Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.658
Filter
1.
Anal Chem ; 96(18): 7311-7320, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656817

ABSTRACT

Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/µL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.


Subject(s)
Coordination Complexes , Electrochemical Techniques , Herpesvirus 6, Human , Iridium , Luminescent Measurements , Methane/analogs & derivatives , Iridium/chemistry , Humans , Immunoassay/methods , Ligands , Coordination Complexes/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Methane/chemistry , Heterocyclic Compounds/chemistry
2.
Anal Chem ; 96(19): 7566-7576, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684118

ABSTRACT

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Subject(s)
Methane , Methane/analogs & derivatives , Methane/chemistry , Humans , Protein Footprinting/methods , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Binding , Mass Spectrometry
3.
ACS Infect Dis ; 10(5): 1753-1766, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38606463

ABSTRACT

The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.


Subject(s)
Anti-Bacterial Agents , Glutathione Reductase , Gram-Negative Bacteria , Microbial Sensitivity Tests , Silver , Thioredoxin-Disulfide Reductase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/metabolism , Gram-Negative Bacteria/drug effects , Humans , Biofilms/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Thioredoxins , Gram-Positive Bacteria/drug effects , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
4.
Angew Chem Int Ed Engl ; 63(21): e202401189, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38506220

ABSTRACT

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs. Pharmacological exploration identifies twelve BPCPHCs as potent Nav ion channel blockers, notably compound 8 g. In vivo studies demonstrate that intrathecal injection of 8 g effectively reverses mechanical hyperalgesia associated with chemotherapy-induced peripheral neuropathy (CIPN), suggesting a promising therapeutic avenue. Electrophysiological investigations unveil the inhibitory effects of 8 g on Nav1.7 currents. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) assay provide insights into the stable complex formation and favorable binding free energy of 8 g with C5aR1. This research represents a significant advancement in asymmetric CAMC for BPCPHCs and unveils BPCPHC 8 g as a promising, uniquely acting pain blocker, establishing a C5aR1-Nav1.7 connection in the context of CIPN.


Subject(s)
Alkynes , Benzoxazines , Methane , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Alkynes/chemistry , Benzoxazines/chemistry , Benzoxazines/pharmacology , Benzoxazines/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Humans , Stereoisomerism , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/chemical synthesis , Molecular Structure , Catalysis , Drug Discovery , Animals
5.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Article in English | MEDLINE | ID: mdl-38494725

ABSTRACT

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Subject(s)
Methane/analogs & derivatives , Rhodium , Catalysis , Rhodium/chemistry , Methane/chemistry , Hydrogen/chemistry
6.
Molecules ; 29(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474631

ABSTRACT

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Coordination Complexes , Methane/analogs & derivatives , Ovarian Neoplasms , Phosphines , Female , Humans , Cisplatin/chemistry , Platinum/chemistry , Cell Line, Tumor , Cyanides , Spectroscopy, Fourier Transform Infrared , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry , Ligands
7.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473851

ABSTRACT

N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.


Subject(s)
Coordination Complexes , Heterocyclic Compounds , Methane/analogs & derivatives , Neoplasms , Humans , Silver/chemistry , Gold/chemistry , Caffeine , Anti-Bacterial Agents/pharmacology , Methane/chemistry , Heterocyclic Compounds/chemistry , Coordination Complexes/chemistry
8.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473872

ABSTRACT

The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Methane/analogs & derivatives , Humans , Selenocysteine , Thioredoxin-Disulfide Reductase/metabolism , Antineoplastic Agents/pharmacology , Gold/chemistry , Coordination Complexes/chemistry
9.
J Am Chem Soc ; 146(5): 2959-2966, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270588

ABSTRACT

The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.


Subject(s)
Diazomethane , Heme , Methane/analogs & derivatives , Heme/chemistry , Models, Molecular , Iron , Cyclopropanes/chemistry , Catalysis
10.
J Chem Inf Model ; 64(2): 412-424, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38247361

ABSTRACT

Methods for computational de novo design of inorganic molecules have paved the way for automated design of homogeneous catalysts. Such studies have so far relied on correlation-based prediction models as fitness functions (figures of merit), but the soundness of these approaches has yet to be tested by experimental verification of de novo-designed catalysts. Here, a previously developed criterion for the optimization of dative ligands L in ruthenium-based olefin metathesis catalysts RuCl2(L)(L')(═CHAr), where Ar is an aryl group and L' is a phosphine ligand dissociating to activate the catalyst, was used in de novo design experiments. These experiments predicted catalysts bearing an N-heterocyclic carbene (L = 9) substituted by two N-bound mesityls and two tert-butyl groups at the imidazolidin-2-ylidene backbone to be promising. Whereas the phosphine-stabilized precursor assumed by the prediction model could not be made, a pyridine-stabilized ruthenium alkylidene complex (17) bearing carbene 9 was less active than a known leading pyridine-stabilized Grubbs-type catalyst (18, L = H2IMes). A density functional theory-based analysis showed that the unsubstituted metallacyclobutane (MCB) intermediate generated in the presence of ethylene is the likely resting state of both 17 and 18. Whereas the design criterion via its correlation between the stability of the MCB and the rate-determining barrier indeed seeks to stabilize the MCB, it relies on RuCl2(L)(L')(═CH2) adducts as resting states. The change in resting state explains the discrepancy between the prediction and the actual performance of catalyst 17. To avoid such discrepancies and better address the multifaceted challenges of predicting catalytic performance, future de novo catalyst design studies should explore and test design criteria incorporating information from more than a single relative energy or intermediate.


Subject(s)
Alkenes , Methane/analogs & derivatives , Phosphines , Ruthenium , Thermodynamics , Pyridines
11.
Anal Chem ; 96(2): 934-942, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38165813

ABSTRACT

The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.


Subject(s)
Biosensing Techniques , Methane/analogs & derivatives , Ruthenium , Electrochemical Techniques/methods , Reproducibility of Results , Ampicillin Resistance , Luminescent Measurements/methods , DNA , Biosensing Techniques/methods , Limit of Detection
12.
Macromol Rapid Commun ; 45(3): e2300458, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955104

ABSTRACT

A straightforward approach is employed to synthesize methylene-bridged poly(hetero aromatic)s based on furan, pyrrole, thiophene, and thiophene derivatives. The process involves an electrophilic aromatic substitution reaction facilitated by a visible light-initiated system consisting of manganese decacarbonyl and an iodonium salt. The approach mainly relies on the formation of halomethylium cation, the attack of this cation to heteroaromatic, regeneration of methylium cation on the heteroaromatic, and reactivity differences between halomethylium and heteroaromatic methylium cations for successful polymerizations. This innovative synthetic strategy lead to the formation of polymers with relatively high molecular weights as the stoichiometric imbalance between the comonomers increased. Accordingly, these newly obtained polymers exhibit remarkable fluorescence properties, even at excitation wavelengths as low as 330 nm. Moreover, by harnessing the halogens at chain ends of homopolymers, block copolymers are successfully synthesized, offering opportunities for tailored applications in diverse fields.


Subject(s)
Light , Methane/analogs & derivatives , Polymers , Polymerization , Cations , Thiophenes
13.
J Biochem Mol Toxicol ; 38(1): e23554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37855258

ABSTRACT

This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.


Subject(s)
Methane/analogs & derivatives , Morpholines , Palladium , Molecular Structure , Molecular Docking Simulation , Palladium/chemistry , Ligands , Morpholines/pharmacology
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121774, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36081194

ABSTRACT

In the realm of dye sensitized solar cells (DSSCs), the 3d transition metals as photosensitizers are scarcely studied. In the present work, electronic structures, FMO, MEP surfaces, NBO analysis, energetics and photophysical properties of earth abundant metals (Mn, Fe and Co) based metalloporphyrins coordinated with NHC-carbene have been explored by using DFT and TDDFT calculations. According to formation energies and energy decomposition analysis (EDA), the cobalt based metalloporphyrins species are found to be more stable while in contrast manganese based species are predicted as more reactive among all. Also, from the ligation point of view, the TPP (meso-tetraphenylporphyrin) ligand forms more steady and rigid coordination as compare to the TTP (meso-tetratolylporphyrin) ligand. FMO analysis also support these observations. NBO and SNO results support the electronic configurations as well as unveil the controversial bonding pattern of NHCcarbon and metal atom and found that there is σ-bonding present between the metal and the NHCcarbon by the overlapping of sp-hybridized orbitals of carbenecarbon and sp/d hybrid orbital of the metal atom. TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied species is found under the range of 360 nm - 380 nm (λ) and this may due to the presence of longer π-conjugations. In-depth investigation of this work may help to design new robust energy harvesting systems for high energy conversion efficiency based on earth abundance metals. Our results are in well agreement with the available experimental findings.


Subject(s)
Metalloporphyrins , Porphyrins , Carbon , Cobalt , Electronics , Ligands , Manganese , Metalloporphyrins/chemistry , Metals , Methane/analogs & derivatives , Models, Theoretical , Photosensitizing Agents , Porphyrins/chemistry
15.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232460

ABSTRACT

Reasonable yields of two dendrimers with central tetraphenylmethane and peripheral 3,5-di-(tert-butanoylamino)benzoylpiperazine moieties are prepared. These dendrimers have a void space in the solid state so they adsorb guest molecules. Their BET values vary, depending on the H-bond interaction between the peripheral moiety and the gas molecules, and the dendritic framework that fabricates the void space is flexible. In the presence of polar gas molecules such as CO2, the BET increases significantly and is about 4-8 times the BET under N2. One dendrimer adsorbs cyanobenzene to a level of 436 mg/g, which, to the authors' best knowledge, is almost equivalent to the highest reported value in the literature.


Subject(s)
Dendrimers , Volatile Organic Compounds , Adsorption , Carbon Dioxide , Dendrimers/chemistry , Methane/analogs & derivatives , Terphenyl Compounds
16.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144540

ABSTRACT

The formation of polysubstituted cyclopropane derivatives in the gold(I)-catalyzed reaction of olefins and propargylic esters is a potentially useful transformation to generate diversity, therefore any method in which its stereoselectivity could be controlled is of significant interest. We prepared and tested a series of chiral gold(I)-carbene complexes as a catalyst in this transformation. With a systematic optimization of the reaction conditions, we were able to achieve high enantioselectivity in the test reaction while the cis:trans selectivity of the transformation was independent of the catalyst. Using the optimized conditions, we reacted a series of various olefins and acetylene derivatives to find that, although the reactions proceeded smoothly and the products were usually isolated in good yield and with good to exclusive cis selectivity, the observed enantioselectivity varied greatly and was sometimes moderate at best. We were unable to establish any structure-property relationship, which suggests that for any given reagent combination, one has to identify individually the best catalyst.


Subject(s)
Alkenes , Gold , Alkynes , Catalysis , Cyclopropanes , Esters , Methane/analogs & derivatives , Stereoisomerism
17.
Chem Commun (Camb) ; 58(81): 11458-11461, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36149351

ABSTRACT

An amine and bis(phenylsulfonyl)methane co-catalyzed hydrogen-deuterium exchange (HDE) method via a Michael-retro-Michael pathway for site-selective introduction of deuterium at the α-position of enals using D2O as a deuterium source has been achieved. The mild, operationally simple protocol allows for high yielding and high level deuterium incorporation (up to 99%) for structurally diverse aromatic-derived enals and dienals.


Subject(s)
Amines , Hydrogen , Catalysis , Deuterium , Methane/analogs & derivatives , Sulfones
18.
J Org Chem ; 87(19): 13034-13052, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36153994

ABSTRACT

Palladium-catalyzed functionalization was presently performed on two building blocks: 4-oxazolin-2-ones and 4-methylene-2-oxazolidinones. Direct Heck arylation of 4-oxazolin-2-ones led to a series of 5-aryl-4-oxazolin-2-ones, including analogues with N-chiral auxiliary, in an almost quantitative yield. The Pd(II)-catalyzed homocoupling reaction of 4-oxazolin-2-ones provided novel heterocyclic across-ring dienes. Meanwhile, the intramolecular cross-coupling of N-aryl-4-methylene-2-oxazolidinones furnished a series of oxazolo[3,4-a]indol-3-ones. Further functionalization of 4-methylene-2-oxazolidinones afforded substituted indoles and heterocyclic-fused indoles with aryl, bromo, carbinol, formyl, and vinyl groups. A computational study was carried out to account for the behavior of the formylated derivatives. The currently developed methodology was applied to a new formal total synthesis of ellipticine.


Subject(s)
Ellipticines , Oxazolidinones , Catalysis , Indoles , Methane/analogs & derivatives , Methanol , Palladium
19.
J Org Chem ; 87(19): 13352-13362, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36130043

ABSTRACT

Herein, we report a blue visible-light-promoted approach for preparing a variety of α-substituted γ-ketoester derivatives through carbene insertion and the decarbonylation of enaminones and diazoesters. These reactions use readily available starting materials and transition-metal-free, eco-friendly procedures that are amenable to gram-scale synthesis and wide functional group tolerance. This methodology may be useful for constructing polysubstituted heterocycles with potential biological activity.


Subject(s)
Light , Methane , Methane/analogs & derivatives
20.
Org Biomol Chem ; 20(37): 7503-7518, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36106957

ABSTRACT

We describe a facile-operational, high-yield method for the diastereocontrolled preparation of novel sulfonyl benzofused fluorooxabicyclo[4.2.1]nonanes by a straightforward synthetic route, including (i) NaBH4-mediated reduction of sulfonyl 3-methylene-oxabenzocyclooctan-6-ones and (ii) BF3·OEt2-mediated intramolecular nucleophilic fluorocyclization. The plausible mechanism for the preparation is proposed and discussed. This protocol can easily install a fluoro-atom on the bridged head position in a short time and under mild conditions, resulting in one carbon-carbon and one carbon-fluorine bond formation.


Subject(s)
Alkanes , Fluorine , Carbon , Cyclization , Fluorine/chemistry , Methane/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...