Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
BMC Oral Health ; 24(1): 362, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515181

ABSTRACT

BACKGROUND AND OBJECTIVES: The literature about oral manifestations and dental management in maple syrup urine disease (MSUD) is sparse. The aim of this report is to present a new case of MSUD with special emphasis on oral findings and to review the relevant literature. METHOD: A case report of a 4-year-old boy with MSUD was described according to the CARE guidelines for describing case reports. Scoping review of relevant literature was performed, according to the PRISMA-ScR guidelines, by searching PubMed, Medline, Embase, and the grey literature for articles describing dental management and/or oral manifestations in MSUD. RESULTS: The initial search identified 219 articles, but only 4 met the inclusion criteria. Rampant caries and plaque induced gingivitis were the main oro-dental findings in MSUD. Other oral findings included enamel hypoplasia, skeletal abnormalities, and abnormal oral behaviors. Disease-related factors appeared to play a major role in the development of the observed oral phenotype. CONCLUSION: Oral health in MSUD seems to be influenced by the reliance on semi-synthetic diet and associated neurocognitive complications. Tailored oral health promotional interventions should be included in the multidisciplinary management of patients with MSUD.


Subject(s)
Maple Syrup Urine Disease , Male , Humans , Child, Preschool , Maple Syrup Urine Disease/complications , Maple Syrup Urine Disease/genetics , Phenotype , Dental Care
2.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36880392

ABSTRACT

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Subject(s)
Maple Syrup Urine Disease , Animals , Humans , Mice , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Maple Syrup Urine Disease/diagnosis , Phenotype , Quality of Life
3.
Clin Chim Acta ; 548: 117483, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37421976

ABSTRACT

BACKGROUND: Maple syrup urine disease (MSUD) is a rare disease for which newborn screening (NBS) is feasible but not universally applied in China. We shared our experiences with MSUD NBS. METHODS: Tandem mass spectrometry-based NBS for MSUD was implemented in January 2003, and diagnostic methods included urine organic acid analysis via gas chromatography-mass spectrometry and genetic analysis. RESULTS: Six MSUD patients were identified from 1.3 million newborns, yielding an incidence of 1:219,472, in Shanghai, China. The areas under the curve (AUCs) of total leucine (Xle), Xle/phenylalanine ratio, and Xle/alanine ratio were all 1.000. Some amino acid and acylcarnitine concentrations were markedly low in MSUD patients. 47 MSUD patients identified here and in other centers were investigated, which included 14 patients identified by NBS and 33 patients diagnosed clinically. Forty-four patients were subclassified into classic (n = 29), intermediate (n = 11) and intermittent (n = 4) subtypes. Due to earlier diagnosis and treatment, screened classic patients showed a higher survival rate (62.5%, 5/8) than clinically diagnosed classic patients (5.2%, 1/19). Overall, 56.8% (25/44) of MSUD patients and 77.8% (21/27) of classic patients carried variants in the BCKDHB gene. Among 61 identified genetic variants, 16 novel variants were identified. CONCLUSION: MSUD NBS in Shanghai, China, enabled earlier detection and increased survivorship in the screened population.


Subject(s)
Maple Syrup Urine Disease , Humans , Infant, Newborn , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Neonatal Screening/methods , China , Leucine , Early Diagnosis
4.
Ann Transplant ; 28: e939893, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37248682

ABSTRACT

BACKGROUND Maple syrup urine disease (MSUD) is a rare genetic deficiency of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that breaks down amino acids, resulting in multi-organ failure. This report is of 5 pediatric cases of domino liver transplantation (DLT) from live donors with MSUD from a single transplant center in Beijing. CASE REPORT All MSUD donors were confirmed to have disease-causing mutations in BCKDHA (branched-chain keto acid dehydrogenase E1, alpha polypeptide) or BCKDHB (branched-chain keto acid dehydrogenase E1, ß polypeptide) genes by peripheral blood whole-exon sequencing. Serum leucine and valine concentrations were significantly higher than normal values. Recipients ranged in age from 0.75 to 9 years old. Three patients underwent auxiliary liver transplantation, and the other children all underwent liver or partial liver transplantation. This case report was followed up for 25 to 79 months. The prognosis, growth, and development of patients were followed up. By the end of the last follow-up, all children had survived. All patients had normal serum leucine and valine concentrations after surgery. In case 1, portal vein stenosis post-operatively. In case 2, stenosis of hepatic artery and bile duct occurred. In case 5, hepatic artery and portal vein stenosis occurred, resulting in graft loss.   CONCLUSIONS The findings from our center support the findings from other pediatric liver transplant centers that liver transplantation using MSUD donors can have successful outcomes without the development of MSUD in the recipient.


Subject(s)
Living Donors , Maple Syrup Urine Disease , Child , Humans , Infant , Child, Preschool , Maple Syrup Urine Disease/surgery , Maple Syrup Urine Disease/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Leucine/metabolism , Constriction, Pathologic , Valine
5.
Am J Med Genet A ; 191(5): 1360-1365, 2023 05.
Article in English | MEDLINE | ID: mdl-36706222

ABSTRACT

Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.


Subject(s)
Maple Syrup Urine Disease , Protein Phosphatase 2C , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Homozygote , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Mutation , Protein Phosphatase 2C/genetics
6.
Am J Med Genet A ; 188(9): 2738-2749, 2022 09.
Article in English | MEDLINE | ID: mdl-35799415

ABSTRACT

Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Central America , Genomics , Humans , Infant, Newborn , Maple Syrup Urine Disease/genetics , Mutation
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(7): 689-693, 2022 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-35810422

ABSTRACT

OBJECTIVE: To carry out genetic analysis for 3 children from two Chinese families affected with maple syrup urine disease (MSUD). METHODS: Target capture - next-generation sequencing and Sanger sequencing were used to detect pathogenic variants associated with MSUD. RESULTS: The proband from family 1 was found to harbor homozygous c.560G>T (p.Gly187Val) variant of the BCKDHB gene (NM_000056), whilst the two patients from family 2 were found to harbor compound heterozygous variants c.197-2A>G (splicing)/c.218delT (p.F74Sfs*4) of the BCKDHB gene. Among these, the c.560G>T and c.218delT variants were unreported previously. CONCLUSION: The new variants discovered in this study have expanded the mutational spectrum of the BCKDHB gene.


Subject(s)
Maple Syrup Urine Disease , Asian People/genetics , Child , China , Genetic Testing , Humans , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Mutation
8.
Lab Med ; 53(6): 596-601, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-35657820

ABSTRACT

OBJECTIVE: Maple syrup urine disease (MSUD; OMIM #248600) is an autosomal recessive metabolic disorder in the catabolism of branched-chain amino acids (leucine, isoleucine, and valine) and may be lethal if untreated in affected newborns. METHODS: Single-nucleotide polymorphism haplotyping and Sanger sequencing of BCKDHA, BCKDHB, and DBT genes were performed in a cohort of 10 MSUD patients. RESULTS: We identified a 16.6 Mb homozygous region harboring the DBT gene in an Iranian girl presenting with MSUD. Sanger sequencing revealed a pathogenic homozygous variant (NM_001918.3: c.1174A > C) in the DBT gene. We further found a controversial variant (rs12021720: c.1150 A > G) in the DBT gene. This substitution (p.Ser384Gly) is highly debated in literature. Bioinformatics and cosegregation analysis, along with identifying the real pathogenic variants (c.1174 A > C), lead to terminate these various interpretations of c.1150 A > G variant. CONCLUSION: Our study introduced c.1150 A > G as a polymorphic variant, which is informative for variant databases and also helpful in molecular diagnosis.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Maple Syrup Urine Disease , Female , Humans , Infant, Newborn , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Iran , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Mutation, Missense
9.
Nat Commun ; 13(1): 3278, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672312

ABSTRACT

Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)-/- mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Genetic Therapy , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Mice , Phenotype
10.
Genes (Basel) ; 13(2)2022 01 26.
Article in English | MEDLINE | ID: mdl-35205278

ABSTRACT

BCKDK is an important key regulator of branched-chain ketoacid dehydrogenase complex activity by phosphorylating and so inactivating branched-chain ketoacid dehydrogenases, the rate-limiting enzyme of the branched-chain amino acid metabolism. We identified, by whole exome-sequencing analysis, the p.His162Gln variant of the BCKDK gene in a neonate, picked up by newborn screening, with a biochemical phenotype of a mild form of maple syrup urine disease (MSUD). The same biochemical and genetic picture was present in the father. Computational analysis of the mutation was performed to better understand its role. Extensive atomistic molecular dynamics simulations showed that the described mutation leads to a conformational change of the BCKDK protein, which reduces the effect of inhibitory binding bound to the protein itself, resulting in its increased activity with subsequent inactivation of BCKDC and increased plasmatic branched-chain amino acid levels. Our study describes the first evidence of the involvement of the BCKDK gene in a mild form of MSUD. Although further data are needed to elucidate the clinical relevance of the phenotype caused by this variant, awareness of this regulatory activation of BCKDK is very important, especially in newborn screening data interpretation.


Subject(s)
Gain of Function Mutation , Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acids, Branched-Chain/genetics , Amino Acids, Branched-Chain/metabolism , Humans , Infant, Newborn , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/metabolism , Mutation , Protein Kinases/genetics
12.
Nutrients ; 13(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34684524

ABSTRACT

BACKGROUND: Dihydrolipoamide dehydrogenase (DLD lipoamide dehydrogenase, the E3 subunit of the pyruvate dehydrogenase complex (PDHC)) is the third catalytic enzyme of the PDHC, which converts pyruvate to acetyl-CoA catalyzed with the introduction of acetyl-CoA to the tricyclic acid (TCA) cycle. In humans, PDHC plays an important role in maintaining glycose homeostasis in an aerobic, energy-generating process. Inherited DLD-E3 deficiency, caused by the pathogenic variants in DLD, leads to variable presentations and courses of illness, ranging from myopathy, recurrent episodes of liver disease and vomiting, to Leigh disease and early death. Currently, there is no consensus on treatment guidelines, although one suggested solution is a ketogenic diet (KD). OBJECTIVE: To describe the use and effects of KD in patients with DLD-E3 deficiency, compared to the standard treatment. RESULTS: Sixteen patients were included. Of these, eight were from a historical cohort, and of the other eight, four were on a partial KD. All patients were homozygous for the D479V (or D444V, which corresponds to the mutated mature protein without the mitochondrial targeting sequence) pathogenic variant in DLD. The treatment with partial KD was found to improve patient survival. However, compared to a historical cohort, the patients' quality of life (QOL) was not significantly improved. CONCLUSIONS: The use of KD offers an advantage regarding survival; however, there is no significant improvement in QOL.


Subject(s)
Acidosis, Lactic/diet therapy , Acidosis, Lactic/mortality , Diet, Ketogenic/mortality , Enteral Nutrition/mortality , Maple Syrup Urine Disease/diet therapy , Maple Syrup Urine Disease/mortality , Acidosis, Lactic/genetics , Adolescent , Child , Child, Preschool , Diet, Ketogenic/methods , Enteral Nutrition/methods , Female , Gastrostomy , Humans , Infant , Male , Maple Syrup Urine Disease/genetics , Mutation , Quality of Life
13.
Sci Rep ; 11(1): 18939, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556729

ABSTRACT

Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder that affects the degradation of branched chain amino acids (BCAAs). Only a few cases of MSUD have been documented in Mainland China. In this report, 8 patients (4 females and 4 males) with MSUD from 8 unrelated Chinese Han families were diagnosed at the age of 6 days to 4 months. All the coding regions and exon/intron boundaries of BCKDHA, BCDKHB, DBT and DLD genes were analyzed by targeted NGS in the 8 MSUD pedigrees. Targeted NGS revealed 2 pedigrees with MSUD Ia, 5 pedigrees with Ib, 1 pedigree with MSUD II. Totally, 13 variants were detected, including 2 variants (p.Ala216Val and p.Gly281Arg) in BCKDHA gene, 10 variants (p.Gly95Ala, p.Ser171Pro, p.Phe175Leu, p.Arg183Trp, p.Lys222Thr, p.Arg285Ter, p.Arg111Ter, p.S184Pfs*46, p.Arg170Cys, p.I160Ffs*25) in BCKDHB gene, 1 variant (p.Arg431Ter) in DBT gene. In addition, 4 previously unidentified variants (p.Gly281Arg in BCKDHA gene, p.Ser171Pro, p.Gly95Ala and p.Lys222Thr in BCKDHB gene) were identified. NGS plus Sanger sequencing detection is effective and accurate for gene diagnosis. Computational structural modeling indicated that these novel variations probably affect structural stability and considered as likely pathogenic variants.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Maple Syrup Urine Disease/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Asian People/genetics , Computer Simulation , DNA Mutational Analysis , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Maple Syrup Urine Disease/diagnosis , Models, Molecular , Mutation, Missense , Pedigree , Protein Structure, Tertiary/genetics , Retrospective Studies
14.
Mol Genet Metab ; 134(1-2): 139-146, 2021.
Article in English | MEDLINE | ID: mdl-34454844

ABSTRACT

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder characterized by a dysfunctional mitochondrial enzyme complex, branched-chain alpha-keto acid dehydrogenase (BCKDH), which catabolizes branched-chain amino acids (BCAAs). Without functional BCKDH, BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues. MSUD is currently incurable and treatment is limited to dietary restriction or liver transplantation, meaning there is a great need to develop new treatments for MSUD. We evaluated potential gene therapy applications for MSUD in the intermediate MSUD (iMSUD) mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH. Systemic delivery of an adeno-associated virus (AAV) vector expressing DBT under control of the liver-specific TBG promoter to the liver did not sufficiently ameliorate all aspects of the disease phenotype. These findings necessitated an alternative therapeutic strategy. Muscle makes a larger contribution to BCAA metabolism than liver in humans, but a muscle-specific approach involving a muscle-specific promoter for DBT expression delivered via intramuscular (IM) administration only partially rescued the MSUD phenotype in mice. Combining the muscle-tropic AAV9 capsid with the ubiquitous CB7 promoter via IM or IV injection, however, substantially increased survival across all assessed doses. Additionally, near-normal serum BCAA levels were achieved and maintained in the mid- and high-dose cohorts throughout the study; this approach also protected these mice from a lethal high-protein diet challenge. Therefore, administration of a gene therapy vector that expresses in both muscle and liver may represent a viable approach to treating patients with MSUD.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Phenotype , Administration, Intravenous , Amino Acids, Branched-Chain/metabolism , Animals , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Male , Mice , Mutation
15.
Mol Genet Genomic Med ; 9(10): e1790, 2021 10.
Article in English | MEDLINE | ID: mdl-34432377

ABSTRACT

BACKGROUND: Maple syrup urine disease (MSUD) is an autosomal recessive inborn error of amino acid metabolism, with unique clinico-radiological findings. This study aims to show the benefit of using the clinico-radiological findings for early diagnosis of children with MSUD, and confirming this diagnosis using the tandem mass spectrometry (MS/MS), in order to avoid deleterious outcome. METHODS: A prospective cohort study conducted in the period from August 2016 to December 2020. Twenty-one children were included either by selective screening or by high-risk screening. All children had clinical and neurodevelopmental evaluation, brain magnetic resonance imaging (MRI) assessment, and blood amino acids analysis at diagnosis. Patients were followed clinically. RESULTS: Most children had acute onsets neuro-developmental symptoms, with wide range of brain parenchyma involvement on MRI (hyperintensity). Diagnosis of MSUD was confirmed by detecting high serum levels of leucine/isoleucine (mean value 2085.5 µmol/L) in all patients, and elevated levels of serum valine in (81%) of children. In addition, all children showed elevated leucine: alanine ratio, and leucine: phenylalanine ratio. CONCLUSIONS: The characteristic clinico-radiological features can help in the early diagnosis of MSUD children, thus preventing the delay in laboratory diagnosis and improving their outcomes.


Subject(s)
Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Phenotype , Amino Acids/blood , Biomarkers , Child, Preschool , Early Diagnosis , Egypt , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Maple Syrup Urine Disease/blood , Neuroimaging , Radiography , Symptom Assessment , Tandem Mass Spectrometry
16.
Am J Med Genet C Semin Med Genet ; 187(3): 373-380, 2021 09.
Article in English | MEDLINE | ID: mdl-34288399

ABSTRACT

Maple urine syrup disease (MSUD) is an autosomal recessive disorder characterized by deficient activity of the branched-chain alpha ketoacid dehydrogenase (BCKAD) enzymatic complex due to biallelic variants in the alpha (BCKDHA) or beta (BCKDHB) subunits or the acyltransferase component (DBT). Treatment consists in leucine (LEU), isoleucine (ILE), and valine (VAL) (branched-chain amino acids) dietary restriction and strict metabolic control. to determine the characteristics of the Chilean cohort with MSUD currently in follow-up at Instituto de Nutrición y Tecnología de los Alimentos, during the 1990-2017 period Retrospective analytical study in 45 MSUD cases. Measured: biochemical parameters (LEU, ILE, and VAL), anthropometric evaluation, and neurocognitive development. In 18 cases undergoing genetic study were analyzed according to the gene and protein location, number of affected alleles, and type of posttranslational modification affected. Then, 45 patients with MSUD diagnosis were identified during the period: 37 were alive at the time of the study. Average diagnosis age was 71 ± 231 days. Average serum diagnosis LEU concentrations: 1.463 ± 854.1 µmol/L, VAL 550 ± 598 µmol/L and ILE 454 ± 458 µmol/L. BCKDHB variants explain 89% cases, while BCKDHA and DBT variants explain 5.5% of cases each. Variants p.Thr338Ile in BCKDHA, p.Pro240Thr and p.Ser342Asn in BCKDHB have not been previously reported in literature. Average serum follow-up LEU concentrations were 252.7 ± 16.9 µmol/L in the <5 years group and 299 ± 123.2 µmol/L in ≥5 years. Most cases presented some degree of developmental delay. Early diagnosis and treatment is essential to improve the long-term prognosis. Frequent blood LEU measurements are required to optimize metabolic control and to establish relationships between different aspects analyzed.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Alleles , Chile , Humans , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Retrospective Studies
17.
J Pediatr Endocrinol Metab ; 34(9): 1147-1156, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34187135

ABSTRACT

OBJECTIVES: To report two novel mutations in the BCKDHB gene with Maple syrup urine disease (MSUD) and compare their data with 52 cases of MSUD reported in the available Chinese literature. METHODS: Clinical data of a case of a newborn with MSUD was retrospectively studied. Literatures on MSUD in the local medical journals from January 1990 till December 2019 in China were reviewed. RESULTS: Two novel BCKDHB mutations c.90_91insCTGGCGCGGGG (p.Phe35TrpfsTer41) and c.80_90del (p.Ala32PhefsTer48) were identified. We found a total of 52 cases of MSUD reports so far. A total of 49 cases had the symptom of poor feeding (94.2%), 50 cases showed poor responses to stimulation (96.2%), 21 cases had odor of maple syrup (40.3%), 29 cases had seizures (55.7%), and 13 cases had respiratory failure (25.0%). The average of the blood ammonia was 127.2 ± 75.0 µmol/L. A total of 18 cases reported the gene testing, among of them 9 cases of BCKDHA mutations, 6 cases of BCKDHB mutations, and 2 cases of DBT mutations. A total of 13 cases (25%) were treated with mechanical ventilation, 50 cases (96.2%) with protein-restricted diet and l-carnitine, 29 cases with thiamine, and only 2 cases were treated with blood purification. Finally, 19 patients (36.5%) were died, 21 cases (40.4%) were improved after treatments. CONCLUSIONS: The clinical phenotype of neonatal MSUD in China belongs to the classical type currently. Suspected patients should have blood or urine branched-chain amino acid levels tested and brain MRI as early as possible to enable early diagnosis, thus improvement in prognosis.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Maple Syrup Urine Disease/pathology , Mutation , Phenotype , China/epidemiology , Female , Follow-Up Studies , Genetic Testing , Humans , Infant, Newborn , Male , Maple Syrup Urine Disease/epidemiology , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Prognosis , Retrospective Studies
18.
Mol Genet Genomic Med ; 9(5): e1616, 2021 05.
Article in English | MEDLINE | ID: mdl-33955723

ABSTRACT

BACKGROUND: Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by the deficient activity of the branched-chain α-keto acid dehydrogenase (BCKD) enzymatic complex. BCKD is a mitochondrial complex encoded by four genes: BCKDHA, BCKDHB, DBT, and DLD. MSUD is predominantly caused by mutations in the BCKDHA, BCKDHB, and DBT genes which encode the E1α, E1ß, and E2 subunits of the BCKD complex, respectively. The aim of this study was to characterize the genetic basis of MSUD in a cohort of Chilean MSUD patients by identifying point mutations in the BCKDHA, BCKDHB, and DBT genes and to describe their impact on the phenotypic heterogeneity of these patients. METHODS: This manuscript describes a cross-sectional study of 18 MSUD patients carried out using PCR and DNA sequencing. RESULTS: Four novel pathogenic mutations were identified: one in BCKDHA (p.Thr338Ile), two in BCKDHB (p.Gly336Ser e p.Pro240Thr), and one in DBT (p.Gly406Asp). Four additional pathogenic mutations found in this study have been described previously. There were no correlations between the genotype and phenotype of the patients. CONCLUSION: If MSUD is diagnosed earlier, with a newborn screening approach, it might be possible to establish genotype-phenotype relationships more efficiently.


Subject(s)
Maple Syrup Urine Disease/genetics , Mutation , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Acyltransferases/genetics , Child , Chile , Dihydrolipoamide Dehydrogenase/genetics , Genetic Testing/statistics & numerical data , Humans , Maple Syrup Urine Disease/pathology
19.
Biochem J ; 478(4): 765-776, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33626142

ABSTRACT

Oxidation of branched-chain amino acids (BCAAs) is tightly regulated in mammals. We review here the distribution and regulation of whole-body BCAA oxidation. Phosphorylation and dephosphorylation of the rate-limiting enzyme, branched-chain α-ketoacid dehydrogenase complex directly regulates BCAA oxidation, and various other indirect mechanisms of regulation also exist. Most tissues throughout the body are capable of BCAA oxidation, and the flux of oxidative BCAA disposal in each tissue is influenced by three key factors: 1. tissue-specific preference for BCAA oxidation relative to other fuels, 2. the overall oxidative activity of mitochondria within a tissue, and 3. total tissue mass. Perturbations in BCAA oxidation have been implicated in many disease contexts, underscoring the importance of BCAA homeostasis in overall health.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Bacterial Proteins/metabolism , Decarboxylation , Female , Forecasting , Heart Failure/metabolism , Humans , Insulin Resistance/physiology , Male , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/enzymology , Multienzyme Complexes , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Organ Specificity , Oxidation-Reduction , Phosphorylation , Plant Proteins/metabolism , Protein Processing, Post-Translational
20.
Clin Chim Acta ; 517: 23-30, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33607070

ABSTRACT

AIMS: To investigate a family with clinical symptoms of maple syrup urine disease and reveal a genetic cause underlying this disease. METHODS: Targeted capture sequencing was used to screen for mutations in the patient. Real-Time PCR was carried out to perform exon 1, 5, 9 CNV analysis of samples from the patient's father, mother and sister. Whole genome sequencing was performed to map the approximate location of the break points of the gross deletion. Long-range PCR and Sanger sequencing were performed to identify the length of the deletion and to locate the break points. RESULTS: The patient is a compound heterozygous mutation including a small deletion mutation (c.1227_1229del chr19: 41930402) and a gross novel deletion including exon1-9 in BCKDHA. The junction site of the gross deletion was localized within a microhomologous sequence in two Alu elements. CONCLUSIONS: This study is the first time report on rearrangement sequences in BCKDHA mediated by Alu element, which resulted in MSUD. Our results may also offer new insights into the formation and pathogenicity of MSUD, and may be useful to genetic counseling and genetic testing.


Subject(s)
Maple Syrup Urine Disease , Exons/genetics , Humans , Maple Syrup Urine Disease/genetics , Mutation , Polymerase Chain Reaction , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...