Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(9): 2004-2023, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39087350

ABSTRACT

BACKGROUND: Lymphatic valves are specialized structures in collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves. Conventionally, in many cell types, AKT is phosphorylated at Ser473 by the mTORC2 (mammalian target of rapamycin complex 2). However, mTORC2 has not yet been implicated in lymphatic valve formation. METHODS: In vivo and in vitro techniques were used to investigate the role of Rictor, a critical component of mTORC2, in lymphatic endothelium. RESULTS: Here, we showed that embryonic and postnatal lymphatic deletion of Rictor, a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human dermal lymphatic endothelial cells not only reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions but also abolished the upregulation of AKT activity and valve-forming genes in response to oscillatory shear stress. We further showed that the AKT target, FOXO1 (forkhead box protein O1), a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric lymphatic endothelial cells in vivo. Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in lymphatic vessels of the ear and mesentery. CONCLUSIONS: Our work identifies a novel role for RICTOR in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately enables the formation and maintenance of lymphatic valves.


Subject(s)
Carrier Proteins , Forkhead Box Protein O1 , Lymphangiogenesis , Lymphatic Vessels , Mechanistic Target of Rapamycin Complex 2 , Mechanotransduction, Cellular , Mice, Knockout , Proto-Oncogene Proteins c-akt , Rapamycin-Insensitive Companion of mTOR Protein , Signal Transduction , Animals , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Proto-Oncogene Proteins c-akt/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Lymphatic Vessels/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Humans , Carrier Proteins/metabolism , Carrier Proteins/genetics , Endothelial Cells/metabolism , Cells, Cultured , TOR Serine-Threonine Kinases/metabolism , Phosphorylation , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Mice, Inbred C57BL , RNA Interference , Transfection
2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928151

ABSTRACT

Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.


Subject(s)
Heart Failure , Mechanistic Target of Rapamycin Complex 2 , Mice, Knockout , Protein Phosphatase 1 , Valosin Containing Protein , Animals , Heart Failure/metabolism , Heart Failure/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Mice , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Disease Models, Animal
3.
Commun Biol ; 7(1): 722, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862688

ABSTRACT

The target of rapamycin complex 2 (TORC2) signaling is associated with plasma membrane (PM) integrity. In Saccharomyces cerevisiae, TORC2-Ypk1/2 signaling controls sphingolipid biosynthesis, and Ypk1/2 phosphorylation by TORC2 under PM stress conditions is increased in a Slm1/2-dependent manner, under which Slm1 is known to be released from an eisosome, a furrow-like invagination PM structure. However, it remains unsolved how the activation machinery of TORC2-Ypk1/2 signaling is regulated. Here we show that edelfosine, a synthetic lysophospholipid analog, inhibits the activation of TORC2-Ypk1/2 signaling, and the cell wall integrity (CWI) pathway is involved in this inhibitory effect. The activation of CWI pathway blocked the eisosome disassembly promoted by PM stress and the release of Slm1 from eisosomes. Constitutive activation of TORC2-Ypk1/2 signaling exhibited increased sensitivity to cell wall stress. We propose that the CWI pathway negatively regulates the TORC2-Ypk1/2 signaling, which is involved in the regulatory mechanism to ensure the proper stress response to cell wall damage.


Subject(s)
Cell Wall , Mechanistic Target of Rapamycin Complex 2 , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Cell Wall/metabolism , Cell Wall/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Phosphorylation , Protein Kinases , Protein Serine-Threonine Kinases
4.
Nat Commun ; 15(1): 5144, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886379

ABSTRACT

The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.


Subject(s)
Kidney Tubules, Proximal , Mechanistic Target of Rapamycin Complex 2 , Mice, Knockout , Potassium Channels, Inwardly Rectifying , Potassium , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Proto-Oncogene Proteins c-akt/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , TOR Serine-Threonine Kinases/metabolism , Potassium/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Phosphorylation , Male , Chlorides/metabolism , Mice, Inbred C57BL
5.
Biochem Biophys Res Commun ; 717: 150045, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718572

ABSTRACT

The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.


Subject(s)
Down-Regulation , Mechanistic Target of Rapamycin Complex 2 , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ubiquitin-Protein Ligases , Ubiquitin , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
6.
J Biol Chem ; 300(7): 107423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815864

ABSTRACT

Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.


Subject(s)
Dictyostelium , Mechanistic Target of Rapamycin Complex 2 , Signal Transduction , ras Proteins , Dictyostelium/metabolism , Dictyostelium/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , ras Proteins/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Cyclic AMP/metabolism
7.
Mol Cancer ; 23(1): 105, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755661

ABSTRACT

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Subject(s)
Drug Resistance, Neoplasm , Mechanistic Target of Rapamycin Complex 2 , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Rapamycin-Insensitive Companion of mTOR Protein , Animals , Humans , Mice , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Melanoma/genetics , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteomics/methods , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Xenograft Model Antitumor Assays , MAP Kinase Kinase Kinases/antagonists & inhibitors
8.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Signal Transduction
9.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481314

ABSTRACT

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/pathology , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , DNA Methylation , Phenotype , Brain Neoplasms/pathology , DNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Protein-Tyrosine Kinases/genetics
10.
Dev Biol ; 509: 59-69, 2024 May.
Article in English | MEDLINE | ID: mdl-38373693

ABSTRACT

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Signal Transduction/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation/genetics , Body Size/genetics
11.
J Biol Chem ; 300(3): 105681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272224

ABSTRACT

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.


Subject(s)
Proto-Oncogene Proteins c-akt , Sirolimus , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Humans , Cell Line , Ribosomes/metabolism , Protein Kinase Inhibitors/pharmacology
12.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38186315

ABSTRACT

Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re­sensitization of therapy­resistant cancers to be made possible.


Subject(s)
Bile Duct Neoplasms , Colorectal Neoplasms , Gastrointestinal Neoplasms , Pancreatic Neoplasms , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/genetics , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Bile Ducts, Intrahepatic , Mechanistic Target of Rapamycin Complex 2/genetics , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL