Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.328
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731891

ABSTRACT

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Subject(s)
Lung , Membrane Transport Proteins , Humans , Administration, Inhalation , Lung/metabolism , Membrane Transport Proteins/metabolism , Animals , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Biological Transport
2.
BMC Plant Biol ; 24(1): 322, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654173

ABSTRACT

BACKGROUND: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.


Subject(s)
Membrane Transport Proteins , Plant Leaves , Plant Proteins , Pteridaceae , CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pteridaceae/genetics , Pteridaceae/metabolism , Pteridaceae/growth & development
3.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640682

ABSTRACT

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Subject(s)
Biodegradation, Environmental , Cadmium , Nicotiana , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Plants, Genetically Modified/metabolism
4.
ACS Infect Dis ; 10(5): 1711-1724, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38562022

ABSTRACT

Fosfomycin is a broad-spectrum single-dose therapy approved for treating lower urinary tract infections. Acinetobacter baumannii, one of the five major UTI-causing pathogens, is intrinsically resistant to fosfomycin. Reduced uptake and active efflux are major reasons for this intrinsic resistance. AbaF, a major facilitator superfamily class of transporter in A. baumannii, is responsible for fosfomycin efflux and biofilm formation. This study describes the identification and validation of a novel small-molecule efflux pump inhibitor that potentiates fosfomycin efficacy against A. baumannii. An AbaF inhibitor screening was performed against Escherichia coli KAM32/pUC18_abaF, using the noninhibitory concentration of 24 putative efflux pump inhibitors. The inhibitory activity of IITR08367 [bis(4-methylbenzyl) disufide] against fosfomycin/H+ antiport was validated using ethidium bromide efflux, quinacrine-based proton-sensitive fluorescence, and membrane depolarization assays. IITR08367 inhibits fosfomycin/H+ antiport activity by perturbing the transmembrane proton gradient. IITR08367 is a nontoxic molecule that potentiates fosfomycin activity against clinical strains of A. baumannii and prevents biofilm formation by inhibiting efflux pump (AbaF). The IITR08367-fosfomycin combination reduced bacterial burden by > 3 log10 in kidney and bladder tissue in the murine UTI model. Overall, fosfomycin, in combination with IITR08367, holds the potential to treat urinary tract infections caused by A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Drug Synergism , Fosfomycin , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Fosfomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Biofilms/drug effects , Membrane Transport Proteins/metabolism , Female , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
5.
mBio ; 15(5): e0021824, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564664

ABSTRACT

Antibiotic resistance could rapidly emerge from acquiring the mobile antibiotic resistance genes, which are commonly evolved from an intrinsic gene. The emergence of the plasmid-borne mobilized efflux pump gene cluster tmexCD1-toprJ1 renders the last-resort antibiotic tigecycline ineffective, although its evolutionary mechanism remains unclear. In this study, we investigate the regulatory mechanisms of the progenitor NfxB-MexCD-OprJ, a chromosomally encoded operon that does not mediate antibiotic resistance in the wild-type version, and its homologs, TNfxB1-TMexCD1-TOprJ1 mediating high-level tigecycline resistance, and TNfxB3-TMexCD3-TOprJ1. Mechanistic studies demonstrated that in nfxB-mexCD-oprJ, MexCD expression was under a weaker promoter, PmexC and inhibited by a strong repressor NfxB. For tmexCD1-toprJ1, TMexCD1 was highly expressed owing to the presence of a strong promoter, PtmexC1, and an inactive suppressor, TNfxB1, with a T39R mutation that rendered it unable to bind to promoter DNA. In tnfxB3-tmexCD3-toprJ1b, TMexCD3 expression was intermediate because of the local regulator TNfxB3, which binds to two inverted repeat sequences of PtmexC. Additionally, TNfxB3 exhibited lower protein expression and weaker DNA binding affinity than its ancestor NfxB, together with their promoter activities difference explaining the different expression levels of tmexCD-toprJ homologs. Distinct fitness burdens on these homologs-carrying bacteria were observed due to the corresponding expression level, which might be associated with their global prevalence. In summary, our data depict the mechanisms underlying the evolution and dissemination of an important mobile antibiotic resistance gene from an intrinsic chromosomal gene.IMPORTANCEAs antibiotic resistance seriously challenges global health, tigecycline is one of the few effective drugs in the pipeline against infections caused by multidrug-resistant pathogens. Our previous work identified a novel tigecycline resistance efflux pump gene cluster tmexCD1-toprJ1 in animals and humans, together with its various variants, a rising clinical concern. Herein, this study focused on how the local regulation modes of tmexCD1-toprJ1 evolved to a highly expressed efflux pump. Through comparative analysis between three tnfxB-tmexCD-toprJ homologs and their progenitor nfxB-mexCD-oprJ, modes, we demonstrated the evolutionary dynamics from a chromosomal silent gene to an active state. We found the de-repression of the local regulator and an increase of the promoter activity work together to promote a high production of drug efflux machines and enhance multidrug resistance. Our findings revealed that TMexCD1-TOprJ1 adopts a distinct evolutionary path to achieve higher multidrug resistance, urgently needing tight surveillance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Evolution, Molecular , Promoter Regions, Genetic , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Multigene Family , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Tigecycline/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Operon
6.
ACS Infect Dis ; 10(5): 1458-1482, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38661541

ABSTRACT

Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Membrane Transport Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Humans
7.
Clin Transl Sci ; 17(4): e13799, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634429

ABSTRACT

Momelotinib-approved for treatment of myelofibrosis in adults with anemia-and its major active metabolite, M21, were assessed as drug-drug interaction (DDI) victims with a strong cytochrome P450 (CYP) 3A4 inhibitor (multiple-dose ritonavir), an organic anion transporting polypeptide (OATP) 1B1/1B3 inhibitor (single-dose rifampin), and a strong CYP3A4 inducer (multiple-dose rifampin). Momelotinib DDI perpetrator potential (multiple-dose) was evaluated with CYP3A4 and breast cancer resistance protein (BCRP) substrates (midazolam and rosuvastatin, respectively). DDI was assessed from changes in maximum plasma concentration (Cmax), area under the concentration-time curve (AUC), time to reach Cmax, and half-life. The increase in momelotinib (23% Cmax, 14% AUC) or M21 (30% Cmax, 24% AUC) exposure with ritonavir coadministration was not clinically relevant. A moderate increase in momelotinib (40% Cmax, 57% AUC) and minimal change in M21 was observed with single-dose rifampin. A moderate decrease in momelotinib (29% Cmax, 46% AUC) and increase in M21 (31% Cmax, 15% AUC) were observed with multiple-dose rifampin compared with single-dose rifampin. Due to potentially counteracting effects of OATP1B1/1B3 inhibition and CYP3A4 induction, multiple-dose rifampin did not significantly change momelotinib pharmacokinetics compared with momelotinib alone (Cmax no change, 15% AUC decrease). Momelotinib did not alter the pharmacokinetics of midazolam (8% Cmax, 16% AUC decreases) or 1'-hydroxymidazolam (14% Cmax, 16% AUC decreases) but increased rosuvastatin Cmax by 220% and AUC by 170%. Safety findings were mild in this short-term study in healthy volunteers. This analysis suggests that momelotinib interactions with OATP1B1/1B3 inhibitors and BCRP substrates may warrant monitoring for adverse reactions or dose adjustments.


Subject(s)
Benzamides , Cytochrome P-450 CYP3A , Pyrimidines , Ritonavir , Adult , Humans , Cytochrome P-450 CYP3A/metabolism , Rifampin/pharmacology , Midazolam/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Rosuvastatin Calcium/pharmacokinetics , Neoplasm Proteins/metabolism , Drug Interactions , Membrane Transport Proteins/metabolism
8.
Sci Rep ; 14(1): 8994, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637678

ABSTRACT

Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.


Subject(s)
ATP-Binding Cassette Transporters , Escherichia coli Proteins , Humans , ATP-Binding Cassette Transporters/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Protein Domains , Hemolysin Proteins/metabolism , Bacterial Proteins/metabolism
9.
J Chem Inf Model ; 64(8): 3524-3536, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38564295

ABSTRACT

Understanding the conformational dynamics of proteins, such as the inward-facing (IF) and outward-facing (OF) transition observed in transporters, is vital for elucidating their functional mechanisms. Despite significant advances in protein structure prediction (PSP) over the past three decades, most efforts have been focused on single-state prediction, leaving multistate or alternative conformation prediction (ACP) relatively unexplored. This discrepancy has led to the development of highly accurate PSP methods such as AlphaFold, yet their capabilities for ACP remain limited. To investigate the performance of current PSP methods in ACP, we curated a data set, named IOMemP, consisting of 32 experimentally determined high-resolution IF and OF structures of 16 membrane proteins with substantial conformational changes. We benchmarked 12 representative PSP methods, along with two recent multistate methods based on AlphaFold, against this data set. Our findings reveal a remarkably consistent preference for specific states across various PSP methods. We elucidated how coevolution information in MSAs influences state preference. Moreover, we showed that AlphaFold, when excluding coevolution information, estimated similar energies between the experimental IF and OF conformations, indicating that the energy model learned by AlphaFold is not biased toward any particular state. Our IOMemP data set and benchmark results are anticipated to advance the development of robust ACP methods.


Subject(s)
Membrane Transport Proteins , Protein Conformation , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Molecular , Databases, Protein
10.
Nat Struct Mol Biol ; 31(4): 701-709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589607

ABSTRACT

Choline is a vital nutrient and a precursor for the biosynthesis of essential metabolites, including acetylcholine (ACh), that play a central role in fetal development, especially in the brain. In cholinergic neurons, the high-affinity choline transporter (CHT1) provides an extraordinarily efficient reuptake mechanism to reutilize choline derived from intrasynaptical ACh hydrolysis and maintain ACh synthesis in the presynapse. Here, we determined structures of human CHT1 in three discrete states: the outward-facing state bound with the competitive inhibitor hemicholinium-3 (HC-3); the inward-facing occluded state bound with the substrate choline; and the inward-facing apo open state. Our structures and functional characterizations elucidate how the inhibitor and substrate are recognized. Moreover, our findings shed light on conformational changes when transitioning from an outward-facing to an inward-facing state and establish a framework for understanding the transport cycle, which relies on the stabilization of the outward-facing state by a short intracellular helix, IH1.


Subject(s)
Choline , Membrane Transport Proteins , Humans , Choline/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Acetylcholine/metabolism
11.
Biol Pharm Bull ; 47(4): 764-770, 2024.
Article in English | MEDLINE | ID: mdl-38569835

ABSTRACT

L-Lactate transport via monocarboxylate transporters (MCTs) in the central nervous system, represented by the astrocyte-neuron lactate shuttle (ANLS), is crucial for the maintenance of brain functions, including memory formation. Previously, we have reported that MCT1 contributes to L-lactate transport in normal human astrocytes. Therefore, in this study, we aimed to identify transporters that contribute to L-lactate transport in human neurons. SH-SY5Y cells, which are used as a model for human neurons, were differentiated using all-trans-retinoic acid. L-Lactate uptake was measured using radiolabeled L-lactate, and the expression of MCT proteins was confirmed Western blotting. L-Lactate transport was pH-dependent and saturated at high concentrations. Kinetic analysis suggested that L-lactate uptake was biphasic. Furthermore, MCT1, 2 selective inhibitors inhibited L-lactate transport. In addition, the expression of MCT1 and 2 proteins, but not MCT4, was confirmed. In this study, we demonstrated that MCT1 and 2 are major contributors to L-lactate transport in differentiated human neuroblastoma SH-SY5Y cells from the viewpoint of kinetic analysis. These results lead to a better understanding of ANLS in humans, and further exploration of the factors that can promote MCT1 and 2 functions is required.


Subject(s)
Neuroblastoma , Symporters , Humans , Kinetics , Biological Transport , Carrier Proteins/metabolism , Lactic Acid/metabolism , Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism
12.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
13.
Commun Biol ; 7(1): 425, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589539

ABSTRACT

Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Rats , Animals , Humans , Klebsiella pneumoniae , Membrane Transport Proteins/metabolism , Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Peptides/pharmacology , Peptides/metabolism
14.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589879

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Subject(s)
Blood-Brain Barrier , PPAR delta , Rats , Male , Animals , Blood-Brain Barrier/metabolism , PPAR delta/metabolism , Endothelial Cells/metabolism , Membrane Transport Proteins/metabolism , Brain/metabolism , Fasting
15.
Curr Biol ; 34(7): R267-R268, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593766

ABSTRACT

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Subject(s)
Escherichia coli Proteins , Twin-Arginine-Translocation System , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Escherichia coli Proteins/metabolism , Twin-Arginine-Translocation System/metabolism , Cell Membrane/metabolism , Arginine/metabolism , Protein Transport , Protein Sorting Signals , Bacterial Proteins/metabolism
16.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581583

ABSTRACT

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Subject(s)
Membrane Transport Proteins , Receptors, Virus , Cats , Animals , Membrane Transport Proteins/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism
17.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572960

ABSTRACT

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Mycobacterium abscessus , Reserpine , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Reserpine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Verapamil/pharmacology
18.
Proc Natl Acad Sci U S A ; 121(16): e2318009121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588414

ABSTRACT

Secondary-active transporters catalyze the movement of myriad substances across all cellular membranes, typically against opposing concentration gradients, and without consuming any ATP. To do so, these proteins employ an intriguing structural mechanism evolved to be activated only upon recognition or release of the transported species. We examine this self-regulated mechanism using a homolog of the cardiac Na+/Ca2+ exchanger as a model system. Using advanced computer simulations, we map out the complete functional cycle of this transporter, including unknown conformations that we validate against existing experimental data. Calculated free-energy landscapes reveal why this transporter functions as an antiporter rather than a symporter, why it specifically exchanges Na+ and Ca2+, and why the stoichiometry of this exchange is exactly 3:1. We also rationalize why the protein does not exchange H+ for either Ca2+ or Na+, despite being able to bind H+ and its high similarity with H+/Ca2+ exchangers. Interestingly, the nature of this transporter is not explained by its primary structural states, known as inward- and outward-open conformations; instead, the defining factor is the feasibility of conformational intermediates between those states, wherein access pathways leading to the substrate binding sites become simultaneously occluded from both sides of the membrane. This analysis offers a physically coherent, broadly transferable route to understand the emergence of function from structure among secondary-active membrane transporters.


Subject(s)
Antiporters , Sodium-Calcium Exchanger , Sodium-Calcium Exchanger/metabolism , Antiporters/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Protein Conformation
19.
mBio ; 15(5): e0348823, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38534200

ABSTRACT

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Bile , Biofilms , Magnesium , Biofilms/growth & development , Bacteroides thetaiotaomicron/physiology , Bacteroides thetaiotaomicron/metabolism , Magnesium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bile/metabolism , Humans , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Gastrointestinal Microbiome/physiology , Gene Expression Regulation, Bacterial
20.
EMBO Rep ; 25(5): 2278-2305, 2024 May.
Article in English | MEDLINE | ID: mdl-38499808

ABSTRACT

SorLA, encoded by the gene SORL1, is an intracellular sorting receptor of the VPS10P domain receptor gene family. Although SorLA is best recognized for its ability to shuttle target proteins between intracellular compartments in neurons, recent data suggest that also its microglial expression can be of high relevance for the pathogenesis of brain diseases, including glioblastoma (GBM). Here, we interrogated the impact of SorLA on the functional properties of glioma-associated microglia and macrophages (GAMs). In the GBM microenvironment, GAMs are re-programmed and lose the ability to elicit anti-tumor responses. Instead, they acquire a glioma-supporting phenotype, which is a key mechanism promoting glioma progression. Our re-analysis of published scRNA-seq data from GBM patients revealed that functional phenotypes of GAMs are linked to the level of SORL1 expression, which was further confirmed using in vitro models. Moreover, we demonstrate that SorLA restrains secretion of TNFα from microglia to restrict the inflammatory potential of these cells. Finally, we show that loss of SorLA exacerbates the pro-inflammatory response of microglia in the murine model of glioma and suppresses tumor growth.


Subject(s)
Brain Neoplasms , Glioma , Membrane Transport Proteins , Microglia , Tumor Microenvironment , Tumor Necrosis Factor-alpha , Microglia/metabolism , Microglia/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Humans , Mice , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Macrophages/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Brain/metabolism , Brain/pathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...