Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675613

ABSTRACT

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Saponins , Humans , Acne Vulgaris/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/isolation & purification , Melanthiaceae/chemistry , Liliaceae/chemistry
2.
Phytochemistry ; 207: 113577, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587887

ABSTRACT

Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 µM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.


Subject(s)
Antineoplastic Agents , Liliaceae , Melanthiaceae , Saponins , Rhizome/chemistry , Saponins/pharmacology , Liliaceae/chemistry , Melanthiaceae/chemistry
3.
Bioorg Chem ; 130: 106268, 2023 01.
Article in English | MEDLINE | ID: mdl-36399863

ABSTRACT

The phytoconstituents of the fraction with hemostatic activity of the 70% aqueous ethanol extract of Ypsilandra thibetica Franch. were investigated. As a result, fourteen previously unreported spirostanol saponins, ypsilandrosides Z1-Z14, and nine known analogues were isolated and characterized by MS, NMR, and chemical methods. Among them, ypsilandrosides Z1-Z4 (1-4) have a rare 12-O-ß-d-glucopyranosyl group, while ypsilandrosides Z5-Z8 (5-8) possess a rare double bond between C-4 and C-5, and a hydroxyl or carbonyl located at the C-6. All isolates were further tested for their hemostatic activity. The results suggested that five spirostanol tetraglycosides show favorable inducing platelet aggregation activities. Among them, ypsilandroside G (16) displayed significant inducing platelet aggregation activity with an EC50 value of 57.17 µM. Furthermore, the preliminary structure-activity relationship of these spirostanol glycosides' hemostatic activity was discussed.


Subject(s)
Glycosides , Hemostatics , Melanthiaceae , Spirostans , Glycosides/pharmacology , Glycosides/chemistry , Hemostatics/pharmacology , Magnetic Resonance Spectroscopy , Melanthiaceae/chemistry , Spirostans/chemistry
4.
Physiol Plant ; 174(6): e13810, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36326141

ABSTRACT

Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Transcriptome/genetics , Gene Expression Profiling , Liliaceae/genetics , Liliaceae/chemistry , Plant Leaves , Saponins/genetics , Saponins/analysis , Saponins/chemistry , Melanthiaceae/genetics , Melanthiaceae/chemistry
5.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235164

ABSTRACT

An effective method for separating and purifying critical saponins (polyphyllin II and polyphyllin VII) from a Paris polyphylla var. yunnanensis extract was developed in this study which was environmentally friendly and economical. Static adsorption kinetics, thermodynamics, and the dynamic adsorption-desorption of macroporous resins were investigated, and then the conditions of purification and separation were optimized by fitting with an adsorption thermodynamics equation and a kinetic equation. Effective NKA-9 resin from seven macroporous resins was screened out to separate and purify the two saponins. The static adsorption and dynamic adsorption were chemical and physical adsorption dual-processes on the NKA-9 resin. Under the optimum parameters, the contents of polyphyllin II and polyphyllin VII in the product were 17.3-fold and 28.6-fold those in plant extracts, respectively. The total yields of the two saponins were 93.16%. This research thus provides a theoretical foundation for the large-scale industrial production of the natural drugs polyphyllin II and polyphyllin VII.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Adsorption , Liliaceae/chemistry , Melanthiaceae/chemistry , Plant Extracts , Resins, Plant , Saponins/chemistry
6.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4863-4876, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164896

ABSTRACT

Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.


Subject(s)
Diosgenin , Liliaceae , Melanthiaceae , Saponins , Diosgenin/analysis , Liliaceae/chemistry , Melanthiaceae/chemistry , Rhizome/chemistry , Saponins/analysis
7.
Molecules ; 26(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770773

ABSTRACT

The genus Paris is an excellent source of steroidal saponins that exhibit various bioactivities. Paris mairei is a unique species and has been widely used as folk medicine in Southwest China for a long time. With the help of chemical methods and modern spectra analysis, five new steroidal saponins, pamaiosides A-E (1-5), along with five known steroidal saponins 6-10, were isolated from the rhizomes of Paris mairei. The cytotoxicity of all the new saponins was evaluated against human pancreatic adenocarcinoma PANC-1 and BxPC3 cell lines.


Subject(s)
Melanthiaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rhizome/chemistry , Saponins/chemistry , Saponins/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Chemical Fractionation , Humans , Inhibitory Concentration 50 , Molecular Structure , Phytosterols/chemistry , Phytosterols/isolation & purification , Phytosterols/pharmacology , Plant Extracts/pharmacology , Saponins/pharmacology , Spectrum Analysis
8.
Phytomedicine ; 85: 153542, 2021 May.
Article in English | MEDLINE | ID: mdl-33799225

ABSTRACT

BACKGROUND: Paridis Rhizoma (PR) is a famous traditional herbal medicine. Apart from two officially recorded species, viz. Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. (PPY) and P. polyphylla Smith var. chinensis (Franch.) Hara (PPC), there are still many other species used as folk medicine. It is necessary to understand the metabolic differences among Paris species. PURPOSE: To establish a strategy that can discover species-specific steroidal saponin markers to distinguish closely-related Paris herbs for quality and safety control. METHODS: A new strategy of molecular-networking-guided discovery of species-specific markers was proposed. Firstly, the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was applied to obtain the MS and MS/MS data of all samples. Then, molecular networking (MN) was created using MS/MS data to prescreen the steroidal saponins for subsequent analysis. Next, the principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) models were established to discover potential markers. Finally, the verification, identification and distribution of chemical markers were performed. RESULTS: A total of 126 steroidal saponins were screened out from five species using MN. Five species were classified successfully by OPLS-DA model, and 18 species-specific markers were discovered combining the variable importance in the projection (VIP) value, P value (one-way ANOVA) and their relative abundance. These markers could predict the species of Paris herbs correctly. CONCLUSION: These results revealed that this new strategy could be an efficient way for chemical discrimination of medicinal herbs with close genetic relationship.


Subject(s)
Melanthiaceae/classification , Plants, Medicinal/classification , Saponins/analysis , Chromatography, High Pressure Liquid , Discriminant Analysis , Least-Squares Analysis , Melanthiaceae/chemistry , Plants, Medicinal/chemistry , Rhizome/chemistry , Saponins/chemistry , Species Specificity , Tandem Mass Spectrometry
9.
J Ethnopharmacol ; 273: 114038, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33746004

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla var yunnanensis as a traditional Chinese medicine has been used in the treatment of liver disease for thousands of years. Rhizoma Paridis saponins (RPS) were the main active ingredients in Paris polyphylla with an excellent antitumor effect. However, metabolic and distribution of RPS has not been known. AIM OF THE STUDY: The objective of this study was to research metabolic and distribution of RPS. MATERIALS AND METHODS: In this study, the separation and simultaneous determination of RPS in rat plasma and tissues were developed and validated by LC-MS/MS. The permeability and recovery of RPS were tested by Caco-2. S9 assay suggested the metabolic mode of RPS in rats. RESULTS: After oral administration of RPS, the metabolic compound like diosgenin was detected in different tissues although there was none in RPS. The concentration of PI, PII, PVI, PVII, PH and gracillin in the spleen was the highest among these organs. The content of diosgenin were the highest in lung and brain. Caco-2 test indicated that PI, PII, PVI and PVII were low permeability and low recovery. Efflux ratio indicated that PVI should be a potential P-gp substrate. Potential P-gp substrate may be PVI. S9 assay suggested that RPS possess slow metabolic and moderate metabolic compounds. CONCLUSIONS: Integrated LC-MS/MS analysis of serum samples, together with Caco-2 and S9 assays provided a theoretical basis for the application of RPS in the future.


Subject(s)
Melanthiaceae/chemistry , Plant Extracts/pharmacokinetics , Saponins/pharmacokinetics , Administration, Oral , Animals , Caco-2 Cells , Humans , Molecular Structure , Plant Extracts/chemistry , Rats , Saponins/chemistry
10.
J Ethnopharmacol ; 270: 113842, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33460752

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY: Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS: Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS: EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7ß-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 ß-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 µg/µl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION: DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Diosgenin/pharmacology , Melanthiaceae/chemistry , Plant Extracts/pharmacology , Rhizome/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dextrans/toxicity , Diosgenin/chemistry , Diosgenin/isolation & purification , Diosgenin/therapeutic use , Edema/chemically induced , Edema/drug therapy , Humans , India , Male , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Wistar , Survivin/genetics , Tumor Stem Cell Assay , bcl-2-Associated X Protein/genetics
11.
Fitoterapia ; 145: 104629, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32428563

ABSTRACT

Based on a method combining the LC-MS/MS molecular networking strategy with the conventional means of phytochemical research, the chemical constituents and the availability of Paris tengchongensis, a new species found in 2017 from Yunnan Province, were investigated for the first time. The molecular networking showed that this species contained the characteristic steroidal glycosides of the genus Paris by comparison of those of Paris polyphylla var. yunnanensis. Furthermore, the detailed investigation on the 80% EtOH extract of its rhizomes resulted to the isolation of twenty steroidal glycosides including three new spirostane-type saponins, named paristengosides A-C (1-3). Their structures were confirmed by spectroscopic analyses (HRMS and NMR) and chemical methods. The new isolates were evaluated for their cytotoxicities against two human cancer cell lines (HEL and MDA-MB-231), anti-inflammatory effects on a lipopolysaccharide (LPS)-stimulated NO production model in RAW264.7 macrophages, anti-AChE, and antimicrobial activities. The results from the molecular networking and the investigation on the chemical constituents suggested that P. tengchongensis can be used as a potential resource of Rhizoma Paridis.


Subject(s)
Melanthiaceae/chemistry , Rhizome/chemistry , Saponins/pharmacology , Steroids/pharmacology , Animals , Cell Line, Tumor , China , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Chromatography, Liquid , Humans , Mice , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Propionibacterium acnes , RAW 264.7 Cells , Saponins/isolation & purification , Steroids/isolation & purification , Tandem Mass Spectrometry
12.
Bioorg Chem ; 99: 103788, 2020 06.
Article in English | MEDLINE | ID: mdl-32244126

ABSTRACT

The first phytochemical investigation on the steroidal saponins from the stems and leaves of Paris polyohylla var. chinensis led to the discovery and characterization of six new spirostanol saponins, named polyphyllosides A-F (1-6), along with four known analogues (7-10). Their structures were unambiguously established via extensive spectroscopic data and chemical methods. Both polyphyllosides A and B had a rare aglycone with a C-4/C-5 double bond and a C-6 hydroxy group moiety, whereas polyphylloside C represents the first saponin with a unique aglycone sharing a C-6/C-7 double bond and a C-5 hydroxy group unit. All these saponins were evaluated for their cytotoxic activities against five selected human cancer cell lines. Among these, the known saponins 7 and 10 exhibited significant cytotoxic effects on HeLa cells with IC50 values of 4.16 and 4.45 µM, respectively. The structure-activity relationships (SAR) of these isolates were also discussed. Flow cytometric analysis indicated that 7 could induce MDA-MB-231 cell death in a concentration-dependent manner. Saponin 7 was proved to affect the cell cycle distribution and induced G2/M phase arrest in MDA-MB-231 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Melanthiaceae/chemistry , Saponins/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Plant Leaves/chemistry , Plant Stems/chemistry , Saponins/chemistry , Saponins/isolation & purification , Stereoisomerism , Structure-Activity Relationship
13.
Biosci Trends ; 14(2): 123-133, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32173672

ABSTRACT

Glioblastoma is one of the most difficult cancers to treat with a 5-year overall survival rate less than 5%. Temozolomide (TMZ) is an effective drug for prolonging the overall survival time of patients, while drug-resistance is an important clinical problem at present. Pennogenin-3-α-L-rhamnopyranosyl-(1→4)-[α-Lrhamno-pyranosyl-(1→2)]- ß-D-glucopyranoside (N45), a steroidal saponin, was isolated from the rhizomes of Paris vietnamensis (Takht.), which is used as a Traditional Chinese Medicine and has been reported to possess preclinical anticancer efficacy in various cancer types. However, the mechanism of the inhibition of N45 on glioblastoma cells and its possible application in the treatment of chemotherapy-resistant glioblastoma cells are still unknown. In this study, we use cellular methodological experiments including cell counting kit-8 (CCK-8) assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay, flow cytometry assay, transmission electron microscopy (TEM) and Western blot. The results show that N45 significantly suppresses the proliferation of glioblastoma cells and TMZ-resistant glioblastoma cells (U87R) by inducing mitochondrial apoptosis through reactive oxygen species (ROS)/phosphoinositide 3-kinase (PI3K)/Akt signal pathway, and the N-acetyl-L-cysteine (NAC) combined with N45 effectively reduced N45-mediated apoptosis and reversed the inhibition of PI3K/Akt signal pathway. In addition, N45 decreased the drug-resistance by down-regulation of nuclear factor kappa-B p65 (NF-κB p65) to attenuate O6-methylguanine-DNA methyltransferase (MGMT) in TMZ-resistant glioblastoma cells (U87R). Our findings proved that N45 might be a potential therapeutic agent against glioblastoma and TMZ-resistant glioblastoma, promising to be a potential agent to reduce drug resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Melanthiaceae/chemistry , Saponins/pharmacology , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Glioblastoma/pathology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Rhizome/chemistry , Saponins/therapeutic use , Signal Transduction/drug effects , Temozolomide/pharmacology , Temozolomide/therapeutic use
14.
Rapid Commun Mass Spectrom ; 34(11): e8760, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32065690

ABSTRACT

RATIONALE: Paris polyphylla var. yunnanensis (Franch) Hand Mazz (PPY) is a traditional Chinese medicine with antitumor, antibacterial, hemostatic, and anthelmintic activities. Identification of the chemical composition in PPY is helpful to discover its active ingredients and can be used to establish its quality control protocols. METHODS: The composition of PPY was identified using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS/MS) coupled with a molecular networking strategy. First, the UHPLC/QTOF-MS/MS approach was optimized for chemical compound profiling. Then, the MS data were processed using PeakView™ combined with an in-house database to quickly characterize the secondary metabolites. Finally, molecular networking excavated new molecular weights to discover unknown or trace natural products based on the characteristics of each cluster. RESULTS: A total of 222 compounds, including 77 isospirostanols, 2 spirostanols, 19 furostanols, 10 pseudospirostanols, 6 cholesterols, 10 C21 steroids, 5 insect metamorphosis hormones, 3 plant sterols, 6 five-ring triterpenoids, 4 flavonoids, 8 fatty acids, 2 phenylpropanoids, and 8 other compounds, were characterized in PPY by comparing their main fragmentation characteristics and pathways with the literature data, and 62 of them, 54 steroidals and 8 phenylpropanoids, were discovered or tentatively identified for the first time. CONCLUSIONS: This study extended the application of a molecular networking strategy to traditional herbal medicines and developed a molecular networking based screening approach with a significant increase in efficiency for the discovery and identification of trace novel natural products.


Subject(s)
Drugs, Chinese Herbal , Melanthiaceae/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Phytosterols/analysis , Phytosterols/chemistry , Saponins/analysis , Saponins/chemistry , Tandem Mass Spectrometry/methods , Triterpenes/analysis , Triterpenes/chemistry
15.
Biomed Pharmacother ; 121: 109674, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31810132

ABSTRACT

Paris forrestii is a unique plant found in Tibet and Yunnan, China, and total saponins from Paris forrestii (PCT3) contain anticancer steroid glycosides. RNA expression plays an important role in various biological processes. However, the cytotoxicity effects and mechanisms of PCT3 in relation to prostate cancer (PCa) cells have not yet been reported. In the present study, the antitumor activity of PCT3 on PCa cells was evaluated. PCT3 displayed potent anticancer effects toward PCa cells that were similar to the effects of pure saponins from P. forrestii, but PCT3 had less activity in suppressing the prostate epithelial cell line RWPE. Furthermore, using CCK-8 assays, Edu incorporation, colony formation assays, Annexin V/PI assays and western blotting, we found that treatment with 4 µg/mL PCT3 significantly decreased proliferation and induced apoptosis in PCa cells. Using wound healing and transwell assays, we demonstrated that treatment with 2 µg/mL PCT3 significantly suppressed the migration and invasion of PCa cells. To explore the molecular mechanisms behind the anticancer effect of PCT3, PCT3 (5 µg/mL) treated and untreated PCa cells (LNCAP and PC3 cell lines) were analyzed using transcriptomics. Taking the commonly differentially expressed genes (log2FC > 0.585) in both cell lines, 41 mRNAs and 5 lncRNAs were eventually identified. Bioinformatics analysis (GO and KEGG analyses) revealed that some genes involved in classical cell proliferation and apoptosis pathways were aberrantly expressed after PCT3 treatment of PCa cells. By using q-PCR, the expression levels of NEAT1, MALAT1, TIPIN, LYAR, IQGAP3, GINS2, and ZGRF1 were validated as consistent with microarray data, suggesting that these genes might participate in the PCT3 anticancer effect. The present study suggests that PCT3 exhibits an anticancer effect on PCa and reveals some crucial lncRNAs and mRNAs that are involved in the anticancer mechanisms of PCT3 on Pca.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Melanthiaceae/chemistry , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Saponins/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Humans , Inhibitory Concentration 50 , Male , Neoplasm Invasiveness , Prostatic Neoplasms/drug therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Saponins/chemistry , Saponins/therapeutic use
16.
Biomed Pharmacother ; 121: 109558, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31766101

ABSTRACT

Rhizoma Paridis hepatotoxicity is a risk factor limiting its extensive use in clinic, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. The adult zebrafish were exposed to Rhizoma Paridis at a sub-lethal concentration. The alterations in protein expression profiles and metabolite levels in the adult zebrafish liver, a popular model for toxicity assessment, exposed to the Rhizoma Paridis were observed. The result showed that Rhizoma Paridis exposure treatment caused an obvious toxic effect on the zebrafish liver, resulting in a significant change of the liver organization structure and various biochemical parameters. The hepatotoxicity of adult zebrafish liver induced by Rhizoma Paridis was mainly associated with lipid metabolism and energy metabolism disorder. Furthermore, oxidative stress injury, inflammation, and endoplasmic reticulum stress might also be involved in the hepatotoxicity. Our study facilitated the understanding of molecular signatures of toxic effects of Rhizoma Paridis causing liver injury to move away from the risk assessment based on in vivo animal experiments.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Melanthiaceae/chemistry , Metabolomics , Proteomics , Animals , Chemical and Drug Induced Liver Injury/physiopathology , Energy Metabolism/drug effects , Lipid Metabolism/drug effects , Medicine, Chinese Traditional , Oxidative Stress/drug effects , Rhizome , Zebrafish
17.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3203-3212, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602873

ABSTRACT

In order to provide guidance for the protection and utilization of resources,quality control and breeding of improved varieties,we compared the main phenotypic characters and quality of wild and transplanted Paris polyphylla var. yunnanensis collected from different producing areas. Seven phenotypic characters of 33 samples of P. polyphylla var. yunnanensis collected from Yunnan,Guizhou and Sichuan were determined by conventional methods,and the principal component analysis and cluster analysis were used to analyze the diversity of the samples. The parissaponin( polyphyllin Ⅰ,Ⅱ,Ⅵ,Ⅶ) content of the samples were detected by HPLC,and analyzed by cluster analysis. Correlation analysis of the phenotypic characters and the parissaponin content was performed. There were significant differences in seven phenotypic characters between wild and transplanted samples of P. polyphylla var. yunnanensis from different habitats,with high phenotypic diversity and abundant genetic variation. The results of principal component analysis showed that leaf shape index was the main factor of morphological variation of P. polyphylla var. yunnanensis. Cluster analysis showed that the phenotypic characters of wild and transplanted P. polyphylla var. yunnanensis could not be completely separated. The content of saponins in wild and transplanted samples from different habitats was quite different. Saponins content of 93. 94% samples met the criterion of Chinese Pharmacopoeia 2015 edition,and the overall quality was relatively steady. The results of independent sample t-test showed that there was no significant difference of all the active ingredient between wild and transplanted samples,and it couldn't be used to distinguish between wild and transplanted samples. It is the same as the results of cluster analysis. The results of correlation analysis showed that the phenotypic traits of P. polyphylla var. yunnanensis were correlated with its medicine quality,and the total content of saponins was positively correlated with leaf length and leaf shape index( r = 0. 389,0. 441; P<0. 05). Yunnan,Guizhou and Sichuan are suitable for the growth of P. polyphylla var. yunnanensis. And the transplaned P. polyphylla var. yunnanensis can be used as the same as the wild ones completely. The results provide reference for the protection and selective breeding of P. polyphylla var. yunnanensis.


Subject(s)
Melanthiaceae/chemistry , Phytochemicals/analysis , Saponins/analysis , China , Chromatography, High Pressure Liquid , Ecosystem , Plant Breeding , Plant Leaves , Plants, Medicinal/chemistry
18.
Nat Commun ; 10(1): 3206, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324795

ABSTRACT

Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot medicinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum-graecum), an eudicot culinary herb plant commonly used as a galactagogue. Both plants have independently recruited pairs of cytochromes P450 that catalyze oxidative 5,6-spiroketalization of cholesterol to produce diosgenin, with evolutionary progenitors traced to conserved phytohormone metabolism. This study paves the way for engineering the production of diosgenin and derived analogs in heterologous hosts.


Subject(s)
Biosynthetic Pathways , Cytochrome P-450 Enzyme System/metabolism , Diosgenin/metabolism , Furans/metabolism , Lipogenesis/physiology , Spiro Compounds/metabolism , Anti-Bacterial Agents , Cholesterol/metabolism , Cytochromes/metabolism , Galactogogues , Gene Expression Profiling , Ivermectin/analogs & derivatives , Melanthiaceae/chemistry , Metabolomics , Plant Growth Regulators/metabolism , Trigonella
19.
Molecules ; 24(14)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337084

ABSTRACT

Origin traceability is important for controlling the effect of Chinese medicinal materials and Chinese patent medicines. Paris polyphylla var. yunnanensis is widely distributed and well-known all over the world. In our study, two spectroscopic techniques (Fourier transform mid-infrared (FT-MIR) and near-infrared (NIR)) were applied for the geographical origin traceability of 196 wild P. yunnanensis samples combined with low-, mid-, and high-level data fusion strategies. Partial least squares discriminant analysis (PLS-DA) and random forest (RF) were used to establish classification models. Feature variables extraction (principal component analysis-PCA) and important variables selection models (recursive feature elimination and Boruta) were applied for geographical origin traceability, while the classification ability of models with the former model is better than with the latter. FT-MIR spectra are considered to contribute more than NIR spectra. Besides, the result of high-level data fusion based on principal components (PCs) feature variables extraction is satisfactory with an accuracy of 100%. Hence, data fusion of FT-MIR and NIR signals can effectively identify the geographical origin of wild P. yunnanensis.


Subject(s)
Melanthiaceae/chemistry , Melanthiaceae/classification , Spectroscopy, Fourier Transform Infrared , Databases, Factual , Models, Theoretical , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods
20.
Fitoterapia ; 135: 52-63, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30999023

ABSTRACT

Steroidal saponins, one of the most diverse groups of plant-derived natural products, elicit biological and pharmacological activities; however, the genes involved in their biosynthesis and the corresponding biosynthetic pathway in monocotyledon plants remain unclear. This study aimed to identify genes involved in the biosynthesis of steroidal saponins by performing a comparative analysis among transcriptomes of Paris polyphylla var. chinensis (PPC), Ypsilandra thibetica (YT), and Polygonatum kingianum (PK). De novo transcriptome assemblies generated 57,537, 140,420, and 151,773 unigenes from PPC, YT, and PK, respectively, of which 56.54, 47.81, and 44.30% were successfully annotated, respectively. Among the transcriptomes for PPC, YT, and PK, we identified 194, 169, and 131; 17, 14, and 26; and, 80, 122, and 113 unigenes corresponding to terpenoid backbone biosynthesis; sesquiterpenoid and triterpenoid biosynthesis; and, steroid biosynthesis pathways, respectively. These genes are putatively involved in the biosynthesis of cholesterol that is the primary precursor of steroidal saponins. Phylogenetic analyses indicated that lanosterol synthase may be exclusive to dicotyledon plant species, and the cytochrome P450 unigenes were closely related to clusters CYP90B1 and CYP734A1, which are UDP-glycosyltransferases unigenes homologous with the UGT73 family. Thus, unigenes of ß-glucosidase may be candidate genes for catalysis of later period modifications of the steroidal saponin skeleton. Our data provide evidence to support the hypothesis that monocotyledons biosynthesize steroidal saponins from cholesterol via the cycloartenol pathway.


Subject(s)
Liliaceae/genetics , Melanthiaceae/genetics , Phytosterols/biosynthesis , Polygonatum/genetics , Saponins/biosynthesis , Transcriptome , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling , Liliaceae/chemistry , Liliaceae/metabolism , Melanthiaceae/chemistry , Melanthiaceae/metabolism , Molecular Structure , Phylogeny , Phytosterols/chemistry , Phytosterols/genetics , Polygonatum/chemistry , Polygonatum/metabolism , Saponins/chemistry , Saponins/genetics , Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...