Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.316
Filter
1.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
2.
Sci Rep ; 14(1): 10616, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38720012

ABSTRACT

Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Energy Metabolism , Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Autophagy/drug effects , Inonotus/chemistry , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Glycolysis/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Agaricales/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Cell Cycle/drug effects
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731847

ABSTRACT

Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.


Subject(s)
Antioxidants , Apoptosis , Reactive Oxygen Species , Saponins , Stomach Neoplasms , Humans , Antioxidants/pharmacology , Saponins/pharmacology , Saponins/chemistry , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731895

ABSTRACT

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Subject(s)
Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
5.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732033

ABSTRACT

Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Heat-Shock Response , Membrane Potential, Mitochondrial , Oocytes , Oxidative Stress , Reactive Oxygen Species , Animals , Cattle , Oocytes/metabolism , Heat-Shock Response/genetics , Reactive Oxygen Species/metabolism , Female , Histones/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Apoptosis/genetics , Embryonic Development/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732037

ABSTRACT

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Confocal , Mitochondria , Humans , Mitochondria/metabolism , Microscopy, Confocal/methods , Imaging, Three-Dimensional/methods , Fluorescent Dyes/chemistry , Membrane Potential, Mitochondrial , Carbocyanines/chemistry , Rhodamines/chemistry
7.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734811

ABSTRACT

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Subject(s)
Apoptosis , Capsaicin , Cell Proliferation , HSP70 Heat-Shock Proteins , Melanocytes , Mitochondria , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Vitiligo , Toll-Like Receptor 4/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Vitiligo/metabolism , Vitiligo/drug therapy , Capsaicin/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Cell Line , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Membrane Potential, Mitochondrial/drug effects , Autophagy/drug effects
8.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38691919

ABSTRACT

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Subject(s)
Aconitum , Acute Kidney Injury , Apoptosis , Kidney , Mitochondria , Rats, Sprague-Dawley , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Apoptosis/drug effects , Aconitum/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Rats , Cell Line , Kidney/drug effects , Kidney/pathology , Gentamicins/toxicity , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Aconitine/therapeutic use , Disease Models, Animal , Membrane Potential, Mitochondrial/drug effects , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diterpenes
9.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38721924

ABSTRACT

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Sirtuin 1/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Male , AMP-Activated Protein Kinases/metabolism , Peritoneal Dialysis/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Homeostasis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Membrane Potential, Mitochondrial/drug effects , Dialysis Solutions
10.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743468

ABSTRACT

Introduction. Innovative antifungal therapies are of crucial importance to combat the potentially life-threatening infections linked to the multidrug-resistant fungal pathogen Candida auris. Induction of regulated cell death, apoptosis, could provide an outline for future therapeutics. Human antimicrobial peptides (AMPs), well-known antifungal compounds, have shown the ability to induce apoptosis in pathogenic fungi.Hypothesis/Gap Statement . Although it is known that AMPs possess antifungal activity against C. auris, their ability to induce apoptosis requires further investigations.Aim. This study evaluated the effects of AMPs on the induction of apoptosis in C. auris.Methods. Human neutrophil peptide-1 (HNP-1), human ß-Defensins-3 (hBD-3) and human salivary histatin 5 (His 5) were assessed against two clinical C. auris isolates. Apoptosis hallmarks were examined using FITC-Annexin V/PI double labelling assay and terminal deoxynucleotidyl transferase deoxynucleotidyl transferase nick-end labelling (TUNEL) to detect phosphatidylserine externalization and DNA fragmentation, respectively. Then, several intracellular triggers were studied using JC-10 staining, spectrophotometric assay and 2',7'-dichlorofluorescin diacetate staining to measure the mitochondrial membrane potential, cytochrome-c release and reactive oxygen species (ROS) production, respectively.Results and conclusion. FITC-Annexin V/PI staining and TUNEL analysis revealed that exposure of C. auris cells to HNP-1 and hBD-3 triggered both early and late apoptosis, while His 5 caused significant necrosis. Furthermore, HNP-1 and hBD-3 induced significant mitochondrial membrane depolarization, which resulted in substantial cytochrome c release. In contrast to His 5, which showed minimal mitochondrial depolarization and no cytochrome c release. At last, all peptides significantly increased ROS production, which is related to both types of cell death. Therefore, these peptides represent promising and effective antifungal agents for treating invasive infections caused by multidrug-resistant C. auris.


Subject(s)
Antifungal Agents , Apoptosis , Candida auris , Histatins , Reactive Oxygen Species , Apoptosis/drug effects , Humans , Antifungal Agents/pharmacology , Histatins/pharmacology , Reactive Oxygen Species/metabolism , Candida auris/drug effects , beta-Defensins/pharmacology , Membrane Potential, Mitochondrial/drug effects , alpha-Defensins/pharmacology , Microbial Sensitivity Tests , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytochromes c/metabolism , DNA Fragmentation/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology
11.
Cell Death Dis ; 15(5): 331, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740775

ABSTRACT

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aß1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, ßamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.


Subject(s)
Alzheimer Disease , Cytochromes c , Mitochondria , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Animals , Cytochromes c/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Rats , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial , Ubiquitination , Humans , Apoptosis , Cell Death , Rats, Sprague-Dawley , Disease Models, Animal , Endodeoxyribonucleases
12.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Article in English | MEDLINE | ID: mdl-38716191

ABSTRACT

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Subject(s)
Apoptosis , Chikungunya Fever , Chikungunya virus , Microglia , Mitochondria , Virus Replication , Microglia/virology , Chikungunya virus/physiology , Humans , Mitochondria/ultrastructure , Cell Line , Chlorocebus aethiops , Animals , Vero Cells , Chikungunya Fever/virology , Membrane Potential, Mitochondrial , Cytopathogenic Effect, Viral
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710515

ABSTRACT

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
15.
Med Sci Monit ; 30: e942946, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698627

ABSTRACT

BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO4 (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO4 was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO4. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO4 increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO4.


Subject(s)
Cryopreservation , Cryoprotective Agents , DNA Fragmentation , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Semen Preservation , Sperm Motility , Spermatozoa , Zinc , Male , Cryopreservation/methods , Humans , Spermatozoa/drug effects , Spermatozoa/metabolism , Cryoprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Sperm Motility/drug effects , Semen Preservation/methods , Membrane Potential, Mitochondrial/drug effects , DNA Fragmentation/drug effects , Zinc/pharmacology , Zinc/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Semen Analysis , Cell Survival/drug effects , Adult , Mitochondria/drug effects , Mitochondria/metabolism , Acrosome/drug effects , Acrosome/metabolism , Freezing
16.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709349

ABSTRACT

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Subject(s)
Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Glucose , Kidney Tubules, Proximal , Oxidative Stress , Reactive Oxygen Species , Scopoletin , Humans , Epithelial-Mesenchymal Transition/drug effects , Glucose/metabolism , Glucose/pharmacology , Glucose/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Scopoletin/pharmacology , Cell Line , Reactive Oxygen Species/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Fibrosis , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects
17.
Med Oncol ; 41(6): 143, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717628

ABSTRACT

Picrorhiza kurroa, an "Indian gentian," a known Himalayan medicinal herb with rich source of phytochemicals like picrosides I, II, and other glycosides, has been traditionally used for the treatment of liver and respiratory ailments. Picrosides anti-proliferative, anti-oxidant, anti-inflammatory and other pharmacological properties were evaluated in treating triple-negative breast cancer (TNBC). Picroside I and II were procured from Sigma-Aldrich and were analyzed for anti-cancer activity in triple-negative breast cancer (MDA-MB-231) cells. Cell viability was analyzed using MTT and trypan blue assays. Apoptosis was analyzed through DNA fragmentation and Annexin V/PI flow cytometric analysis. Wound healing and cell survival assays were employed to determine the inhibition of invasion capacity and anti-proliferative activity of picrosides in MDA-MB-231 cells. Measurement of intracellular ROS was studied through mitochondrial membrane potential assessment using DiOC6 staining for anti-oxidant activity of picrosides in MDA-MB-231 cells. Both Picroside I and II have shown decreased cell viability of MDA-MB-231 cells with increasing concentrations. IC50 values of 95.3 µM and 130.8 µM have been obtained for Picroside I and II in MDA-MB-231 cells. Early apoptotic phase have shown an increase of 20% (p < 0.05) with increasing concentrations (0, 50, 75, and 100 µM) of Picroside I and 15% (p < 0.05) increase with Picroside II. Decrease in mitochondrial membrane potential of 2-2.5-fold (p < 0.05) was observed which indicated decreased reactive oxygen species (ROS) generation with increasing concentrations of Picroside I and II. An increasing percentage of 70-80% (p < 0.05) cell population was arrested in G0/G1 phase of cell cycle after Picroside I and II treatment in cancer cells. Our results suggest that Picroside I and II possess significant anti-proliferative and anti-cancer activity which is mediated by inhibition of cell growth, decreased mitochondrial membrane potential, DNA damage, apoptosis, and cell cycle arrest. Therefore, Picroside I and II can be developed as a potential anti-cancer drug of future and further mechanistic studies are underway to identify the mechanism of anti-cancer potential.


Subject(s)
Apoptosis , Cell Proliferation , Cinnamates , Iridoid Glucosides , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Iridoid Glucosides/pharmacology , Reactive Oxygen Species/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , Cinnamates/pharmacology , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
18.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734691

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Subject(s)
COVID-19 , ErbB Receptors , Mitochondria , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Humans , Animals , Mice , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Virus Replication/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Vero Cells , Chlorocebus aethiops , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Membrane Potential, Mitochondrial/drug effects , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
19.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732141

ABSTRACT

Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.


Subject(s)
Alzheimer Disease , Anthracenes , Curcumin , Presenilin-1 , Taurine/analogs & derivatives , Curcumin/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Anthracenes/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Amyloid beta-Peptides/metabolism , Humans , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...