Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters










Publication year range
1.
Funct Plant Biol ; 512024 Jun.
Article in English | MEDLINE | ID: mdl-38870341

ABSTRACT

The two-component system (TCS) gene family is among the most important signal transduction families in plants and is involved in the regulation of various abiotic stresses, cell growth and division. To understand the role of TCS genes in mango (Mangifera indica ), a comprehensive analysis of TCS gene family was carried out in mango leading to identification of 65 MiTCS genes. Phylogenetic analysis divided MiTCSs into three groups (histidine kinases, histidine-containing phosphotransfer proteins, and response regulators) and 11 subgroups. One tandem duplication and 23 pairs of segmental duplicates were found within the MiTCSs . Promoter analysis revealed that MiTCSs contain a large number of cis -elements associated with environmental stresses, hormone response, light signalling, and plant development. Gene ontology analysis showed their involvement in various biological processes and molecular functions, particularly signal transduction. Protein-protein interaction analysis showed that MiTCS proteins interacted with each other. The expression pattern in various tissues and under many stresses (drought, cold, and disease) showed that expression levels varied among various genes in different conditions. MiTCSs 3D structure predictions showed structural conservation among members of the same groups. This information can be further used to develop improved cultivars and will serve as a foundation for gaining more functional insights into the TCS gene family.


Subject(s)
Gene Expression Regulation, Plant , Mangifera , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Mangifera/genetics , Mangifera/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Gene Expression Profiling , Computational Biology , Promoter Regions, Genetic , Signal Transduction
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732059

ABSTRACT

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Subject(s)
Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
3.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600447

ABSTRACT

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Subject(s)
Cyclopentanes , Mangifera , Oxylipins , Transcriptome , Cold-Shock Response/genetics , Mangifera/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Hydrogen Peroxide/metabolism , China , Gene Expression Profiling , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473886

ABSTRACT

Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.


Subject(s)
Mangifera , Methyltransferases , Mangifera/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Phylogeny , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Droughts , Plants, Genetically Modified/genetics
5.
Physiol Plant ; 176(2): e14242, 2024.
Article in English | MEDLINE | ID: mdl-38439528

ABSTRACT

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Subject(s)
Arabidopsis , Mangifera , Mangifera/genetics , Arabidopsis/genetics , Circadian Rhythm , Droughts , Flowers/genetics , Saccharomyces cerevisiae
6.
Gene ; 912: 148382, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38493974

ABSTRACT

An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.


Subject(s)
Mangifera , Xanthomonas campestris , Mangifera/genetics , Mangifera/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Multigene Family , Hormones , Plant Proteins/metabolism , Gene Expression Regulation, Plant
7.
BMC Plant Biol ; 24(1): 208, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519933

ABSTRACT

BACKGROUND: Mango (Mangifera indica L.) faces escalating challenges from increasing drought stress due to erratic climate patterns, threatening yields, and quality. Understanding mango's drought response mechanisms is pivotal for resilience and food security. RESULTS: Our RNA-seq analyses unveil 12,752 differentially expressed genes linked to stress signaling, hormone regulation, and osmotic adjustment. Weighted Gene Co-expression Network Analysis identified three essential genes-WRKY transcription factor 3, polyamine oxidase 4, and protein MEI2-like 1-as drought defense components. WRKY3 having a role in stress signaling and defense validates its importance. Polyamine oxidase 4, vital in stress adaptation, enhances drought defense. Protein MEI2-like 1's significance emerges, hinting at novel roles in stress responses. Metabolite profiling illuminated Mango's metabolic responses to drought stress by presenting 990 differentially abundant metabolites, mainly related to amino acids, phenolic acids, and flavonoids, contributing to a deeper understanding of adaptation strategies. The integration between genes and metabolites provided valuable insights by revealing the correlation of WRKY3, polyamine oxidase 4 and MEI2-like 1 with amino acids, D-sphingnosine and 2,5-Dimethyl pyrazine. CONCLUSIONS: This study provides insights into mango's adaptive tactics, guiding future research for fortified crop resilience and sustainable agriculture. Harnessing key genes and metabolites holds promise for innovative strategies enhancing drought tolerance in mango cultivation, contributing to global food security efforts.


Subject(s)
Mangifera , Resilience, Psychological , Droughts , Mangifera/genetics , Gene Expression Profiling , Amino Acids , Stress, Physiological/genetics , Gene Expression Regulation, Plant
8.
Plant Genome ; 17(2): e20441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462715

ABSTRACT

Improvements in long-read sequencing techniques have greatly accelerated plant genome sequencing. Current de novo assemblies are routinely achieved by assembling long-read sequence data into contigs that are assembled to chromosome level by chromatin conformation capture. We report here a chromosome-level mango genome using only PacBio high-fidelity (HiFi) long reads. HiFi reads at high coverage (204x) resulted in the assembly of 17 chromosomes, each as a single contig with telomeres at both ends. The remaining three chromosomes were represented each by two contigs, with telomeres at one end and ribosomal repeats at the other end. Analyzing contig ends allowed them to be paired and linked to generate the remaining three complete chromosomes, telomere-to-telomere but with ribosomal repeats of uncertain length. The assembled genome was 365 Mb with 100% completeness as assessed by Benchmarking Universal Single-Copy Orthologs analysis. The haplotypes assembled demonstrated extensive structural differences. This approach using very high genome coverage may be useful for assembling high-quality genomes for many other plants.


Subject(s)
Chromosomes, Plant , Genome, Plant , Mangifera , Mangifera/genetics , Sequence Analysis, DNA
9.
Arch Virol ; 169(3): 58, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424260

ABSTRACT

In this study, we determined the complete genome sequence of a novel totivirus, tentatively named "Mangifera indica totivirus 1" (MiTV1), identified in 'Apple' mango in China. The double-stranded RNA genome of MiTV1 is 4800 base pairs (bp) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences showed that MiTV1 is closely related to members of the genus Totivirus in the family Totiviridae. To our knowledge, this is the first report of a totivirus found in Mangifera indica.


Subject(s)
Mangifera , Totivirus , Totivirus/genetics , Mangifera/genetics , Phylogeny , Amino Acid Sequence , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics
10.
RNA ; 30(4): 392-403, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38282417

ABSTRACT

The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.


Subject(s)
Aptamers, Nucleotide , Mangifera , RNA/genetics , Mangifera/genetics , Mangifera/metabolism , Fluorescent Dyes/chemistry , Aptamers, Nucleotide/chemistry , Nucleic Acid Hybridization
11.
BMC Genomics ; 24(1): 710, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996781

ABSTRACT

Colletotrichum siamense is a hemibiotrophic ascomycetous fungus responsible for mango anthracnose. The key genes involved in C. siamense infection remained largely unknown. In this study, we conducted weighted gene co-expression network analysis (WGCNA) of RNA-seq data to mine key genes involved in Colletotrichum siamense-mango interactions. Gene modules of Turquoise and Salmon, containing 1039 and 139 respectively, were associated with C. siamense infection, which were conducted for further analysis. GO enrichment analysis revealed that protein synthesis, organonitrogen compound biosynthetic and metabolic process, and endoplasmic reticulum-related genes were associated with C. siamense infection. A total of 568 proteins had homologs in the PHI database, 370 of which were related to virulence. The hub genes in each module were identified, which were annotated as O-methyltransferase (Salmon) and Clock-controlled protein 6 (Turquoise). A total of 24 proteins exhibited characteristics of SCRPs. By using transient expression in Nicotiana benthamiana, the SCRPs of XM_036637681.1 could inhibit programmed cell death (PCD) that induced by BAX (BCL-2-associated X protein), suggesting that it may play important roles in C. siamense infection. A mango-C. siamense co-expression network was constructed, and the mango gene of XM_044632979.1 (auxin-induced protein 15A-like) was positively associated with 5 SCRPs. These findings help to deepen the current understanding of necrotrophic stage in C. siamense infection.


Subject(s)
Colletotrichum , Mangifera , Mangifera/genetics , Mangifera/microbiology , Gene Regulatory Networks , Gene Expression Profiling , Colletotrichum/genetics
12.
Int J Biol Macromol ; 253(Pt 8): 127665, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37884236

ABSTRACT

Carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality and commodity value. In this study, we performed integrative analyses of transcriptome data from two different type fruits, ripening peel color at green ('Neelum' mango) and red ('Irwin' mango). Specifically, we found that MiMYB10 transcription level was highly associated with mango peel color. Further, silencing MiMYB10 homologous gene in tomato fruits resulted in lower carotenoid and anthocyanin content. Electrophoretic mobility shift assays and dual-luciferase clarified that MiMYB10 regulates the carotenoid biosynthesis gene MiPDS (phytoene desaturase gene) in a direct manner. On the other hand, MiMYB10 activates the expression of carotenoid biosynthesis genes (PSY, Z-ISO, CRTISO, LCYE) and chlorophyll degradation gene (SGR1), promoting the accumulation of carotenoid, accelerating chlorophyll degradation, and controlling peel color. In summary, this study identified important roles of MiMYB10 in pigment regulatory and provided new options for breeding strategies aiming to improve fruit quality.


Subject(s)
Mangifera , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Fruit/metabolism , Mangifera/genetics , Gene Expression Regulation, Plant , Plant Breeding , Carotenoids/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
13.
PeerJ ; 11: e15722, 2023.
Article in English | MEDLINE | ID: mdl-37790610

ABSTRACT

Genetic improvement mainly depends on the level of genetic variability present in the population, and the degree of genetic diversity in a population largely determines the rate of genetic advancement. For analyzing genetic diversity and determining cultivar identities, a molecular marker is a useful tool. Using 30 SSR (simple sequence repeat) and 30 RAPD (randomly amplified polymorphic DNA) markers, this study evaluated the genetic divergence of 17 mango cultivars. The effectiveness of the two marker systems was evaluated using their genetic diversity characteristics. Additionally, the effects of SM (simple matching) and Dice similarity coefficients and their effects on mango clustering were evaluated. The findings showed that SSR markers generated 192 alleles, all of which were polymorphic (100%). With RAPD markers, 434 bands were obtained, 361 of which were polymorphic (83%). The average polymorphic information content (PIC) for RAPD and SSR was 0.378 and 0.735, respectively. Using SSR markers resulted in much higher values for other genetic diversity parameters compared to RAPD markers. Furthermore, grouping the genotypes according to the two similarity coefficients without detailed consideration of these coefficients could not influence the study results. The RAPD markers OPA_01, OPM_12 followed by OPO_12 and SSR markers MIAC_4, MIAC_5 followed by mMiCIR_21 were the most informative in terms of describing genetic variability among the cultivars under study; they can be used in further investigations such as genetic mapping or marker-assisted selection. Overall, 'Zebda' cultivar was the most diverse of the studied cultivars.


Subject(s)
Genetic Variation , Mangifera , Random Amplified Polymorphic DNA Technique/methods , Genetic Variation/genetics , Mangifera/genetics , Genetic Markers/genetics , Genotype
14.
Plant Sci ; 335: 111826, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574138

ABSTRACT

CONSTANS (CO) is the key gene in the photoperiodic pathway that regulates flowering in plants. In this paper, a CONSTANS-like 14A (COL14A) gene was obtained from mango, and its expression patterns and functions were characterized. Sequence analysis shows that MiCOL14A-JH has an additional A base, which leads to code shifting in subsequent coding boxes and loss of the CCT domain. The MiCOL14A-JH and MiCOL14A-GQ genes both belonged to group Ⅲ of the CO/COL gene family. Analysis of tissue expression patterns showed that MiCOL14A was expressed in all tissues, with the highest expression in the leaves of seedling, followed by lower expression levels in the flowers and stems of adult leaves. However, there was no significant difference between different mango varieties. At different development stages of flowering, the expression level of MiCOL14A-GQ was the highest in the leaves before floral induction period, and the lowest at flowering stage, while the highest expression level of MiCOL14A-JH appeared in the leaves at flowering stage. The transgenic functional analysis showed that both MiCOL14A-GQ and MiCOL14A-JH induced delayed flowering of transgenic Arabidopsis. In addition, MiCOL14A-JH enhanced the resistance of transgenic Arabidopsis to drought stress, while MiCOL14A-GQ increased the sensitivity of transgenic Arabidopsis to salt stress. Further proteinprotein interaction analysis showed that MiCOL14A-JH directly interacted with MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1), CBL-interacting protein kinase 9 (MiCIPK9) and zinc-finger protein 4 (MiZFP4), but MiCOL14A-GQ could not interact with these three stress-related proteins. Together, our results demonstrated that MiCOL14A-JH and MiCOL14A-GQ not only regulate flowering but also play a role in the abiotic stress response in mango, and the lack of the CCT domain affects the proteinprotein interaction, thus affecting the gene response to stress. The insertion of an A base can provide a possible detection site for mango resistance breeding.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mangifera , Arabidopsis/metabolism , Mangifera/genetics , Mangifera/metabolism , Droughts , Plant Breeding , Arabidopsis Proteins/metabolism , Photoperiod , Flowers , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569360

ABSTRACT

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Subject(s)
Mangifera , Mangifera/genetics , Protoplasts/metabolism , Plant Leaves/genetics , Transfection
16.
mBio ; 14(4): e0062923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37283539

ABSTRACT

Anthracnose diseases caused by Colletotrichum species are among the most common fungal diseases. These symptoms typically manifest as dark, sunken lesions on leaves, stems, and fruit. In China, mango anthracnose seriously affects fruit yield and quality. Genome sequencing of several species shows the presence of mini-chromosomes. These are thought to contribute to virulence, but their formation and activity remain to be fully elucidated. Here, we assembled 17 Colletotrichum genomes (16 isolated from mango plus one from persimmon) through PacBio long-read sequencing. Half of the assembled scaffolds had telomeric repeats at both ends indicating full-length chromosomes. Based on comparative genomics analysis at interspecies and intraspecies levels, we identified extensive chromosomal rearrangements events. We analyzed mini-chromosomes of Colletotrichum spp. and found large variation among close relatives. In C. fructicola, homology between core chromosomes and mini-chromosomes suggested that some mini-chromosomes were generated by recombination of core chromosomes. In C. musae GZ23-3, we found 26 horizontally transferred genes arranged in clusters on mini-chromosomes. In C. asianum FJ11-1, several potential pathogenesis-related genes on mini-chromosomes were upregulated, especially in strains with highly pathogenic phenotypes. Mutants of these upregulated genes showed obvious defects in virulence. Our findings provide insights into the evolution and potential relationships to virulence associated with mini-chromosomes. IMPORTANCE Colletotrichum is a cosmopolitan fungal genus that seriously affects fruit yield and quality of many plant species. Mini-chromosomes have been found to be related to virulence in Colletotrichum. Further examination of mini-chromosomes can help us elucidate some pathogenic mechanisms of Colletotrichum. In this study, we generated novel assemblies of several Colletotrichum strains. Comparative genomic analyses within and between Colletotrichum species were conducted. We then identified mini-chromosomes in our sequenced strains systematically. The characteristics and generation of mini-chromosomes were investigated. Transcriptome analysis and gene knockout revealed pathogenesis-related genes located on mini-chromosomes of C. asianum FJ11-1. This study represents the most comprehensive investigation of chromosome evolution and potential pathogenicity of mini-chromosomes in the Colletotrichum genus.


Subject(s)
Colletotrichum , Mangifera , Colletotrichum/genetics , Plant Diseases/microbiology , Mangifera/genetics , Mangifera/microbiology , China , Chromosomes
17.
RNA ; 29(9): 1355-1364, 2023 09.
Article in English | MEDLINE | ID: mdl-37268327

ABSTRACT

Aptamers with fluorogenic ligands are emerging as useful tools to quantify and track RNA molecules. The RNA Mango family of aptamers have a useful combination of tight ligand binding, bright fluorescence, and small size. However, the simple structure of these aptamers, with a single base-paired stem capped by a G-quadruplex, can limit the sequence and structural modifications needed for many use-inspired designs. Here we report new structural variants of RNA Mango that have two base-paired stems attached to the quadruplex. Fluorescence saturation analysis of one of the double-stemmed constructs showed a maximum fluorescence that is ∼75% brighter than the original single-stemmed Mango I. A small number of mutations to nucleotides in the tetraloop-like linker of the second stem were subsequently analyzed. The effect of these mutations on the affinity and fluorescence suggested that the nucleobases of the second linker do not directly interact with the fluorogenic ligand (TO1-biotin), but may instead induce higher fluorescence by indirectly altering the ligand properties in the bound state. The effects of the mutations in this second tetraloop-like linker indicate the potential of this second stem for rational design and reselection experiments. Additionally, we demonstrated that a bimolecular mango designed by splitting the double-stemmed Mango can function when two RNA molecules are cotranscribed from different DNA templates in a single in vitro transcription. This bimolecular Mango has potential application in detecting RNA-RNA interactions. Together, these constructs expand the designability of the Mango aptamers to facilitate future applications of RNA imaging.


Subject(s)
Aptamers, Nucleotide , Mangifera , Mangifera/genetics , Mangifera/chemistry , Mangifera/metabolism , Aptamers, Nucleotide/chemistry , Ligands , Fluorescent Dyes/chemistry , RNA/chemistry
18.
Planta ; 258(1): 14, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37310483

ABSTRACT

MAIN CONCLUSION: Three Di19-4 genes were identified in mango. Overexpression of MiDi19-4B in A. thaliana promoted earlier flowering and enhanced drought, salt, and ABA resistance. Drought-induced protein 19 (Di19) is a drought-induced protein that is mainly involved in multiple stress responses. Here, three Di19-4 genes (MiDi19-4A/B/C) in mango (Mangifera indica L.) were identified, and the coding sequences (CDS) had lengths of 684, 666, and 672 bp and encoded proteins with 228, 222, and 224 amino acids, respectively. The promoters of the MiDi19-4 genes contained phytohormone-, light-, and abiotic stress-responsive elements. The MiDi19-4 genes were expressed in every tissue and highly expressed in leaves. Moreover, MiDi19-4 genes were highly correlated with the vegetative growth period and induced by polyethylene glycol (PEG) or salt stress. MiDi19-4B displayed the highest expression during the vegetative growth period and then showed decreased expression, and MiDi19-4B was highly expressed at both the late stage of the vegetative growth period and the initial stage of the flowering induction period. The 35S::GFP-MiDi19-4B fusion protein was located in the cell nucleus. The transgenic plants ectopically expressing MiDi19-4B exhibited earlier flowering and increased expression patterns of FRUITFULL (AtFUL), APETALA1 (AtAP1), and FLOWERING LOCUS T (AtFT). The drought and salt tolerance of MiDi19-4B transgenic plants was significantly increased, and these plants showed decreased sensitivity to abscisic acid (ABA) and considerably increased expression levels of drought- and salt-related genes and ABA signalling pathway genes. Additionally, bimolecular fluorescence complementation (BiFC) experiments revealed that the MiDi19-4B protein interacted with CAULIFLOWER (MiCAL1), MiCAL2, MiAP1-1, and MiAP1-2. Taken together, these results highlighted the important regulatory roles of MiDi19-4B in tolerance to multiple abiotic stresses and in flowering.


Subject(s)
Arabidopsis , Mangifera , Abscisic Acid/metabolism , Arabidopsis/genetics , Ectopic Gene Expression , Exons , Mangifera/genetics , Plants, Genetically Modified/genetics
19.
Genomics ; 115(5): 110675, 2023 09.
Article in English | MEDLINE | ID: mdl-37390936

ABSTRACT

Mango (Mangifera indica L.) is a widely appreciated tropical fruit for its rich color and nutrition. However, knowledge on the molecular basis of color variation is limited. Here, we studied HY3 (yellowish-white pulp) and YX4 (yellow pulp), reaped with 24 h gap from the standard harvesting time. The carotenoids and total flavonoids increased with the advance of harvest time (YX4 > HY34). Transcriptome sequencing showed that higher expressions of the core carotenoid biosynthesis genes and flavonoid biosynthesis genes are correlated to their respective contents. The endogenous indole-3-acetic acid and jasmonic acid contents decreased but abscisic acid and ethylene contents increased with an increase in harvesting time (YX4 > HY34). Similar trends were observed for the corresponding genes. Our results indicate that the color differences are related to carotenoid and flavonoid contents, which in turn are influenced by phytohormone accumulation and signaling.


Subject(s)
Mangifera , Mangifera/genetics , Mangifera/metabolism , Flavonoids/metabolism , Transcriptome , Plant Growth Regulators/metabolism , Carotenoids/metabolism , Metabolome , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant
20.
PLoS One ; 18(5): e0284910, 2023.
Article in English | MEDLINE | ID: mdl-37134101

ABSTRACT

Most of the popular scion varieties of mango possess alternate/irregular bearing. There are many external and internal factors assigned, among them carbohydrate reserves, and nutrient content plays important roles in the floral induction process in many crop species. In addition to that rootstock can alter the carbohydrate reserve and nutrient acquisition of scion varieties in fruit crops. The present investigation was carried out to understand the effect of rootstocks on the physiochemical traits of leaf, and bud and nutrient content in regular and alternate bearing varieties of mango. The rootstock "Kurukkan" promoted starch content in leaves of both alternate bearing varieties 'Dashehari' (5.62 mg/g) and regular 'Amrapali' (5.49 mg/g) and encouraged higher protein content (6.71 mg/g) and C/N ratio (37.94) in buds of alternate bearing 'Dashehari'. While Olour rootstock upregulated the reducing sugar in leaves of 'Amrapali' (43.56 mg/g) and promoted K (1.34%) and B (78.58 ppm) content in reproductive buds of 'Dashehari'. Stomatal density in 'Dashehari' scion variety was found higher on Olour rootstock (700.40/mm 2), while the rootstock fails to modify stomatal density in the scion variety regular bearer 'Amrapali'. Further, a total of 30 carbohydrate metabolism-specific primers were designed and validated in 15 scion/rootstock combinations. A total of 33 alleles were amplified among carbohydrate metabolism-specific markers, which varied from 2 to 3 alleles with a mean of 2.53 per locus. Maximum and minimum PIC value was found for NMSPS10, and NMTPS9 primers (0.58). Cluster analysis revealed that scion grafted on Kurukkan rootstock clustered together except 'Pusa Arunima' on Olour rootstock. Our analysis revealed that Fe is the key component that is commonly expressed in both leaf and bud. Although Stomatal density (SD) and Intercellular CO2 Concentration (Ci) are more specific to leaf and Fe, B, and total sugar (TS) are abundant in buds. Based on the results it can be inferred that the physiochemical and nutrient responses of mango scion varieties are manipulated by the rootstock, hence, the scion-rootstock combination can be an important consideration in mango for selecting suitable rootstock for alternate/irregular bearer varieties.


Subject(s)
Mangifera , Mangifera/genetics , Carbohydrate Metabolism , Carbohydrates , Nutrients , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL
...