not specifically in the core aspects of developmental biology. Reasons for this could be due to the nation's compulsion to invest and embark on socio-economic and infrastructure development and on research involving family planning methods for reversible-affordable contraceptives to curtail population growth. With regard to the latter, biologists were involved in hormone-based contraception research. During this pursuit, insights were achieved into basic aspects of the development of gonads, gametes and embryos. Notwithstanding this, in the post-1980s through to the present time, Indian scientists have contributed to (i) the understanding of the cellular and molecular regulation of early development, (ii) developing genetically modified mouse models, (iii) using assisted reproductive technologies, generating mammalian progeny, including humans and (iv) deriving pluripotent stem cell lines for developmental studies. This article provides a perspective on the past and current status of early mammalian development research in India.


Subject(s)
Biomedical Research/trends , Developmental Biology/history , Embryo, Mammalian/cytology , Embryonic Development , Mammals/embryology , Reproduction , Reproductive Techniques, Assisted , Animals , History, 20th Century , History, 21st Century , Humans , India
15.
Macromol Biosci ; 20(8): e2000128, 2020 08.
Article in English | MEDLINE | ID: mdl-32567242

ABSTRACT

Conjugated polymer dots have excellent fluorescence properties in terms of their structural diversity and functional design, showing broad application prospects in the fields of biological imaging and biosensing. Polymer dots contain no heavy metals and are thought to be of low toxicity and good biocompatibility. Therefore, systematic studies on their potential toxicity are needed. Herein, the biocompatibility of poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)],10% benzothiadiazole(y) (PFBT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer dots on early embryo development as well as maternal health is studied in detail. The results show that prepared polymer dots are dose-dependently toxic to preimplantation embryos, and low-dose polymer dots can be used for cell labeling of early embryos without affecting the normal development of embryos into blastocysts. In addition, the in vivo distribution data show that the polymer dots accumulate mainly in the maternal liver, spleen, kidney, placenta, ovary, and lymph nodes of the pregnant mice. Histopathological examination and blood biochemical tests demonstrate that exposure of the maternal body to polymer dots at a dosage of 14 µg g-1 does not affect the normal function of the maternal organs and early fetal development. The research provides a safe basis for the wide application of polymer dots.


Subject(s)
Biocompatible Materials/pharmacology , Embryonic Development , Mammals/embryology , Maternal Health , Polymers/pharmacology , Animals , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Female , Fluorenes/chemistry , Mice, Inbred C57BL , Optical Imaging , Organ Specificity , Ovary/anatomy & histology , Ovary/drug effects , Photoacoustic Techniques , Polymers/chemistry , Reproduction/drug effects
16.
Int J Mol Sci ; 21(10)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438614

ABSTRACT

Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.


Subject(s)
Adipokines/metabolism , Birds/embryology , Embryonic Development , Fertilization , Mammals/embryology , Oocytes/cytology , Animals
17.
Mol Reprod Dev ; 87(4): 399-408, 2020 04.
Article in English | MEDLINE | ID: mdl-32202026

ABSTRACT

The oocyte is a complex cell that executes many crucial and unique functions at the start of each life. These functions are fulfilled by a unique collection of macromolecules and other factors, all of which collectively support meiosis, oocyte activation, and embryo development. This review focuses on the effects of oocyte components on developmental processes that occur after the initial stages of embryogenesis. These include long-term effects on genome function, metabolism, lineage allocation, postnatal progeny health, and even subsequent generations. Factors that regulate chromatin structure, genome programming, and mitochondrial function are elements that contribute to these oocyte functions.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/genetics , Mammals/embryology , Mammals/genetics , Maternal Inheritance/genetics , Animals , Chromatin Assembly and Disassembly/genetics , Female , Gene Expression Regulation, Developmental , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Meiosis/physiology , Oocytes/metabolism , Pregnancy
18.
Bioessays ; 42(4): e1900163, 2020 04.
Article in English | MEDLINE | ID: mdl-32189388

ABSTRACT

X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.


Subject(s)
Mammals/genetics , Systems Biology/methods , X Chromosome Inactivation , X Chromosome/genetics , Alleles , Animals , Embryonic Development/genetics , Epigenomics/methods , Feedback, Physiological/physiology , Female , Humans , Male , Mammals/embryology , Ploidies , RNA, Long Noncoding/genetics
19.
Development ; 147(7)2020 04 06.
Article in English | MEDLINE | ID: mdl-32094117

ABSTRACT

Myosin heavy chain-embryonic (MyHC-emb) is a skeletal muscle-specific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions.This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Differentiation/genetics , Muscle Development/genetics , Muscle, Skeletal/embryology , Myosin Heavy Chains/physiology , Animals , Animals, Newborn , Cells, Cultured , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mammals/embryology , Mammals/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...