Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Adv ; 10(6): eadj4767, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335281

ABSTRACT

Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.


Subject(s)
N-Terminal Acetyltransferase B , Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , N-Terminal Acetyltransferase B/antagonists & inhibitors , N-Terminal Acetyltransferase B/metabolism , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism
2.
Sci Rep ; 13(1): 22326, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102161

ABSTRACT

Isozymes are enzymes that catalyze identical biological reactions, yet exhibit slight variations in structures and catalytic efficiency, which enables the precise adjustment of metabolism to fulfill the specific requirements of a particular tissue or stage of development. Methionine aminopeptidase (MetAP) isozymes function a critical role in cleaving N-terminal methionine from nascent proteins to generate functional proteins. In humans, two distinct MetAP types I and II have been identified, with type I further categorized into cytosolic (MetAP1) and mitochondrial (MetAP1D) variants. However, despite extensive structural studies on both bacterial and human cytosolic MetAPs, the structural information remains unavailable for human mitochondrial MetAP. This study was aimed to elucidate the high-resolution structures of human mitochondrial MetAP1D in its apo-, cobalt-, and methionine-bound states. Through a comprehensive analysis of the determined structures and a docking simulation model with mitochondrial substrate peptides, we present mechanistic insights into the cleavage process of the initiator methionine from mitochondrial proteins. Notably, despite the shared features at the active site between the cytosolic and mitochondrial MetAP type I isozymes, we identified distinct structural disparities within the active-site pocket primarily contributed by two specific loops that could play a role in accommodating specific substrates. These structural insights offer a basis for the further exploration of MetAP isozymes as critical players in cellular processes and potential therapeutic applications.


Subject(s)
Aminopeptidases , Methionine , Humans , Aminopeptidases/metabolism , Isoenzymes , Methionine/metabolism , Methionyl Aminopeptidases/metabolism , Racemethionine
3.
J Cell Physiol ; 238(9): 2103-2119, 2023 09.
Article in English | MEDLINE | ID: mdl-37435895

ABSTRACT

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.


Subject(s)
Leucyl Aminopeptidase , Muscle Development , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins c-akt , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Line , Methionyl Aminopeptidases/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Mice , Leucyl Aminopeptidase/metabolism
4.
Science ; 380(6651): 1238-1243, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37347872

ABSTRACT

N-terminal methionine excision from newly synthesized proteins, catalyzed cotranslationally by methionine aminopeptidases (METAPs), is an essential and universally conserved process that plays a key role in cell homeostasis and protein biogenesis. However, how METAPs interact with ribosomes and how their cleavage specificity is ensured is unknown. We discovered that in eukaryotes the nascent polypeptide-associated complex (NAC) controls ribosome binding of METAP1. NAC recruits METAP1 using a long, flexible tail and provides a platform for the formation of an active methionine excision complex at the ribosomal tunnel exit. This mode of interaction ensures the efficient excision of methionine from cytosolic proteins, whereas proteins targeted to the endoplasmic reticulum are spared. Our results suggest a broader mechanism for how access of protein biogenesis factors to translating ribosomes is controlled.


Subject(s)
Methionine , Methionyl Aminopeptidases , Protein Biosynthesis , Methionine/metabolism , Methionyl Aminopeptidases/metabolism , Ribosomes/metabolism , Humans , Animals
5.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140881, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36396098

ABSTRACT

In almost all living cells, methionine aminopeptidase (MetAP) co-translationally cleaves the initiator methionine in at least 70% of the newly synthesized polypeptides. MetAPs are typically classified into Type 1 and Type 2. While prokaryotes and archaea contain only either Type 1 or Type 2 MetAPs respectively, eukaryotes contain both types of enzymes. Almost all MetAPs published till date cleave only methionine from the amino terminus of the substrate peptides. Earlier experiments on crude Type 2a MetAP isolated from Pyrococcus furiosus (PfuMetAP2a) cosmid protein library was shown to cleave leucine in addition to methionine. Authors in that study have ruled out the PfuMetAP2a activity against leucine substrates and assumed it to be a background reaction contributed by other contaminating proteases. In the current paper, using the pure recombinant enzyme, we report that indeed activity against leucine is directly carried out by the PfuMetAP2a. In addition, the natural product ovalicin which is a specific covalent inhibitor of Type 2 MetAPs does not show efficient inhibition against the PfuMetAP2a. Bioinformatic analysis suggested that a glycine in eukaryotic MetAP2s (G222 in human MetAP2b) and asparagine (N53 in PfuMetAP2a) in archaeal MetAP2s positioned at the analogous position. N53 side chain forms a hydrogen bond with a conserved histidine (H62) at the entrance of the active site and alters its orientation to accommodate the ovalicin. This slight orientational difference of the H62, reduces affinity of the ovalicin by 300,000-fold when compared with the HsMetAP2b inhibition. This difference in the activity is partly reduced in the case of N53G mutation of the PfuMetAP2a.


Subject(s)
Aminopeptidases , Archaea , Humans , Amino Acid Sequence , Aminopeptidases/genetics , Aminopeptidases/metabolism , Archaea/genetics , Leucine , Methionine , Methionyl Aminopeptidases/chemistry , Methionyl Aminopeptidases/genetics , Methionyl Aminopeptidases/metabolism
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361800

ABSTRACT

Methionine aminopeptidases (MetAPs) catalyze the cleavage of the N-terminal initiator methionine (iMet) in new peptide chains and arylamides, which is essential for protein and peptide synthesis. MetAP is differentially expressed in two diamondback moth (DBM; Plutella xylostella) strains: the G88 susceptible strain and the Cry1S1000 strain, which are resistant to the Bt toxin Cry1Ac, implicating that MetAP expression might be associated with Bt resistance. In this study, we identified and cloned a MetAP gene from DBMs, named PxMetAP1, which has a CDS of 1140 bp and encodes a 379 amino acid protein. The relative expression of PxMetAP1 was found to be ~2.2-fold lower in the Cry1S1000 strain compared to that in the G88 strain. PxMetAP1 presents a stage- and tissue-specific expression pattern, with higher levels in the eggs, adults, integument, and fatbody of DBMs. The linkage between PxMetAP1 and Cry1Ac resistance is verified by genetic linkage analysis. The knockout of PxMetAP1 in G88 by CRISPR/Cas9 leads to a ~5.6-fold decrease in sensitivity to the Cry1Ac toxin, further supporting the association between the PxMetAP1 gene and Bt tolerance. Our research sheds light on the role of MetAP genes in the development of Bt tolerance in P. xylostella and enriches the knowledge for the management of such a cosmopolitan pest.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Insecticide Resistance/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Moths/metabolism , Methionyl Aminopeptidases/metabolism , Methionine/metabolism , Larva/metabolism
7.
Bioorg Chem ; 115: 105185, 2021 10.
Article in English | MEDLINE | ID: mdl-34329997

ABSTRACT

Methionine aminopeptidases (MetAPs) are an important class of enzymes that work co-translationally for the removal of initiator methionine. Chemical inhibition or gene knockdown is lethal to the microbes suggesting that they can be used as antibiotic targets. However, sequence and structural similarity between the microbial and host MetAPs has been a challenge in the identification of selective inhibitors. In this study, we have analyzed several thousands of MetAP sequences and established a pattern of variation in the S1 pocket of the enzyme. Based on this knowledge, we have designed a library of 17 azaindole based hydroxamic acid derivatives which selectively inhibited the MetAP from H. pylori compared to the human counterpart. Structural studies provided the molecular basis for the selectivity.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Helicobacter pylori/enzymology , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Methionyl Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Design , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/chemistry , Helicobacter pylori/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Methionyl Aminopeptidases/chemistry , Methionyl Aminopeptidases/metabolism , Models, Molecular
8.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805528

ABSTRACT

The first amino acid of a protein has an important influence on its metabolic stability. A number of ubiquitin ligases contain binding domains for different amino-terminal residues of their substrates, also known as N-degrons, thereby mediating turnover. This review summarizes, in an exemplary way, both older and more recent findings that unveil how destabilizing amino termini are generated. In most cases, a step of proteolytic cleavage is involved. Among the over 500 proteases encoded in the genome of higher eukaryotes, only a few are known to contribute to the generation of N-degrons. It can, therefore, be expected that many processing paths remain to be discovered.


Subject(s)
Methionyl Aminopeptidases/metabolism , Proteins/metabolism , Ribosomes/metabolism , Bacterial Proteins/metabolism , Caspases/metabolism , Endopeptidases/metabolism , Endoplasmic Reticulum , Humans , Protein Sorting Signals , Proteins/chemistry , Proteolysis , Ubiquitin-Protein Ligases/metabolism
9.
Cancer Res ; 81(9): 2510-2521, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33637565

ABSTRACT

Prostate cancer is one of the most common malignancies worldwide, yet limited tools exist for prognostic risk stratification of the disease. Identification of new biomarkers representing intrinsic features of malignant transformation and development of prognostic imaging technologies are critical for improving treatment decisions and patient survival. In this study, we analyzed radical prostatectomy specimens from 422 patients with localized disease to define the expression pattern of methionine aminopeptidase II (MetAP2), a cytosolic metalloprotease that has been identified as a druggable target in cancer. MetAP2 was highly expressed in 54% of low-grade and 59% of high-grade cancers. Elevated levels of MetAP2 at diagnosis were associated with shorter time to recurrence. Controlled self-assembly of a synthetic small molecule enabled design of the first MetAP2-activated PET imaging tracer for monitoring MetAP2 activity in vivo. The nanoparticles assembled upon MetAP2 activation were imaged in single prostate cancer cells with post-click fluorescence labeling. The fluorine-18-labeled tracers successfully differentiated MetAP2 activity in both MetAP2-knockdown and inhibitor-treated human prostate cancer xenografts by micro-PET/CT scanning. This highly sensitive imaging technology may provide a new tool for noninvasive early-risk stratification of prostate cancer and monitoring the therapeutic effect of MetAP2 inhibitors as anticancer drugs. SIGNIFICANCE: This study defines MetAP2 as an early-risk stratifier for molecular imaging of aggressive prostate cancer and describes a MetAP2-activated self-assembly small-molecule PET tracer for imaging MetAP2 activity in vivo.


Subject(s)
Methionyl Aminopeptidases/metabolism , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/enzymology , Signal Transduction/genetics , Animals , Antibiotics, Antineoplastic/administration & dosage , Follow-Up Studies , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Male , Methionyl Aminopeptidases/genetics , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , O-(Chloroacetylcarbamoyl)fumagillol/administration & dosage , PC-3 Cells , Prostatic Neoplasms/pathology , Risk Assessment/methods , Tissue Distribution , Transfection , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
10.
Eur J Med Chem ; 209: 112883, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33035924

ABSTRACT

Methionine aminopeptidases (MetAPs) have been recognized as drug targets and have been extensively studied for discovery of selective inhibitors. MetAPs are essential enzymes in all living cells. While most prokaryotes contain a single gene, some prokaryotes and all eukaryotes including human have redundancy. Due to the similarity in the active sites of the MetAP enzyme between the pathogens and human limited the success of discovering selective inhibitors. We recently have discovered that MetAPs with small inserts within the catalytic domain to have different susceptibilities against some inhibitors compared to those that do not have. Using this clue we used bioinformatic tools to identify new variants of MetAPs with inserts in pathogenic species. Two new isoforms were identified in Vibrio species with two and three inserts in addition to an isoform without any insert. Multiple sequence alignment suggested that inserts are conserved in several of the Vibrio species. Two of the three inserts are common between two and three insert isoforms. One of the inserts is identified to have "NNKNN" motif that is similar to well-characterized quorum sensing peptide, "NNWNN". Another insert is predicted to have a posttranslational modification site. Three Vibrio proteins were cloned, expressed, purified, enzyme kinetics established and inhibitor screening has been performed. Several of the pyridinylpyrimidine derivatives selectively inhibited MetAPs with inserts compared to those that do not have, including the human enzyme. Crystal structure and molecular modeling studies provide the molecular basis for selective inhibition.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Methionyl Aminopeptidases/antagonists & inhibitors , Vibrio/enzymology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain/drug effects , Crystallography, X-Ray , Humans , Methionyl Aminopeptidases/chemistry , Methionyl Aminopeptidases/metabolism , Molecular Docking Simulation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Vibrio/chemistry , Vibrio/metabolism
11.
Eur J Med Chem ; 208: 112841, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32998089

ABSTRACT

In this study, (S)-naproxen thiosemicarbazides (3a-d), 1,2,4-triazoles (4a-c), triazole-thioether hybride compounds (5a-p) were synthesized and their structures (3a, 3d, 4a and 5a-p) were confirmed by FT-IR, 1H NMR,13C NMR, HR-Mass spectra and elemental analysis. These compounds are designed to inhibit methionine amino peptidase-2 (MetAP2) enzyme in prostate cancer. These compounds (3d, 5a-p) evaluated against androgen-independent prostate adenocarcinoma (PC-3, DU-145) and androgen-dependent prostate adenocarcinoma (LNCaP) cell lines by using MTS method. Compounds 5a, 5b, 5d and 5e showed 14.2, 5.8, 10.8 and 8.4 µM anticancer activity against PC-3 cell lines, compounds 5e, 5g and 5n presented anticancer activity against DU-145 cell lines 18.8, 12.25 and 10.2 µM, and compounds 5g, 5m and 5n exhibited anticancer activity against LNCaP cell lines 12.25, 22.76 and 2.21 µM, respectively. Consequently, of these results, compounds 5e and 5n showed the highest activities against androgen dependent and independent prostate cancer cell lines, so these compounds could be potent small molecules against prostate cancer. Furthermore, mitogen-activated protein kinase (MAPK) pathway activation, AKT (protein kinase B) phosphorylation and androgen receptor activation of compound 5n (SGK636) were investigated in LNCaP cells by using Western blot method. Compound 5n (SGK636) was also tested against mRNA expression analysis of the Bax, Bcl-2, Caspase 3, Caspase 9 by using real-time PCR analysis. Compound 5n was given to nude male mice with cancer in comparison to the control group. Compound 5n was found to reverse the malignant phenotype in the nude male mice, whereas the prostate cancer progressed in the control group. Analysis of some blood parameters in the study showed that they were within the normal values with respect to the control. The blood values of the animals treated according to the control group also exhibited compliance with the blood limit values. Molecular docking and dynamics simulation of compound 5n binding to Methionine Aminopeptidase 2 (MetAP2) enzyme rationalized its potential activity. In addition, inhibition assay MetAP2 enzyme of compound 5n was evaluated. Taken together, we suggest compound 5n to be a potential candidate for prostate cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Naproxen/analogs & derivatives , Naproxen/therapeutic use , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Male , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism , Mice, Nude , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Naproxen/metabolism , Protein Binding , Stereoisomerism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 30(21): 127533, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32919012

ABSTRACT

Structure-based led optimisation of orally active reversible Methionine Aminopeptidase-2 (MetAP-2) inhibitors utilising a 'molecular budget' medicinal chemistry strategy is described. The key physicochemical parameters of target molecules (cLogP, molecular size and H-bond donor count) were monitored through straightforward and intuitive use of atom count and distribution. The balance between structure-based design and an awareness of the physicochemical properties of the compounds synthesised enabled the rapid identification of a potent molecule with good oral pharmacokinetic (PK) characteristics by making fewer, higher quality compounds. The resulting candidate quality molecule was validated in a mechanistic cellular assay and a rodent secondary immunisation model.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Methionyl Aminopeptidases/antagonists & inhibitors , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Methionyl Aminopeptidases/metabolism , Molecular Structure , Structure-Activity Relationship
13.
Int J Mol Sci ; 21(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708166

ABSTRACT

During the metastasis process, tumor cells invade the blood circulatory system directly from venous capillaries or indirectly via lymphatic vessels. Understanding the relative contribution of each pathway and identifying the molecular targets that affect both processes is critical for reducing cancer spread. Methionine aminopeptidase 2 (MetAp2) is an intracellular enzyme known to modulate angiogenesis. In this study, we investigated the additional role of MetAp2 in lymphangiogenesis. A histological staining of tumors from human breast-cancer donors was performed in order to detect the level and the localization of MetAp2 and lymphatic capillaries. The basal enzymatic level and activity in vascular and lymphatic endothelial cells were compared, followed by loss of function studies determining the role of MetAp2 in lymphangiogenesis in vitro and in vivo. The results from the histological analyses of the tumor tissues revealed a high MetAp2 expression, with detectable sites of co-localization with lymphatic capillaries. We showed slightly reduced levels of the MetAp2 enzyme and MetAp2 mRNA expression and activity in primary lymphatic cells when compared to the vascular endothelial cells. The genetic and biochemical manipulation of MetAp2 confirmed the dual activity of the enzyme in both vascular and lymphatic remodulation in cell function assays and in a zebrafish model. We found that cancer-related lymphangiogenesis is inhibited in murine models following MetAp2 inhibition treatment. Taken together, our study provides an indication that MetAp2 is a significant contributor to lymphangiogenesis and carries a dual role in both vascular and lymphatic capillary formation. Our data suggests that MetAp2 inhibitors can be effectively used as anti-metastatic broad-spectrum drugs.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Cell Proliferation/genetics , Endothelial Cells/metabolism , Lymphangiogenesis/genetics , Lymphatic Metastasis/genetics , Methionyl Aminopeptidases/metabolism , Neovascularization, Pathologic/metabolism , Animals , Animals, Genetically Modified , Cell Line, Tumor , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Endothelium, Vascular/metabolism , Humans , Lymphatic Metastasis/pathology , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Male , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/genetics , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/enzymology , O-(Chloroacetylcarbamoyl)fumagillol/pharmacology , Xenograft Model Antitumor Assays , Zebrafish
14.
Drug Des Devel Ther ; 14: 1263-1277, 2020.
Article in English | MEDLINE | ID: mdl-32280198

ABSTRACT

INTRODUCTION: CLBQ14, a derivative of 8-hydroxyquinoline, exerts its chemotherapeutic effect by inhibiting methionine aminopeptidase (MetAP), the enzyme responsible for the post-translational modification of several proteins and polypeptides. MetAP is a novel target for infectious diseases. CLBQ14 is selective and highly potent against replicating and latent Mycobacterium tuberculosis making it an appealing lead for further development. METHODS: The physicochemical properties (solubility, pH stability and lipophilicity), in vitro plasma stability and metabolism, pre-clinical pharmacokinetics, plasma protein binding and tissue distribution of CLBQ14 in adult male Sprague-Dawley rats were characterized. RESULTS: At room temperature, CLBQ14 is practically insoluble in water (<0.07 mg/mL) but freely soluble in dimethyl acetamide (>80 mg/mL); it has a log P value of 3.03 ± 0.04. CLBQ14 exhibits an inverse Z-shaped pH decomposition profile; it is stable at acidic pH but is degraded at a faster rate at basic pH. It is highly bound to plasma proteins (>91%), does not partition to red blood cells (B/P ratio: 0.83 ± 0.03), and is stable in mouse, rat, monkey and human plasma. CLBQ14 exhibited a bi-exponential pharmacokinetics after intravenous administration in rats, bioavailability of 39.4 and 90.0%, respectively from oral and subcutaneous route. We observed a good correlation between predicted and observed rat clearance, 1.90 ± 0.17 L/kg/h and 1.67 ± 0.08 L/kg/h, respectively. Human hepatic clearance predicted from microsomal stability data and from the single species scaling were 0.80 L/hr/kg and 0.69 L/h/kg, respectively. CLBQ14 is extensively distributed in rats; following a 5 mg/kg intravenous administration, lowest and highest concentrations of 15.6 ± 4.20 ng/g of heart and 405.9 ± 77.11 ng/g of kidneys, respectively, were observed. In vitro CYP reaction phenotyping demonstrates that CLBQ14 is metabolized primarily by CYP 1A2. CONCLUSION: CLBQ14 possess appealing qualities of a drug candidate. The studies reported herein are imperative to the development of CLBQ14 as a new chemical entity for infectious diseases.


Subject(s)
Communicable Diseases/drug therapy , Enzyme Inhibitors/pharmacokinetics , Methionyl Aminopeptidases/antagonists & inhibitors , Oxyquinoline/analogs & derivatives , Animals , Chemistry, Physical , Communicable Diseases/metabolism , Enzyme Inhibitors/blood , Enzyme Inhibitors/chemistry , Heart , Humans , Kidney , Macaca fascicularis , Male , Methionyl Aminopeptidases/metabolism , Mice , Molecular Structure , Oxyquinoline/blood , Oxyquinoline/chemistry , Oxyquinoline/pharmacokinetics , Rats , Rats, Sprague-Dawley , Thermodynamics , Tissue Distribution
15.
Curr Comput Aided Drug Des ; 16(4): 389-401, 2020.
Article in English | MEDLINE | ID: mdl-31244429

ABSTRACT

BACKGROUND: The great emergence of multi-resistant bacterial strains and the low renewal of antibiotics molecules are leading human and veterinary medicine to certain therapeutic impasses. Therefore, there is an urgent need to find new therapeutic alternatives including new molecules in the current treatments of infectious diseases. Methionine aminopeptidase (MetAP) is a promising target for developing new antibiotics because it is essential for bacterial survival. OBJECTIVE: To screen for potential MetAP inhibitors by in silico virtual screening of the ZINC database and evaluate the best potential lead molecules by in vitro studies. METHODS: We have considered 200,000 compounds from the ZINC database for virtual screening with FlexX software to identify potential inhibitors against bacterial MetAP. Nine chemical compounds of the top hits predicted were purchased and evaluated in vitro. The antimicrobial activity of each inhibitor of MetAP was tested by the disc-diffusion assay against one Gram-positive (Staphylococcus aureus) and two Gram-negative (Escherichia coli & Pseudomonas aeruginosa) bacteria. Among the studied compounds, compounds ZINC04785369 and ZINC03307916 showed promising antibacterial activity. To further characterize their efficacy, the minimum inhibitory concentration was determined for each compound by the microdilution method which showed significant results. RESULTS: These results suggest compounds ZINC04785369 and ZINC03307916 as promising molecules for developing MetAP inhibitors. CONCLUSION: Furthermore, they could therefore serve as lead molecules for further chemical modifications to obtain clinically useful antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Methionyl Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/enzymology , Bacterial Infections/drug therapy , Bacterial Proteins/metabolism , Databases, Pharmaceutical , Enzyme Inhibitors/chemistry , Humans , Methionyl Aminopeptidases/metabolism
16.
JCI Insight ; 5(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31877115

ABSTRACT

The ciliopathies Bardet-Biedl syndrome and Alström syndrome are genetically inherited pleiotropic disorders with hyperphagia and obesity as primary clinical features. Methionine aminopeptidase 2 inhibitors (MetAP2i) have been shown in preclinical and clinical studies to reduce food intake, body weight, and adiposity. Here, we investigated the effects of MetAP2i administration in a mouse model of ciliopathy produced by conditional deletion of the Thm1 gene in adulthood. Thm1 conditional knockout (cko) mice showed decreased hypothalamic proopiomelanocortin expression as well as hyperphagia, obesity, metabolic disease, and hepatic steatosis. In obese Thm1-cko mice, 2-week administration of MetAP2i reduced daily food intake and reduced body weight 17.1% from baseline (vs. 5% reduction for vehicle). This was accompanied by decreased levels of blood glucose, insulin, and leptin. Further, MetAP2i reduced gonadal adipose depots and adipocyte size and improved liver morphology. This is the first report to our knowledge of MetAP2i reducing hyperphagia and body weight and ameliorating metabolic indices in a mouse model of ciliopathy. These results support further investigation of MetAP2 inhibition as a potential therapeutic strategy for ciliary-mediated forms of obesity.


Subject(s)
Body Weight/drug effects , Ciliopathies/complications , Ciliopathies/metabolism , Eating/drug effects , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism , Obesity/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blood Glucose/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Fatty Liver/metabolism , Leptin/metabolism , Liver/metabolism , Liver/pathology , Male , Methionyl Aminopeptidases/drug effects , Methionyl Aminopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Transcriptome
17.
Elife ; 82019 11 19.
Article in English | MEDLINE | ID: mdl-31741433

ABSTRACT

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Cullin Proteins , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Methionyl Aminopeptidases/metabolism , Mice , Mice, Nude , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcriptome , Ubiquitin-Protein Ligases/genetics , YAP-Signaling Proteins , rhoA GTP-Binding Protein/metabolism
18.
J Pharmacol Exp Ther ; 371(2): 299-308, 2019 11.
Article in English | MEDLINE | ID: mdl-31537613

ABSTRACT

Target-engagement pharmacodynamic (PD) biomarkers are valuable tools in the prioritization of drug candidates, especially for novel, first-in-class mechanisms whose robustness to alter disease outcome is unknown. Methionine aminopeptidase 2 (MetAP2) is a cytosolic metalloenzyme that cleaves the N-terminal methionine from nascent proteins. Inhibition of MetAP2 leads to weight loss in obese rodents, dogs and humans. However, there is a need to develop efficacious compounds that specifically inhibit MetAP2 with an improved safety profile. The objective of this study was to identify a PD biomarker for selecting potent, efficacious compounds and for predicting clinical efficacy that would result from inhibition of MetAP2. Here we report the use of NMet14-3-3γ for this purpose. Treatment of primary human cells with MetAP2 inhibitors resulted in an approx. 10-fold increase in NMet14-3-3γ levels. Furthermore, treatment of diet-induced obese mice with these compounds reduced body weight (approx. 20%) and increased NMet14-3-3γ (approx. 15-fold) in adipose tissues. The effects on target engagement and body weight increased over time and were dependent on dose and administration frequency of compound. The relationship between compound concentration in plasma, NMet14-3-3γ in tissue, and reduction of body weight in obese mice was used to generate a pharmacokinetic-pharmacodynamic-efficacy model for predicting efficacy of MetAP2 inhibitors in mice. We also developed a model for predicting weight loss in humans using a target engagement PD assay that measures inhibitor-bound MetAP2 in blood. In summary, MetAP2 target engagement biomarkers can be used to select efficacious compounds and predict weight loss in humans. SIGNIFICANCE STATEMENT: The application of target engagement pharmacodynamic biomarkers during drug development provides a means to determine the dose required to fully engage the intended target and an approach to connect the drug target to physiological effects. This work exemplifies the process of using target engagement biomarkers during preclinical research to select new drug candidates and predict clinical efficacy. We determine concentration of MetAP2 antiobesity compounds needed to produce pharmacological activity in primary human cells and in target tissues from an appropriate animal model and establish key relationships between pharmacokinetics, pharmacodynamics, and efficacy, including the duration of effects after drug administration. The biomarkers described here can aid decision-making in early clinical trials of MetAP2 inhibitors for the treatment of obesity.


Subject(s)
Chlorobenzenes/pharmacology , Cinnamates/pharmacology , Cyclohexanes/pharmacology , Epoxy Compounds/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism , Sesquiterpenes/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Biomarkers/metabolism , Chlorobenzenes/chemistry , Cinnamates/chemistry , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Epoxy Compounds/chemistry , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Predictive Value of Tests , Sesquiterpenes/chemistry , Treatment Outcome
19.
Biochem Biophys Res Commun ; 516(4): 1123-1129, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31284952

ABSTRACT

Methionine aminopeptidase 2 (MetAP2) is one of the effector proteins of S100A4, a metastasis-associated calcium-binding protein. This interaction is involved in angiogenesis. The region of MetAP2 that interacts with S100A4 includes amino acids 170 to 208. A peptide corresponding to this region, named as NBD, has potent anti-angiogenic activity and suppresses tumor growth in a xenograft cancer model. However, the binding mode of NBD to S100A4 was totally unknown. Here we describe our analysis of the relationship between the inhibitory activity and the structure of NBD, which adopts a characteristic helix-turn-helix structure as shown by X-ray crystallographic analysis, and peptide fragments of NBD. We conducted physicochemical analyses of the interaction between S100A4 and the peptides, including surface plasmon resonance, microscale thermophoresis, and circular dichroism, and performed docking/molecular dynamics simulations. Active peptides had stable secondary structures, whereas inactive peptides had a little secondary structure. A computational analysis of the interaction mechanism led to the design of a peptide smaller than NBD, NBD-ΔN10, that possessed inhibitory activity. Our study provides a strategy for design for a specific peptide inhibitor against S100A4 that can be applied to the discovery of inhibitors of other protein-protein interactions.


Subject(s)
Methionyl Aminopeptidases/chemistry , Peptides/chemistry , Peptides/pharmacology , S100 Calcium-Binding Protein A4/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Design , Humans , Methionyl Aminopeptidases/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Secondary , S100 Calcium-Binding Protein A4/metabolism
20.
Int J Biol Macromol ; 129: 523-529, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30763644

ABSTRACT

Methionine aminopeptidases (MetAPs) are a class of enzymes evolved to cleave initiator methionine in 60-70% of the total cellular proteins in all living cells. Based on their sequence differences, they are classified into Type 1 and Type 2. Type 1 is further divided into Type 1a, 1a', 1b, 1c and 1d. Irrespective of various classifications, all MetAPs reported till date displayed hydrolytic activity against peptides that contain only methionine on the N-terminus. A cysteine at the top of the active site in all the Type 1 structures is reported to be critical for the specificity. Mutation of this cysteine to serine or asparagine leads to loss of specificity. In the present study, we have identified a class of MetAPs in some of the proteobacteria that have an asparagine at this site. Most of the proteobacteria that contain MetAP1n are pathogenic in nature. Biochemical and structural studies on two proteins, one from each of V. coralliilyticus and K. pneumoniae confirm that these enzymes cleave leucine in addition to methionine. Crystallographic and homology modeling studies suggest that relaxed substrate specificity of this new class of enzymes could be due to the increased flexibility in the active site. Since this new class has an asparagine at the critical position that probably contributes for the relaxed substrate specificity and also differentiates them from other Type 1 MetAPs, we classified them as Type 1n.


Subject(s)
Methionyl Aminopeptidases/metabolism , Amino Acid Sequence , Amino Acid Substitution , Catalytic Domain , Hydrogen-Ion Concentration , Methionyl Aminopeptidases/chemistry , Methionyl Aminopeptidases/genetics , Mutation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...