Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.930
Filter
1.
BMC Pediatr ; 24(1): 305, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704545

ABSTRACT

INTRODUCTION: Congenital chloride diarrhoea (CCD) is an autosomal recessive condition that causes secretory diarrhoea and potentially deadly electrolyte imbalances in infants because of solute carrier family 26 member 3 (SLC26A3) gene mutations. CASE PRESENTATION: A 7-month-old Chinese infant with a history of maternal polyhydramnios presented with frequent watery diarrhoea, severe dehydration, hypokalaemia, hyponatraemia, failure to thrive, metabolic alkalosis, hyperreninaemia, and hyperaldosteronaemia. Genetic testing revealed a compound heterozygous SLC26A3 gene mutation in this patient (c.269_270dup and c.2006 C > A). Therapy was administered in the form of oral sodium and potassium chloride supplements, which decreased stool frequency. CONCLUSIONS: CCD should be considered when an infant presents with prolonged diarrhoea during infancy, particularly in the context of maternal polyhydramnios and dilated foetal bowel loops.


Subject(s)
Diarrhea , Diarrhea/congenital , Metabolism, Inborn Errors , Mutation , Sulfate Transporters , Humans , Sulfate Transporters/genetics , Diarrhea/genetics , Infant , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/diagnosis , Chloride-Bicarbonate Antiporters/genetics , Female , Heterozygote , Male , Polyhydramnios/genetics , Potassium Chloride/therapeutic use , Potassium Chloride/administration & dosage , East Asian People
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565373

ABSTRACT

Inborn errors of metabolism (IEM) represent a heterogeneous group of more than 1800 rare disorders, many of which are causing significant childhood morbidity and mortality. More than 100 IEM are linked to dyslipidaemia, but yet our knowledge in connecting genetic information with lipidomic data is limited. Stable isotope tracing studies of the lipid metabolism (STL) provide insights on the dynamic of cellular lipid processes and could thereby facilitate the delineation of underlying metabolic (patho)mechanisms. This mini-review focuses on principles as well as technical limitations of STL and describes potential clinical applications by discussing recently published STL focusing on IEM.


Subject(s)
Lipid Metabolism , Lipidomics , Humans , Lipidomics/methods , Lipid Metabolism/genetics , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/genetics , Animals , Lipids/genetics , Isotope Labeling/methods
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 207-212, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38650450

ABSTRACT

OBJECTIVES: To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2 (CPT2) deficiency. METHODS: The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed. The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing, respectively. RESULTS: There were 4 males and 2 females with a mean age of 32 months (15 d-9 years) at diagnosis. One case was asymptomatic and with normal laboratory test results, 2 had delayed onset, and 3 were of infantile type. Three cases were diagnosed at neonatal screening, and 3 cases presented with clinical manifestations of fever, muscle weakness, and increased muscle enzymes. Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines. CPT2 gene variants were detected at 8 loci in 6 children (4 harboring biallelic mutations and 2 harboring single locus mutations), including 3 known variants (p.R631C, p.T589M, and p.D255G) and 5 newly reported variants (p.F352L, p.R498L, p.F434S, p.A515P, and c.153-2A>G). It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants, while p.R498L, p.F434S and p.A515P were variants of unknown clinical significance. CONCLUSIONS: The clinical phenotypes of CPT2 deficiency are diverse. An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing, and most patients have good prognosis after a timely diagnosis and treatment.


Subject(s)
Carnitine O-Palmitoyltransferase , Carnitine O-Palmitoyltransferase/deficiency , Carnitine/analogs & derivatives , Mutation , Humans , Male , Female , Carnitine O-Palmitoyltransferase/genetics , Infant , Child, Preschool , Child , Retrospective Studies , Infant, Newborn , Carnitine/blood , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/diagnosis , Neonatal Screening
4.
Clin Chim Acta ; 558: 117893, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582244

ABSTRACT

BACKGROUND: Compare the differences between normal newborns and high-risk children with inherited metabolic diseases. The disease profile includes amino acidemias, fatty acid oxidation disorders, and organic acidemias. METHODS: Data was collected on newborns and children from high-risk populations in Shanghai from December 2010 to December 2020. RESULTS: 232,561 newborns were screened for disorders of organic, amino acid, and fatty acid metabolism. The initial positive rate was 0.66 % (1,526/232,561) and the positive recall rate was 77.85 %. The positive predictive value is 4.71 %. Among them, 56 cases were diagnosed as metabolic abnormalities. The total incidence rate is 1:4153. Hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase are the most common diseases in newborns. In addition, in 56 children, 39 (69.42 %) were diagnosed by genetic sequencing. Some hotspot mutations in 14 IEMs have been observed, including PAH gene c.728G > A, c.611A > G, and ACADS gene c. 1031A > G, c.164C > T. A total of 49,860 symptomatic patients were screened, of which 185 were diagnosed with IEM, with a detection rate of 0.37 %. The most commonly diagnosed diseases in high-risk infants aremethylmalonic acidemia and hyperphenylalaninemia. CONCLUSION: There are more clinical cases of congenital metabolic errors diagnosed by tandem mass spectrometry than newborn screening. The spectrum of diseases, prevalence, and genetic characteristics of normal newborns and high-risk children are quite different.


Subject(s)
Neonatal Screening , Humans , Infant, Newborn , China/epidemiology , Male , Female , Infant , Metabolic Diseases/diagnosis , Metabolic Diseases/genetics , Metabolic Diseases/epidemiology , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Metabolism, Inborn Errors/genetics , Child , Child, Preschool
5.
Probl Endokrinol (Mosk) ; 70(1): 30-37, 2024 Feb 28.
Article in Russian | MEDLINE | ID: mdl-38433539

ABSTRACT

Primary glucocorticoid resistance (OMIM 615962) is a rare endocrinologic condition caused by resistance of the human glucocorticoid receptor (hGR) to glucocorticoids (GR) and characterised by general or partial insensitivity of target organs to GK. Compensatory activation of hypothalamic-pituitary-andrenal axis results in development of a various pathological conditions caused by overstimulation of adrenal glands. Clinical spectrum may range from asymptomatic cases to severe cases of mineralocorticoid and/or androgen excess. At present time, primary generalized glucocorticoid resistance has been exclusively associated with defects in the NR3C1 gene. Here, we present a case report of an adolescent patient with clinical presentation of glucocorticoid resistance confirmed by detailed endocrinologic evaluation but no confirmed mutations in the NR3C1 gene.


Subject(s)
Metabolism, Inborn Errors , Receptors, Glucocorticoid , Receptors, Glucocorticoid/deficiency , Adolescent , Humans , Receptors, Glucocorticoid/genetics , Glucocorticoids/therapeutic use , Adrenal Glands , Metabolism, Inborn Errors/genetics , Rare Diseases
6.
Mol Genet Metab ; 142(1): 108360, 2024 May.
Article in English | MEDLINE | ID: mdl-38428378

ABSTRACT

The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of mechanisms, including by post-translational modification of histones, responding to histone marks, and remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential therapeutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modification of histone residues to influence gene expression. In this article we discuss the influence and potential treatments of histone modifications involving histone acetylation and histone methylation. Genomic technologies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy of treatment, as treatment response may not be able to be accurately assessed by clinical measures.


Subject(s)
Chromatin , Metabolic Networks and Pathways , Humans , Chromatin/genetics , Chromatin/metabolism , Metabolic Networks and Pathways/genetics , Histones/metabolism , Histones/genetics , Protein Processing, Post-Translational , Acetylation , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/metabolism , Chromatin Assembly and Disassembly/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Genetic Diseases, Inborn/metabolism , Infant, Newborn , Methylation
7.
Arq Neuropsiquiatr ; 82(2): 1-4, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38395422

ABSTRACT

Carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive inherited disorder related to lipid metabolism affecting skeletal muscle. The first cases of CPT II deficiency causing myopathy were reported in 1973. In 1983, Werneck et al published the first two Brazilian patients with myopathy due to CPT II deficiency, where the biochemical analysis confirmed deficient CPT activity in the muscle of both cases. Over the past 40 years since the pioneering publication, clinical phenotypes and genetic loci in the CPT2 gene have been described, and pathogenic mechanisms have been better elucidated. Genetic analysis of one of the original cases disclosed compound heterozygous pathogenic variants (p.Ser113Leu/p.Pro50His) in the CPT2 gene. Our report highlights the historical aspects of the first Brazilian publication of the myopathic form of CPT II deficiency and updates the genetic background of this pioneering publication.


Deficiência de carnitina palmitoiltransferase II (CPT II) é uma desordem de herança autossômica recessiva relacionada com o metabolismo do lipídio afetando músculo esquelético. Os primeiros dois casos de deficiência de CPT II causando miopatia foram relatados em 1973. Em 1983, Werneck et al. publicaram os primeiros pacientes brasileiros com miopatia por deficiência de CPT II, nos quais a análise bioquímica confirmou a atividade deficiente da CPT nos músculos em ambos os casos. Após 40 anos desde a publicação pioneira, fenótipos clínicos e loci genético no gene CPT2 foram descritos, bem com os mecanismos patológicos foram melhor elucidados. A análise genética de um dos casos da publicação original apresentou variantes patogênicas em heterozigose composta (p.Ser113Leu/p.Pro50His) no gene CPT2. O nosso relato destaca os aspectos históricos da primeira publicação brasileira da forma miopática da deficiência de CPT II e atualiza as bases genéticas dessa publicação pioneira.


Subject(s)
Carnitine O-Palmitoyltransferase/deficiency , Metabolism, Inborn Errors , Muscular Diseases , Humans , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Brazil , Muscular Diseases/genetics , Muscular Diseases/pathology , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Mutation
9.
Arch Pediatr ; 31(1): 85-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168614

ABSTRACT

The cases were a pair of siblings with a carnitine palmitoyltransferase (CPT2) deficiency detected by tandem mass spectrometry. Their C16 and C18:1 levels were both within the normal range, while C0 was low, and the (C16+C18:1)/C2 ratio was high. Following genetic testing, a novel CPT2 gene mutation was identified in both patients. The male patient had a normal growth rate during 5 years of follow-up after treatment. By contrast, the female patient did not take l-carnitine supplements and died after an infectious disease-associated illness when she was 1 year old. These data emphasize the need to raise awareness about CPT2 deficiency so as to correctly diagnose and accurately manage the disease.


Subject(s)
Carnitine O-Palmitoyltransferase , Metabolism, Inborn Errors , Female , Humans , Infant , Male , Carnitine , Carnitine O-Palmitoyltransferase/genetics , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Mutation , Child, Preschool
10.
BMC Public Health ; 24(1): 222, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238734

ABSTRACT

BACKGROUND: Many people suffer from body and breath malodour syndromes. One of these is trimethylaminuria, a condition characterized by excretion in breath and bodily fluids of trimethylamine, a volatile and odorous chemical that has the smell of rotting fish. Trimethylaminuria can be primary, due to mutations in the gene encoding flavin-containing monooxygenase 3, or secondary, due to various causes. To gain a better understanding of problems faced by United Kingdom residents affected by body and breath malodour conditions, we conducted a survey. METHODS: Two anonymous online surveys, one for adults and one for parents/guardians of affected children, were conducted using the Opinio platform. Participants were invited via a trimethylaminuria advisory website. Questions were a mix of dropdown, checkbox and open-ended responses. Forty-four adults and three parents/guardians participated. The dropdown and checkbox responses were analysed using the Opinio platform. RESULTS: All participants reported symptoms of body/breath odour. However, not all answered every question. Twenty-three respondents experienced difficulties in being offered a diagnostic test for trimethylaminuria. Problems encountered included lack of awareness of the disorder by medical professionals and reluctance to recognise symptoms. Of those tested, 52% were diagnosed with trimethylaminuria. The main problems associated with living with body/breath malodours were bullying, harassment and ostracism in either the workplace (90%) or in social settings (88%). All respondents thought their condition had disadvantaged them in their daily lives. Open-ended responses included loss of confidence, stress, exclusion, isolation, loneliness, depression and suicidal thoughts. Respondents thought their lives could be improved by greater awareness and understanding of malodour conditions by medical professionals, employers and the general public, and appreciation that the malodour was due to a medical condition and not their fault. CONCLUSIONS: Breath and body malodour conditions can cause immense hardship and distress, both mentally and socially, having devastating effects on quality of life. It would be advantageous to establish a standardised pathway from primary care to a specialist unit with access to a robust and reliable test and diagnostic criteria. There is a need to recognise malodour disorders as a disability, giving affected individuals the same rights as those with currently recognised disabilities.


Subject(s)
Metabolism, Inborn Errors , Methylamines/urine , Quality of Life , Adult , Child , Animals , Humans , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Odorants , Anxiety
11.
Prenat Diagn ; 44(4): 432-442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38063435

ABSTRACT

OBJECTIVES: The value of prenatal exome sequencing (pES) for fetuses with structural anomalies is widely reported. In England, testing is conducted through trio exome sequencing and analysis of a gene panel. Over a 30-month period testing of 921 pregnancies resulted in a genetic diagnosis in 32.8% of cases (302/921). Here we review cases diagnosed with an inborn error of metabolism. METHODS: Diagnoses of inborn errors of metabolism (IEM) were classified according to the ICIMD classification system. Genetic diagnoses were assessed against Human Phenotype Ontology terms, gestation of scan findings and literature evidence. RESULTS: 35/302 diagnoses (11.6%) represented IEM. Almost half affected metabolism of complex macromolecules and organelles (n = 16), including congenital disorders of glycosylation (n = 8), peroxisome biogenesis disorders (n = 4), and lysosomal storage disorders (n = 4). There were eight disorders of lipid metabolism and transport, the majority being genes in the cholesterol biosynthesis pathway, eight disorders of intermediary metabolism, of which seven were defects in "energy" processes, and two diagnoses of alkaline phosphatase deficiency. CONCLUSIONS: Review of pES diagnoses and ultrasound scan findings is key to understanding genotype-phenotype correlations. IEM are genetically heterogeneous and may present with variable scan findings, which makes an individual diagnosis difficult to suspect. Diagnosis during pregnancy is particularly important for many IEM with respect to prognosis and early neonatal management.


Subject(s)
Metabolism, Inborn Errors , Ultrasonography, Prenatal , Pregnancy , Female , Infant, Newborn , Humans , Exome Sequencing , Pregnancy Trimester, First , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Prenatal Diagnosis
12.
Mol Genet Metab ; 141(1): 108098, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061323

ABSTRACT

BACKGROUND: Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS: The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS: A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS: A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Humans , Infant, Newborn , Tandem Mass Spectrometry/methods , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Metabolism, Inborn Errors/genetics , China/epidemiology , Neonatal Screening/methods , Solute Carrier Family 22 Member 5 , Oxidoreductases/metabolism
14.
Article in English | MEDLINE | ID: mdl-37357514

ABSTRACT

Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.


Subject(s)
Liver Diseases , Metabolism, Inborn Errors , Humans , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Liver Diseases/diagnosis , Liver Diseases/etiology , Metabolic Networks and Pathways
15.
Arch Argent Pediatr ; 122(3): e202310167, 2024 06 01.
Article in English, Spanish | MEDLINE | ID: mdl-38019900

ABSTRACT

Congenital chloride diarrhea (CCD) is a rare but significant genetic disorder characterized by severe electrolyte imbalances resulting from impaired intestinal chloride absorption. Affected children experience persistent diarrhea, dehydration, and malnutrition, complicating medical and developmental care. The enhancement of prenatal detection is crucial for improved patient management, early interventions, and informed genetic counseling. However, despite advancements in medicine, the complex nature and rarity of CCD make prenatal detection challenging. In this study, we report a fetal case where prenatal magnetic resonance imaging (MRI) effectively identified the distinctive characteristics of CCD, providing insights into the complexities of diagnosis and suggesting avenues for enhanced early detection strategies.


La clorhidrorrea congénita es un trastorno genético infrecuente pero importante caracterizado por una alteración grave del balance hidroelectrolítico como resultado de un defecto en la absorción intestinal de cloruros. Los niños afectados presentan diarrea persistente, deshidratación y malnutrición; el control médico y del desarrollo son complejos. Mejorar la detección prenatal es esencial para facilitar la atención del paciente, las intervenciones tempranas y el asesoramiento genético informado. Sin embargo, a pesar de los avances de la medicina, la naturaleza compleja y la escasa frecuencia de esta entidad, constituyen un desafío para la detección prenatal. En este estudio, se reporta el caso de una embarazada donde los estudios por imágenes de resonancia magnética fetales identificaron en forma efectiva las características típicas de la clorhidrorrea congénita. Se proveen conocimientos sobre las complejidades del diagnóstico y se sugieren caminos para las estrategias de detección temprana de esta enfermedad.


Subject(s)
Diarrhea/congenital , Metabolism, Inborn Errors , Prenatal Diagnosis , Pregnancy , Child , Female , Humans , Prenatal Diagnosis/methods , Diarrhea/etiology , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Genetic Counseling
16.
Indian J Pediatr ; 91(6): 598-605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38105403

ABSTRACT

Congenital diarrhea and enteropathies (CODEs) constitute a group of rare genetic disorders characterized by severe diarrhea and malabsorption in the neonatal period or early infancy. Timely diagnosis and treatment is essential to prevent life-threatening complications, including dehydration, electrolyte imbalance, and malnutrition. This review offers a simplified approach to the diagnosis of CODEs, with a specific focus on microvillus inclusion disease (MVID), congenital tufting enteropathy (CTE), congenital chloride diarrhea (CLD), and congenital sodium diarrhea (CSD). Patients with CODEs typically present with severe watery or occasionally bloody diarrhea, steatorrhea, dehydration, poor growth, and developmental delay. Therefore, it is crucial to thoroughly evaluate infants with diarrhea to rule out infectious, allergic, or anatomical causes before considering CODEs as the underlying etiology. Diagnostic investigations for CODEs encompass various modalities, including stool tests, blood tests, immunological studies, endoscopy and biopsies for histology and electron microscopy, and next-generation sequencing (NGS). NGS plays a pivotal role in identifying the genetic mutations responsible for CODEs. Treatment options for CODEs are limited, often relying on total parenteral nutrition for hydration and nutritional support. In severe cases, intestinal transplantation may be considered. The long-term prognosis varies among specific CODEs, with some patients experiencing ongoing intestinal failure and associated complications. In conclusion, the early recognition and accurate diagnosis of CODEs are of paramount importance for implementing appropriate management strategies. Further research and advancements in genetic testing hold promise for enhancing diagnostic accuracy and exploring potential targeted therapies for these rare genetic disorders.


Subject(s)
Diarrhea , Malabsorption Syndromes , Humans , Diarrhea/therapy , Diarrhea/etiology , Diarrhea/congenital , Malabsorption Syndromes/therapy , Malabsorption Syndromes/diagnosis , Malabsorption Syndromes/genetics , Infant, Newborn , Infant , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/therapy , Metabolism, Inborn Errors/genetics , Mucolipidoses/diagnosis , Mucolipidoses/therapy , Mucolipidoses/genetics , Microvilli/pathology , Intestinal Diseases/diagnosis , Intestinal Diseases/therapy , Intestinal Diseases/genetics , Abnormalities, Multiple , Diarrhea, Infantile
17.
Metabolism ; 150: 155738, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981189

ABSTRACT

Inborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients. We focus on applications of Constraint-based Reconstruction and Analysis (COBRA), a widely used mechanistic systems biology approach, to model the effects of inherited diseases. Moreover, we review evidence that the gut microbiome is also altered in rare diseases. Finally, we outline an approach using personalized metabolic models of IEM patients for the prediction of biomarkers and tailored therapeutic or dietary interventions. Such applications could pave the way towards personalized medicine not just for common, but also for rare diseases.


Subject(s)
Metabolism, Inborn Errors , Humans , Metabolism, Inborn Errors/genetics , Rare Diseases/genetics , Precision Medicine , Phenotype , Systems Analysis
18.
Methods Mol Biol ; 2745: 191-210, 2024.
Article in English | MEDLINE | ID: mdl-38060187

ABSTRACT

Inborn errors of metabolism (IEM) are a group of about 500 rare genetic diseases with large diversity and complexity due to number of metabolic pathways involved in. Establishing a correct diagnosis and identifying the specific clinical phenotype is consequently a difficult task. However, an inclusive diagnosis able in capturing the different clinical phenotypes is mandatory for successful treatment. However, in contrast with Garrod's basic assumption "one-gene one-disease," no "simple" correlation between genotype-phenotype can be vindicated in IEMs. An illustrative example of IEM is Phenylketonuria (PKU), an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism, ascribed to variants of the phenylalanine hydroxylase (PAH) gene encoding for the enzyme complex phenylalanine-hydroxylase. Blood values of Phe allow classifying PKU into different clinical phenotypes, albeit the participation of other genetic/biochemical pathways in the pathogenetic mechanisms remains elusive. Indeed, it has been shown that the most serious complications, such as cognitive impairment, are not only related to the gene dysfunction but also to the patient's background and the participation of several nongenetic factors.Therefore, a Systems Biology-based strategy is required in addressing IEM complexity, and in identifying the interplay between different pathways in shaping the clinical phenotype. Such an approach should entail the concerted investigation of genomic, transcriptomics, proteomics, metabolomics profiles altogether with phenylalanine and amino acids metabolism. Noticeably, this "omic" perspective could be instrumental in planning personalized treatment, tailored accordingly to the disease profile and prognosis.


Subject(s)
Metabolism, Inborn Errors , Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylketonurias/diagnosis , Phenylketonurias/genetics , Phenylketonurias/metabolism , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Phenylalanine Hydroxylase/genetics , Phenotype , Phenylalanine/genetics , Phenylalanine/metabolism
19.
Clin Biochem ; 123: 110703, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097032

ABSTRACT

Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolism, Inborn Errors , Renal Insufficiency, Chronic , Adult , Adolescent , Humans , Child , Kidney/metabolism , Renal Insufficiency, Chronic/genetics , Metabolomics , Biomarkers , Metabolism, Inborn Errors/genetics
20.
Cell Rep ; 42(11): 113214, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37917582

ABSTRACT

Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Metabolism, Inborn Errors , Humans , Animals , Mice , Phosphatidylglycerols , Hearing Loss, Sensorineural/genetics , Metabolism, Inborn Errors/genetics , Deafness/genetics , Cardiolipins
SELECTION OF CITATIONS
SEARCH DETAIL
...