Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Microbiol ; 205(5): 189, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055657

ABSTRACT

A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.


Subject(s)
Methanobacterium , Oil and Gas Fields , Methanobacterium/genetics , Costa Rica , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA , Fatty Acids
2.
Environ Technol ; 34(1-4): 417-28, 2013.
Article in English | MEDLINE | ID: mdl-23530355

ABSTRACT

The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge.


Subject(s)
Bioreactors/microbiology , Dairying , Lipase/metabolism , Microbial Consortia , Wastewater/microbiology , Anaerobiosis , Bacteria/genetics , Biological Oxygen Demand Analysis , Biomass , Fatty Acids, Volatile/analysis , Hydrogen-Ion Concentration , Hydrolysis , Methanobacterium/genetics , Methanobacterium/isolation & purification , Methanosarcinales/genetics , Methanosarcinales/isolation & purification , Oils/metabolism , Penicillium/enzymology , Phylogeny
3.
Am J Primatol ; 73(9): 909-19, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21557284

ABSTRACT

Intestinal methanogenesis is one of the major pathways for consumption of hydrogen produced by bacterial fermentation and is considered to affect the efficiency of host energy harvest; however, little information is available regarding the hydrogenotrophic pathways of nonhuman primates in the wild, in general, and of howler monkeys, in particular. Microbial fermentation of plant structural carbohydrates is an important feature in wild howlers owing to the high fiber and low available energy content of leaves, which make up the primary component of their diet. In contrast, captive howlers may consume greater quantities of fruits and vegetables that are higher in water, lower in fiber, and, along with commercial monkey chow commonly added to captive monkey diets, more readily digestible than the natural diet. In this study, we analyzed the composition of methanogens and sulfate-reducing bacteria (SRB) from fecal samples of black howler monkeys (Alouatta pigra) in the wild and in captivity. The hydrogenotrophic microbiota of three groups of monkeys was evaluated by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, small clone library construction, and quantitative real-time PCR. Abundance of methanogens was lower than SRB in all howler monkey groups studied. DGGE banding patterns were highly similar within each wild and captive group but distinct among groups. Desulfovibrionales-enriched DGGE showed reduced microbial diversity in the captive animals compared with their wild counterparts. Taken together, the data demonstrate that environmental or dietary changes of the host imposed by captivity likely influence the composition of intestinal hydrogenotrophs in black howler monkeys.


Subject(s)
Alouatta/microbiology , Feces/microbiology , Genetic Variation/genetics , Metagenome/genetics , Methanobacterium/genetics , Sulfur-Reducing Bacteria/genetics , Animals , Animals, Wild , Animals, Zoo , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , Electrophoresis, Gel, Pulsed-Field/veterinary , Female , Male , Mexico , Polymerase Chain Reaction/veterinary , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics
4.
Microb Ecol ; 56(2): 390-4, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18165875

ABSTRACT

Rumen methanogens in sheep from Venezuela were examined using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE) profiles prepared from pooled and individual PCR products from the rumen contents from 10 animals. A total of 104 clones were examined, revealing 14 different 16S rRNA gene sequences or phylotypes. Of the 14 phylotypes, 13 (99 of 104 clones) belonged to the genus Methanobrevibacter, indicating that the genus Methanobrevibacter is the most dominant component of methanogen populations in sheep in Venezuela. The largest group of clones (41 clones) was 97.9-98.5% similar to Methanobrevibacter gottschalkii. Two sequences were identified as possible new species, one belonging to the genus Methanobrevibacter and the other belonging to the genus Methanobacterium. DGGE analysis of the rumen contents from individual animals also revealed 14 different bands with a range of 4-9 bands per animal.


Subject(s)
Methanobrevibacter/classification , Methanobrevibacter/isolation & purification , Phylogeny , Rumen/microbiology , Sheep/microbiology , Animals , DNA, Archaeal/analysis , DNA, Ribosomal/analysis , Electrophoresis, Polyacrylamide Gel , Female , Genes, rRNA , Male , Methanobacterium/classification , Methanobacterium/genetics , Methanobacterium/isolation & purification , Methanobrevibacter/genetics , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Venezuela
SELECTION OF CITATIONS
SEARCH DETAIL