Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109.941
Filter
1.
Nat Commun ; 15(1): 3847, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719792

ABSTRACT

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Subject(s)
Electrophoresis, Capillary , Glycomics , Mass Spectrometry , Polysaccharides , Single-Cell Analysis , Humans , Electrophoresis, Capillary/methods , Polysaccharides/metabolism , Polysaccharides/blood , Single-Cell Analysis/methods , HeLa Cells , Mass Spectrometry/methods , Glycomics/methods , Proteomics/methods , Extracellular Vesicles/metabolism , Lipopolysaccharides , Blood Proteins/analysis , Blood Proteins/metabolism
2.
Protein Sci ; 33(6): e5008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723181

ABSTRACT

One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid ß (Aß) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aß species during the dynamic Aß aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aß oligomers and three Aß-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aß monomers, while aducanumab preferentially binds Aß monomers and dimers and A34 preferentially binds Aß dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aß binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aß antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.


Subject(s)
Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized , Ion Mobility Spectrometry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/metabolism , Ion Mobility Spectrometry/methods , Humans , Mass Spectrometry/methods , Protein Binding , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Protein Multimerization
3.
Commun Biol ; 7(1): 554, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724559

ABSTRACT

Promiscuous labeling enzymes, such as APEX2 or TurboID, are commonly used in in situ biotinylation studies of subcellular proteomes or protein-protein interactions. Although the conventional approach of enriching biotinylated proteins is widely implemented, in-depth identification of specific biotinylation sites remains challenging, and current approaches are technically demanding with low yields. A novel method to systematically identify specific biotinylation sites for LC-MS analysis followed by proximity labeling showed excellent performance compared with that of related approaches in terms of identification depth with high enrichment power. The systematic identification of biotinylation sites enabled a simpler and more efficient experimental design to identify subcellular localized proteins within membranous organelles. Applying this method to the processing body (PB), a non-membranous organelle, successfully allowed unbiased identification of PB core proteins, including novel candidates. We anticipate that our newly developed method will replace the conventional method for identifying biotinylated proteins labeled by promiscuous labeling enzymes.


Subject(s)
Biotinylation , Humans , Biotin/chemistry , Biotin/metabolism , Proteomics/methods , Animals , Staining and Labeling/methods , Chromatography, Liquid/methods , Proteome/metabolism , Mass Spectrometry/methods
4.
Sci Adv ; 10(19): eadj6990, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728404

ABSTRACT

Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.


Subject(s)
Anopheles , Deep Learning , Mosquito Vectors , Animals , Anopheles/physiology , Mosquito Vectors/physiology , Malaria/transmission , Malaria/prevention & control , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Senegal , Mass Spectrometry/methods , Aging/physiology
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731863

ABSTRACT

The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.


Subject(s)
B-Lymphocytes , Hematologic Neoplasms , Proteomics , Humans , Proteomics/methods , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/pathology , B-Lymphocytes/metabolism , Biomarkers, Tumor/metabolism , Mass Spectrometry/methods , Flow Cytometry/methods
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731875

ABSTRACT

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Subject(s)
Acrylamide , Cysteine , Iodoacetamide , Proteomics , Iodoacetamide/chemistry , Alkylation , Cysteine/chemistry , Cysteine/analysis , Acrylamide/chemistry , Acrylamide/analysis , Humans , Proteomics/methods , Mass Spectrometry/methods , Isotope Labeling/methods , Peptides/chemistry , Peptides/analysis , Tandem Mass Spectrometry/methods
7.
Food Res Int ; 186: 114382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729736

ABSTRACT

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Subject(s)
Anthocyanins , Daucus carota , Light , Anthocyanins/chemistry , Anthocyanins/analysis , Acylation , Daucus carota/chemistry , Daucus carota/radiation effects , Chromatography, High Pressure Liquid , Darkness , Food Storage/methods , Mass Spectrometry , Hydrogen-Ion Concentration
8.
Front Immunol ; 15: 1379154, 2024.
Article in English | MEDLINE | ID: mdl-38742102

ABSTRACT

Imaging mass cytometry (IMC) is a metal mass spectrometry-based method allowing highly multiplex immunophenotyping of cells within tissue samples. However, some limitations of IMC are its 1-µm resolution and its time and costs of analysis limiting respectively the detailed histopathological analysis of IMC-produced images and its application to small selected tissue regions of interest (ROI) of one to few square millimeters. Coupling on a single-tissue section, IMC and histopathological analyses could permit a better selection of the ROI for IMC analysis as well as co-analysis of immunophenotyping and histopathological data until the single-cell level. The development of this method is the aim of the present study in which we point to the feasibility of applying the IMC process to tissue sections previously Alcian blue-stained and digitalized before IMC tissue destructive analyses. This method could help to improve the process of IMC in terms of ROI selection, time of analysis, and the confrontation between histopathological and immunophenotypic data of cells.


Subject(s)
Image Cytometry , Immunophenotyping , Staining and Labeling , Staining and Labeling/methods , Immunophenotyping/methods , Image Cytometry/methods , Humans , Mass Spectrometry/methods , Animals , Single-Cell Analysis/methods
9.
MAbs ; 16(1): 2324485, 2024.
Article in English | MEDLINE | ID: mdl-38700511

ABSTRACT

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Humans , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/immunology , Mass Spectrometry/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Tissue Distribution , Neoplasms/drug therapy , Neoplasms/immunology
10.
Rapid Commun Mass Spectrom ; 38(14): e9766, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38747108

ABSTRACT

RATIONALE: Huahong tablet, a commonly used clinical Chinese patent medicine, shows good efficacy in treating pelvic inflammation and other gynaecological infectious diseases. However, the specific composition of Huahong tablets, which are complex herbal formulations, remains unclear. Therefore, this study aims to identify the active compounds and targets of Huahong tablets and investigate their mechanism of action in pelvic inflammatory diseases. METHODS: We utilised ultrahigh-performance liquid chromatography Q-Exactive-Orbitrap mass spectrometry and the relevant literature to identify the chemical components of Huahong tablets. The GNPS database was employed to further analyse and speculate on the components. Potential molecular targets of the active ingredients were predicted using the SwissTargetPrediction website. Protein-protein interaction analysis was conducted using the STRING database, with visualisation in Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. Additionally, a traditional Chinese medicine-ingredient-target-pathway network was constructed using Cytoscape 3.10.1. Molecular docking validation was carried out to investigate the interaction between core target and specific active ingredient. RESULTS: A total of 66 chemical components were identified, and 41 compounds were selected as potential active components based on the literature and the TCMSP database. Moreover, 38 core targets were identified as key targets in the treatment of pelvic inflammatory diseases with Huahong tablets. GO and KEGG enrichment analysis revealed 986 different biological functions and 167 signalling pathways. CONCLUSION: The active ingredients in Huahong tablets exert therapeutic effects on pelvic inflammatory diseases by acting on multiple targets and utilising different pathways. Molecular docking confirmed the high affinity between the specific active ingredients and disease targets.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Pelvic Inflammatory Disease , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid/methods , Pelvic Inflammatory Disease/drug therapy , Humans , Mass Spectrometry/methods , Female , Protein Interaction Maps/drug effects , Tablets/chemistry , Molecular Docking Simulation
11.
J Mass Spectrom ; 59(6): e5039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747242

ABSTRACT

Utilizing a data-driven approach, this study investigates modifier effects on compensation voltage in differential mobility spectrometry-mass spectrometry (DMS-MS) for metabolites and peptides. Our analysis uncovers specific factors causing signal suppression in small molecules and pinpoints both signal suppression mechanisms and the analytes involved. In peptides, machine learning models discern a relationship between molecular weight, topological polar surface area, peptide charge, and proton transfer-induced signal suppression. The models exhibit robust performance, offering valuable insights for the application of DMS to metabolites and tryptic peptides analysis by DMS-MS.


Subject(s)
Ion Mobility Spectrometry , Metabolomics , Peptides , Metabolomics/methods , Peptides/chemistry , Peptides/analysis , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Machine Learning , Proteomics/methods , Molecular Weight
12.
Environ Monit Assess ; 196(6): 550, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743156

ABSTRACT

Odor pollution, also referred to as odor nuisance, is a growing environmental concern that is significantly associated with mental health. Once emitted into the air, the concentration of odorous substances varies considerably with wind conditions, leading to difficulties in timely sampling. In the present study, we employed selected ion flow tube mass spectrometry (SIFT-MS) to measure 22 odor-producing molecules continuously in an urban-rural complex city. In addition, we applied statistical analyses, principal component analysis (PCA), and a conditional probability function (CPF) to the datasets obtained from SIFT-MS to identify the odor characteristics at two study sites. At site A, odorants related to livestock farming and industry showed high factor loadings on principal components (PCs) from the PCA. In contrast, we estimated that the odorous gaseous chemicals affecting site B were closely related to sewage treatment and municipal solid waste disposal. Similar CPF patterns of grouped substances from the PCA supported the association between potential odor sources and specific odorants at site B, which helped estimate possible source locations. Consequently, our findings indicate that continuous monitoring of odorous substances using SIFT-MS can be an effective way to provide sufficient information on odor-producing molecules, leading to the clear identification of odor characteristics despite the high variability of odorous substances.


Subject(s)
Air Pollutants , Environmental Monitoring , Mass Spectrometry , Odorants , Principal Component Analysis , Odorants/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Mass Spectrometry/methods , Air Pollution/statistics & numerical data
13.
Methods Mol Biol ; 2807: 93-110, 2024.
Article in English | MEDLINE | ID: mdl-38743223

ABSTRACT

Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.


Subject(s)
HIV Infections , Humans , HIV Infections/virology , HIV-1/physiology , Mass Spectrometry/methods , Microscopy, Electron/methods , Molecular Imaging/methods , Disease Reservoirs/virology
14.
Methods Mol Biol ; 2808: 89-103, 2024.
Article in English | MEDLINE | ID: mdl-38743364

ABSTRACT

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Subject(s)
Host-Pathogen Interactions , Measles virus , Reverse Genetics , Viral Proteins , Measles virus/genetics , Humans , Host-Pathogen Interactions/genetics , Reverse Genetics/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Two-Hybrid System Techniques , Virus Replication , Mass Spectrometry , Protein Interaction Mapping/methods , Measles/virology , Measles/metabolism , Animals , Protein Binding
15.
J Agric Food Chem ; 72(19): 11251-11258, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699857

ABSTRACT

Engineered nanoparticles (ENPs) have been increasingly used in agricultural operations, leading to an urgent need for robust methods to analyze co-occurring ENPs in plant tissues. In response, this study advanced the simultaneous extraction of coexisting silver, cerium oxide, and copper oxide ENPs in lettuce shoots and roots using macerozyme R-10 and analyzed them by single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, the standard stock suspensions of the ENPs were stabilized with citrate, and the long-term stability (up to 5 months) was examined for the first time. The method performance results displayed satisfactory accuracies and precisions and achieved low particle concentration and particle size detection limits. Significantly, the oven drying process was proved not to impact the properties of the ENPs; therefore, oven-dried lettuce tissues were used in this study, which markedly expanded the applicability of this method. This robust methodology provides a timely approach to characterize and quantify multiple coexisting ENPs in plants.


Subject(s)
Lactuca , Mass Spectrometry , Metal Nanoparticles , Plant Roots , Metal Nanoparticles/chemistry , Lactuca/chemistry , Mass Spectrometry/methods , Plant Roots/chemistry , Copper/analysis , Plant Shoots/chemistry , Silver/chemistry , Cerium/chemistry , Particle Size
16.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736386

ABSTRACT

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Subject(s)
Amphotericin B , Drug Contamination , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Amphotericin B/analysis , Amphotericin B/chemistry , Mass Spectrometry/methods
17.
Sci Rep ; 14(1): 10899, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740854

ABSTRACT

In order to obtain the best mass spectrometry identification results for using the most appropriate methods in clinical practice, we explore the optimal pretreatment methods for different species and morphologies of filamentous fungi. 98 fungal strains were treated with formic acid sandwich method, dispersion method, extraction method, and other methods using a medium element mass spectrometer (EXS3000) as a platform. Each strain had three targets, and the identification rates and confidence differences under different pre-treatment methods were compared to evaluate the identification effects of these methods. The mass spectrometry identification rates of 98 filamentous fungi obtained after pre-treatment with formic acid sandwich method, dispersion method, and extraction method were 85.71%, 82.65%, and 75.51%, respectively. The identification rate of the formic acid sandwich method was significantly higher than the other two methods (P < 0 005) has the best identification ability and the obtained confidence is also higher than the other two methods. The use of formic acid sandwich method for mass spectrometry identification of filamentous fungi can achieve ideal identification results, which is suitable for mass spectrometry identification of filamentous fungi in conventional laboratories.


Subject(s)
Fungi , Mass Spectrometry , Fungi/isolation & purification , Fungi/classification , Mass Spectrometry/methods , Formates/chemistry , Formates/analysis , Mycoses/microbiology , Mycoses/diagnosis , Humans
18.
Anal Chim Acta ; 1307: 342574, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719419

ABSTRACT

BACKGROUND: Metabolomics is nowadays considered one the most powerful analytical for the discovery of metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell metabolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several challenges still exist regarding quality control, method standardization, data processing, and compound identification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate cancer research for their role in energy metabolism and transport and ß-oxidation of fatty acids. RESULTS: In the present study, an innovative analytical platform was developed for the straightforward albeit comprehensive characterization of acylcarnitines based on high-resolution mass spectrometry, Kendrick mass defect filtering, and confirmation by prediction of their retention time in reversed-phase chromatography. In particular, a customized data processing workflow was set up on Compound Discoverer software to enable the Kendrick mass defect filtering, which allowed filtering out more than 90 % of the initial features resulting from the processing of 25 tumoral and adjacent non-malignant prostate tissues collected from patients undergoing radical prostatectomy. Later, a partial least square-discriminant analysis model validated by repeated double cross-validation was built on the dataset of 74 annotated acylcarnitines, with classification rates higher than 93 % for both groups, and univariate statistical analysis helped elucidate the individual role of the annotated metabolites. SIGNIFICANCE: Hydroxylation of short- and medium-chain minor acylcarnitines appeared to be a significant variable in describing tissue differences, suggesting the hypothesis that the neoplastic growth is linked to oxidation phenomena on selected metabolites and reinforcing the need for effective methods for the annotation of minor metabolites.


Subject(s)
Carnitine , Prostatic Neoplasms , Male , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine/chemistry , Carnitine/analysis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Humans , Workflow , Metabolomics , Mass Spectrometry
19.
Front Immunol ; 15: 1370771, 2024.
Article in English | MEDLINE | ID: mdl-38707906

ABSTRACT

Introduction: Anti-PD-1/PD-L1 inhibitors therapy has become a promising treatment for hepatocellular carcinoma (HCC), while the therapeutic efficacy varies significantly among effects for individual patients are significant difference. Unfortunately, specific predictive biomarkers indicating the degree of benefit for patients and thus guiding the selection of suitable candidates for immune therapy remain elusive.no specific predictive biomarkers are available indicating the degree of benefit for patients and thus screening the preferred population suitable for the immune therapy. Methods: Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) considered is an important method for analyzing biological samples, since it has the advantages of high rapid, high sensitivity, and high specificity. Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) has emerged as a pivotal method for analyzing biological samples due to its inherent advantages of rapidity, sensitivity, and specificity. In this study, potential metabolite biomarkers that can predict the therapeutic effect of HCC patients receiving immune therapy were identified by UHPLC-MS. Results: A partial least-squares discriminant analysis (PLS-DA) model was established using 14 glycerophospholipid metabolites mentioned above, and good prediction parameters (R2 = 0.823, Q2 = 0.615, prediction accuracy = 0.880 and p < 0.001) were obtained. The relative abundance of glycerophospholipid metabolite ions is closely related to the survival benefit of HCC patients who received immune therapy. Discussion: This study reveals that glycerophospholipid metabolites play a crucial role in predicting the efficacy of immune therapy for HCC.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/immunology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/blood , Chromatography, High Pressure Liquid/methods , Male , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/blood , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/blood , Female , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mass Spectrometry/methods , Aged , Metabolomics/methods , Glycerophospholipids/blood
20.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719747

ABSTRACT

The differential expression of plasma membrane proteins is integrally analyzed for their diagnosis, prognosis, and therapeutic applications in diverse clinical manifestations. Necessarily, distinct membrane protein enrichment methods and mass spectrometry platforms are employed for their global and relative quantitation. First of its kind to explore, we compiled membrane-associated proteomes in human and mouse systems into a database named, Resource of Experimental Membrane-Enriched Mass spectrometry-derived Proteome (REMEMProt). It currently hosts 14,626 proteins (9,507 proteins in Homo sapiens; 5,119 proteins in Mus musculus) with information on their membrane-protein enrichment methods, experimental/physiological context of detection in cells or tissues, transmembrane domain analysis, and their current attribution as biomarkers. Based on these annotations and the transmembrane domain analysis in proteins or their binary/complex protein-protein interactors, REMEMProt facilitates the assessment of the plasma membrane localization potential of proteins through batch query. A cross-study enrichment analysis platform is enabled in REMEMProt for comparative analysis of proteomes using novel/modified membrane enrichment methods and evaluation of methods for targeted enrichment of membrane proteins. REMEMProt data are made freely accessible to explore and download at https://rememprot.ciods.in/.


Subject(s)
Biomarkers , Databases, Protein , Membrane Proteins , Proteome , Proteomics , Humans , Proteome/metabolism , Membrane Proteins/metabolism , Biomarkers/metabolism , Animals , Mice , Proteomics/methods , Cell Membrane/metabolism , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...