Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 556, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831327

ABSTRACT

BACKGROUND: Melilotus, a member of the Fabaceae family, is a pivotal forage crop that is extensively cultivated in livestock regions globally due to its notable productivity and ability to withstand abiotic stress. However, the genetic attributes of the chloroplast genome and the evolutionary connections among different Melilotus species remain unresolved. RESULTS: In this study, we compiled the chloroplast genomes of 18 Melilotus species and performed a comprehensive comparative analysis. Through the examination of protein-coding genes, we successfully established a robust phylogenetic tree for these species. This conclusion is further supported by the phylogeny derived from single-nucleotide polymorphisms (SNPs) across the entire chloroplast genome. Notably, our findings revealed that M. infestus, M. siculus, M. sulcatus, and M. speciosus formed a distinct subgroup within the phylogenetic tree. Additionally, the chloroplast genomes of these four species exhibit two shared inversions. Moreover, inverted repeats were observed to have reemerged in six species within the IRLC. The distribution patterns of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) within protein-coding genes indicated that ycf1 and ycf2 accumulated nonconservative alterations during evolutionary development. Furthermore, an examination of the evolutionary rate of protein-coding genes revealed that rps18, rps7, and rpl16 underwent positive selection specifically in Melilotus. CONCLUSIONS: We present a comparative analysis of the complete chloroplast genomes of Melilotus species. This study represents the most thorough and detailed exploration of the evolution and variability within the genus Melilotus to date. Our study provides valuable chloroplast genomic information for improving phylogenetic reconstructions and making biogeographic inferences about Melilotus and other Papilionoideae species.


Subject(s)
Genome, Chloroplast , Melilotus , Phylogeny , Polymorphism, Single Nucleotide , Melilotus/genetics , Melilotus/classification , Genetic Variation , Evolution, Molecular , Genomics/methods
2.
Sci Rep ; 9(1): 13017, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506537

ABSTRACT

Melilotus is an important forage legume, with high values as feed and medicine, and widely used as green manure, honey plant, and wildlife habitat enhancer. The genetic diversity, structure and subdivision of this forage crop remain unclear, and plant genetic resources are the basis of biodiversity and ecosystem diversity and have attracted increasing attention. In this study, the whole collection of 573 accessions from the National Gene Bank of Forage Germplasm (NGBFG, China) and 48 accessions from the National Plant Germplasm System (NPGS, USA) in genus Melilotus were measured with respect to five seed characters: seed length, width, width-to-length ratio, circumference and 100-seed weight. Shannon' genetic diversity index (H') and phenotypic differentiation (Pst) were calculated to better describe the genetic diversity. The ITS and matK sequences were used to construct phylogenetic trees and study the genetic relationships within genus Melilotu. Based on seed morphology and molecular marker data, we preliminarily developed core collections and the sampling rates of M. albus and M. officinalis were determined to be 15% and 25%, respectively. The results obtained here provide preliminary sorting and supplemental information for the Melilotus collections in NGBFG, China, and establish a reference for further genetic breeding and other related projects.


Subject(s)
Ecosystem , Genetic Markers , Genetic Variation , Melilotus/genetics , Phylogeny , Seed Bank/statistics & numerical data , Seeds/genetics , Alleles , China , Melilotus/classification
3.
BMC Genomics ; 20(Suppl 5): 425, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31167652

ABSTRACT

BACKGROUND: A popular strategy to study alternative splicing in non-model organisms starts from sequencing the entire transcriptome, then assembling the reads by using de novo transcriptome assembly algorithms to obtain predicted transcripts. A similarity search algorithm is then applied to a related organism to infer possible function of these predicted transcripts. While some of these predictions may be inaccurate and transcripts with low coverage are often missed, we observe that it is possible to obtain a more complete set of transcripts to facilitate possible functional assignments by starting the search from the intermediate de Bruijn graph that contains all branching possibilities. RESULTS: We develop an algorithm to extract similar transcripts in a related organism by starting the search from the de Bruijn graph that represents the transcriptome instead of from predicted transcripts. We show that our algorithm is able to recover more similar transcripts than existing algorithms, with large improvements in obtaining longer transcripts and a finer resolution of isoforms. We apply our algorithm to study salt and waterlogging tolerance in two Melilotus species by constructing new RNA-Seq libraries. CONCLUSIONS: We have developed an algorithm to identify paths in the de Bruijn graph that correspond to similar transcripts in a related organism directly. Our strategy bypasses the transcript prediction step in RNA-Seq data and makes use of support from evolutionary information.


Subject(s)
Algorithms , Computational Biology/methods , Computer Graphics , High-Throughput Nucleotide Sequencing/methods , Melilotus/genetics , Plant Proteins/genetics , Salt Tolerance , Alternative Splicing , Gene Expression Regulation, Plant , Melilotus/classification , Sequence Analysis, RNA , Transcriptome , Water/metabolism
4.
Molecules ; 23(4)2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29614822

ABSTRACT

Melilotus albus and Melilotus officinalis are widely used in forage production and herbal medicine due to the biological activity of their coumarins, which have many biological and pharmacological activities, including anti-HIV and anti-tumor effects. To comprehensively evaluate M. albus and M. officinalis coumarin content (Cou), morphological variation, and molecular phylogeny, we examined the Cou, five morphological traits and the molecular characterization based on the trnL-F spacer and internal transcribed spacer (ITS) regions of 93 accessions. Significant (p < 0.05) variation was observed in the Cou and all five morphological traits in both species. Analysis of population differentiation (Pst) of the phenotypic traits showed that powdery mildew resistance (PMR) had the greatest Pst, meaning that this trait demonstrated the largest genetic differentiation among the accessions. The Pst values of dry matter yield (DMY) and Cou were relatively high. Biplot analysis identified accessions with higher DMY and higher and lower Cou. Analysis of molecular sequence variation identified seven haplotypes of the trnL-F spacer and 13 haplotypes of the ITS region. Based on haplotype and sequence analyses, the genetic variation of M. officinalis was higher than that of M. albus. Additionally, ITS sequence analysis showed that the variation among accessions was larger than that among species across three geographical areas: Asia, Europe, and North America. Similarly, variation among accessions for both the trnL-F and ITS sequences were larger than the differences between the geographical areas. Our results indicate that there has been considerable gene flow between the two Melilotus species. Our characterization of Cou and the morphological and genetic variations of these two Melilotus species may provide useful insights into germplasm improvement to enhance DMY and Cou.


Subject(s)
Coumarins/metabolism , Melilotus/classification , Melilotus/metabolism , DNA, Chloroplast/genetics , Genetic Variation/genetics , Haplotypes/genetics , Melilotus/genetics , Phylogeny , Sequence Analysis, DNA
5.
PLoS One ; 12(9): e0182693, 2017.
Article in English | MEDLINE | ID: mdl-28910286

ABSTRACT

Melilotus, an annual or biennial herb, belongs to the tribe Trifolieae (Leguminosae) and consists of 19 species. As an important green manure crop, diverse Melilotus species have different values as feed and medicine. To identify different Melilotus species, we examined the efficiency of five candidate regions as barcodes, including the internal transcribed spacer (ITS) and two chloroplast loci, rbcL and matK, and two non-coding loci, trnH-psbA and trnL-F. In total, 198 individuals from 98 accessions representing 18 Melilotus species were sequenced for these five potential barcodes. Based on inter-specific divergence, we analysed sequences and confirmed that each candidate barcode was able to identify some of the 18 species. The resolution of a single barcode and its combinations ranged from 33.33% to 88.89%. Analysis of pairwise distances showed that matK+rbcL+trnL-F+trnH-psbA+ITS (MRTPI) had the greatest value and rbcL the least. Barcode gap values and similarity value analyses confirmed these trends. The results indicated that an ITS region, successfully identifying 13 of 18 species, was the most appropriate single barcode and that the combination of all five potential barcodes identified 16 of the 18 species. We conclude that MRTPI is the most effective tool for Melilotus species identification. Taking full advantage of the barcode system, a clear taxonomic relationship can be applied to identify Melilotus species and enhance their practical production.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Melilotus/classification , Chloroplasts/genetics , DNA, Chloroplast/genetics , DNA, Intergenic , Genetic Loci , Genetic Variation , Melilotus/genetics , Phylogeny , Sequence Analysis, DNA/methods
6.
Plant Signal Behav ; 11(7): e1197467, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27302610

ABSTRACT

Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of C. aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of 4 species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae.


Subject(s)
Fabaceae/classification , Fabaceae/metabolism , Indoleacetic Acids/metabolism , Phylogeny , Evolution, Molecular , Fabaceae/genetics , Medicago/classification , Medicago/metabolism , Melilotus/classification , Melilotus/metabolism , Trifolium/classification , Trifolium/metabolism
7.
PLoS One ; 10(7): e0132596, 2015.
Article in English | MEDLINE | ID: mdl-26167689

ABSTRACT

Melilotus comprises 19 species, while the phylogenetic relationships between species remain unclear. In the present work, three chloroplast genes, rbcL, matK, trnL-F, and one nuclear region, ITS (internal transcribed spacer) belonging to 48 populations of 18 species of Melilotus were sequenced and phylogenetic trees were constructed to study their interspecific relationships. Based on the phylogenetic tree generated in this study using rbcL analysis, the Melilotus genus is clearly monophyletic in the legume family. Both Bayesian and maximum-parsimony approaches were used to analyze the data. The nrDNA ITS provided more informative characteristics (9.8%) than cpDNA (3.0%). Melilotus contains two closely related groups, clade I and clade II. M. spicatus, M. indicus and M. segetalis have a close relationship. M. infestus, M. siculus and M. sulcatus are closely related. The comparing between molecular phylogeny and flower color classification in Melilotus showed that the flower color is not much informative for phylogenetics of this genus.


Subject(s)
Cell Nucleus/genetics , DNA, Chloroplast/genetics , Genes, Plant , Melilotus/genetics , Phylogeny , Melilotus/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...