Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biochem Biophys Res Commun ; 584: 7-14, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34753066

ABSTRACT

Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Checkpoint Kinase 1/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Administration, Oral , Aminohydrolases/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Checkpoint Kinase 1/metabolism , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Female , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multifunctional Enzymes/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544865

ABSTRACT

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, Pteropus alecto. We used the complementary RNAi and CRISPR libraries to interrogate P. alecto cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.


Subject(s)
Aminohydrolases/genetics , COVID-19/genetics , Formate-Tetrahydrofolate Ligase/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multienzyme Complexes/genetics , Pandemics , Aminohydrolases/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , Cell Line , Chiroptera/genetics , Chiroptera/virology , Formate-Tetrahydrofolate Ligase/antagonists & inhibitors , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Minor Histocompatibility Antigens , Multienzyme Complexes/antagonists & inhibitors , RNA Viruses/genetics , SARS-CoV-2/pathogenicity , Virus Replication/genetics , COVID-19 Drug Treatment
3.
J Med Chem ; 64(15): 11288-11301, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34337952

ABSTRACT

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) plays an important role in one-carbon metabolism. The MTHFD2 gene is upregulated in various cancers but very low or undetectable in normal proliferating cells, and therefore a potential target for cancer treatment. In this study, we present the structure of MTHFD2 in complex with xanthine derivative 15, which allosterically binds to MTHFD2 and coexists with the substrate analogue. A kinetic study demonstrated the uncompetitive inhibition of MTHFD2 by 15. Allosteric inhibitors often provide good selectivity and, indeed, xanthine derivatives are highly selective for MTHFD2. Moreover, several conformational changes were observed upon the binding of 15, which impeded the binding of the cofactor and phosphate to MTHFD2. To the best of our knowledge, this is the first study to identify allosteric inhibitors targeting the MTHFD family and our results would provide insights on the inhibition mechanism of MTHFD proteins and the development of novel inhibitors.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Xanthine/pharmacology , Allosteric Site/drug effects , Aminohydrolases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Models, Molecular , Molecular Structure , Multifunctional Enzymes/metabolism , Structure-Activity Relationship , Xanthine/chemical synthesis , Xanthine/chemistry
4.
Nat Commun ; 12(1): 1940, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782411

ABSTRACT

Metabolic enzymes and metabolites display non-metabolic functions in immune cell signalling that modulate immune attack ability. However, whether and how a tumour's metabolic remodelling contributes to its immune resistance remain to be clarified. Here we perform a functional screen of metabolic genes that rescue tumour cells from effector T cell cytotoxicity, and identify the embryo- and tumour-specific folate cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). Mechanistically, MTHFD2 promotes basal and IFN-γ-stimulated PD-L1 expression, which is necessary for tumourigenesis in vivo. Moreover, IFN-γ stimulates MTHFD2 through the AKT-mTORC1 pathway. Meanwhile, MTHFD2 drives the folate cycle to sustain sufficient uridine-related metabolites including UDP-GlcNAc, which promotes the global O-GlcNAcylation of proteins including cMYC, resulting in increased cMYC stability and PD-L1 transcription. Consistently, the O-GlcNAcylation level positively correlates with MTHFD2 and PD-L1 in pancreatic cancer patients. These findings uncover a non-metabolic role for MTHFD2 in cell signalling and cancer biology.


Subject(s)
Aminohydrolases/genetics , B7-H1 Antigen/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multifunctional Enzymes/genetics , Pancreatic Neoplasms/genetics , Protein Processing, Post-Translational , T-Lymphocytes, Cytotoxic/immunology , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Cell Line, Tumor , Embryo, Mammalian , Fibroblasts/immunology , Fibroblasts/pathology , Folic Acid/immunology , Folic Acid/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/immunology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden , Tumor Escape , Uridine Diphosphate N-Acetylglucosamine/metabolism , Xenograft Model Antitumor Assays
5.
Theranostics ; 11(8): 3661-3675, 2021.
Article in English | MEDLINE | ID: mdl-33664854

ABSTRACT

Rationale: Lung adenocarcinoma (LUAD) is an aggressive disease with high propensity of metastasis. Among patients with early-stage disease, more than 30% of them may relapse or develop metastasis. There is an unmet medical need to stratify patients with early-stage LUAD according to their risk of relapse/metastasis to guide preventive or therapeutic approaches. In this study, we identified 4 genes that can serve both therapeutic and diagnostic (theranostic) purposes. Methods: Three independent datasets (GEO, TCGA, and KMPlotter) were used to evaluate gene expression profile of patients with LUAD by unbiased screening approach. Upon significant genes uncovered, functional enrichment analysis was carried out. The predictive power of their expression on patient prognosis were evaluated. Once confirmed their theranostic roles by integrated bioinformatics, we further conducted in vitro and in vivo validation. Results: We found that four genes (ADAM9, MTHFD2, RRM2, and SLC2A1) were associated with poor patient outcomes with an increased hazard ratio in LUAD. Knockdown of them, both separately and simultaneously, suppressed lung cancer cell proliferation and migration ability in vitro and prolonged survival time in metastatic tumor mouse models. Moreover, these four biomarkers were found to be overexpressed in tumor tissues from LUAD patients, and the total immunohistochemical staining scores correlated with poor prognosis. Conclusions: These results suggest that these four identified genes could be theranostic biomarkers for stratifying high-risk patients who develop relapse/metastasis in early-stage LUAD. Developing therapeutic approaches for the four biomarkers may benefit early-stage LUAD patients after surgery.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/secondary , Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , A549 Cells , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Adenocarcinoma of Lung/surgery , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockdown Techniques , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/genetics , HEK293 Cells , Humans , Lung Neoplasms/surgery , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Mice , Mice, SCID , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/genetics , Precision Medicine , Prognosis , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/genetics , Risk Factors , Transcriptome , Xenograft Model Antitumor Assays
6.
Drug Discov Today ; 26(3): 817-825, 2021 03.
Article in English | MEDLINE | ID: mdl-33316375

ABSTRACT

Folate-mediated one-carbon metabolism (FOCM) supports vital events for the growth and survival of proliferating cells. Nucleotide synthesis and DNA methylation are the biochemical bases of cancers that are highly dependent on FOCM. Recent studies revealed that FOCM is connected with redox homeostasis and epigenetics in cancer. Furthermore, folate-metabolizing enzymes, such as serine hydroxymethyltransferase 2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), are associated with the development of cancers, including breast cancer, highlighting their potential application in tumor-targeted therapy. Therefore, targeting metabolizing enzymes, especially SHMT2 and MTHFD2, provides a novel strategy for cancer treatment. In this review, we outline current understanding of the functions of SHMT2 and MTHFD2, discussing their expression, potential functions, and regulatory mechanism in cancers. Furthermore, we discuss examples of inhibitors of SHMT2 and MTHFD2.


Subject(s)
Molecular Targeted Therapy , Neoplasms/drug therapy , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/metabolism , Animals , Carbon/metabolism , Cell Survival/physiology , DNA Methylation/genetics , Folic Acid/metabolism , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Glycine Hydroxymethyltransferase/metabolism , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/metabolism , Neoplasms/pathology
7.
Mol Cancer Ther ; 19(11): 2245-2255, 2020 11.
Article in English | MEDLINE | ID: mdl-32879053

ABSTRACT

One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Energy Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Targeted Therapy , Neoplasms/metabolism , Aminohydrolases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biomarkers , Carbon/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Molecular Targeted Therapy/methods , Multifunctional Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/pathology , Serine/biosynthesis
8.
J Med Chem ; 62(22): 10204-10220, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31638799

ABSTRACT

We report the discovery of a potent and isozyme-selective MTHFD2 inhibitor, DS18561882 (2). Through investigation of the substituents on our tricyclic coumarin scaffold (1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one), MTHFD2 inhibitory activity was shown to be elevated by incorporating an amine moiety at the 8-position and a methyl group at the 7-position of the initial lead 1. X-ray structure analysis revealed that a key interaction for enhanced potency was salt bridge formation between the amine moiety and the diphosphate linker of an NAD+ cofactor. Furthermore, ortho-substituted sulfonamide in place of benzoic acid of 1 significantly improved cell permeability and cell-based growth inhibition against a human breast cancer cell line. The thus-optimized DS18561882 showed the strongest cell-based activity (GI50 = 140 nM) in the class, a good oral pharmacokinetic profile, and thereby tumor growth inhibition in a mouse xenograft model upon oral administration.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Female , Humans , Male , Mice, Inbred BALB C , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
J Natl Cancer Inst ; 111(6): 584-596, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30534944

ABSTRACT

BACKGROUND: Overcoming oxidative stress is a critical step for tumor progression; however, the underlying mechanisms in colorectal cancer (CRC) remain unclear. METHODS: We investigated nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent enzyme methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, clinical relevance, redox modification, and molecular mechanisms using the CRC cells and tissues (n = 462 paired samples). The antitumor effects of MTHFD2 inhibitor LY345899 on CRC tumorigenesis and metastasis were evaluated in vitro and in vivo. Data analysis used Kaplan-Meier, Pearson's correlation, and Student t test where appropriate. All statistical tests were two-sided. RESULTS: Here, we report that the patients with high expression of MTHFD2 have a shorter overall survival (HR = 1.62, 95% CI = 1.12 to 2.36, P = .01) and disease-free survival (HR = 1.55, 95% CI = 1.07 to 2.27, P = .02) than patients with low MTHFD2 expression. Suppression of MTHFD2 disturbs NADPH and redox homeostasis and accelerates cell death under oxidative stress, such as hypoxia or anchorage independence (P ≤ .01 for all). Also, genetic or pharmacological inhibition of MTHFD2 suppresses CRC cell growth and lung and peritoneal metastasis in cell-based xenografts (n = 5-8 mice per group). Importantly, LY345899 treatment statistically significantly suppresses tumor growth and decreases the tumor weight in CRC patient-derived xenograft models (n = 10 mice per group, mean [SD] tumor weight of the vehicle-treated group was 1.83 [0.19] mg vs 0.74 [0.30] mg for the LY345899-treated group, P < .001). CONCLUSIONS: Our study presents evidence that MTHFD2 confers redox homeostasis and promotes CRC cell growth and metastasis. The folate analog LY345899 as MTHFD2 inhibitor displays therapeutic activity against CRC and warrants further clinical investigation for CRC treatment.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Enzyme Inhibitors/pharmacology , Glutamates/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Aminohydrolases/genetics , Aminohydrolases/metabolism , Animals , Anoikis/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Female , Humans , Lung Neoplasms/secondary , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Random Allocation , Signal Transduction , Transcription, Genetic , Xenograft Model Antitumor Assays
10.
Cell Physiol Biochem ; 51(2): 991-1000, 2018.
Article in English | MEDLINE | ID: mdl-30466107

ABSTRACT

BACKGROUND/AIMS: To investigate the role of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in the clinical prognosis and cell biology of renal cell carcinoma (RCC). METHODS: A total of 137 RCC tissues were evaluated by immunohistochemistry. The relationship between MTHFD2 overexpression and clinical parameters and vimentin expression was assessed. Kaplan-Meier curves and the log-rank test were applied for survival analysis according to MTHFD2 and vimentin expression in RCC tissues. The expression of MTHFD2 mRNA and protein was examined by quantitative reverse transcription PCR and western blotting, respectively. To determine further the biological activity of MTHFD2 in RCC, 786-O cells were transfected with short hairpin RNA specifically targeting MTHFD2 (shMTHFD2) with or without tumor necrosis factor (TNF)-α stimulation. Cell proliferation, cell migration and invasion and drug sensitivity were subsequently assessed using Cell Counting Kit-8, wound healing, and Transwell assays. RESULTS: Immunohistochemical analysis demonstrated that both MTHFD2 and vimentin overexpression was positively associated with clinical staging, pathological grade, and poor overall survival (all P < 0.05). MTHFD2 expression was closely correlated with vimentin overexpression in RCC (r = 0.402, P < 0.001). After knocking down MTHFD2 expression in 786-O cells, decreased cell proliferation, migration, and invasion were observed and accompanied by the reduced expression of vimentin. The effects of MTHFD2 down-regulation could be partially restrained by TNF-α treatment. Vimentin expression and cell migration and invasion, but not cell proliferation, were reversed by TNF-α stimulation. Furthermore, treatment of 786-O cells with shMTHFD2 increased their sensitivity to chemotherapy drugs. CONCLUSION: The current results demonstrated that MTHFD2 was overexpressed in RCC and associated with poor clinical characteristics, vimentin expression, and cellular features connected to malignant disease, thus, implicating MTHFD2 as a potential target for RCC therapy.


Subject(s)
Aminohydrolases/metabolism , Carcinoma, Renal Cell/pathology , Cell Proliferation , Kidney Neoplasms/pathology , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Multifunctional Enzymes/metabolism , Vimentin/metabolism , Aged , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/genetics , Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/mortality , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Female , Humans , Kaplan-Meier Estimate , Kidney Neoplasms/mortality , Male , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Middle Aged , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/genetics , Neoplasm Grading , Prognosis , RNA Interference , RNA, Small Interfering/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Vimentin/genetics
11.
Proc Natl Acad Sci U S A ; 114(12): E2319-E2326, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265077

ABSTRACT

Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Cell Nucleus/metabolism , Formate-Tetrahydrofolate Ligase/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multienzyme Complexes/antagonists & inhibitors , Oxides/toxicity , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Thymidine Monophosphate/biosynthesis , Aminohydrolases/genetics , Aminohydrolases/metabolism , Animals , Arsenic Trioxide , Arsenicals , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/enzymology , Cell Nucleus/genetics , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/metabolism , Formate-Tetrahydrofolate Ligase/genetics , Formate-Tetrahydrofolate Ligase/metabolism , Genomic Instability/drug effects , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice , Mice, Knockout , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Proteolysis , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism , Uracil/metabolism
12.
Cancer Res ; 77(4): 937-948, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27899380

ABSTRACT

To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD+ and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment. Cancer Res; 77(4); 937-48. ©2017 AACR.


Subject(s)
Enzyme Inhibitors/chemistry , Methenyltetrahydrofolate Cyclohydrolase/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Mitochondria/enzymology , Binding Sites , Crystallization , Folic Acid/analogs & derivatives , Folic Acid/metabolism , Humans , Leucovorin/analogs & derivatives , Leucovorin/metabolism , Methenyltetrahydrofolate Cyclohydrolase/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Minor Histocompatibility Antigens , NAD/metabolism , Protein Multimerization
13.
J Med Chem ; 58(20): 7938-48, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26322631

ABSTRACT

The bifunctional enzyme N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 µM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 µM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP(+) and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors.


Subject(s)
Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Leukemia/drug therapy , Macrophages/drug effects , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Models, Molecular , Structure-Activity Relationship , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
14.
Br J Nutr ; 114(6): 844-52, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26299783

ABSTRACT

Folate is an essential B vitamin required for de novo purine and thymidylate synthesis, and for the remethylation of homocysteine to form methionine. Folate deficiency has been associated with placenta-related pregnancy complications, as have SNP in genes of the folate-dependent enzymes, methionine synthase (MTR) and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1). We aimed to determine the effect of altered folate metabolism on placental cell proliferation, viability and invasive capacity and on progesterone and human chorionic gonadotropin (hCG) secretion. Human placental choriocarcinoma (JEG-3) cells cultured in low folic acid (FA) (2 nM) demonstrated 13% (P<0.001) and 26% (P<0.001) lower proliferation, 5.5% (P=0.025) and 7.5% (P=0.004) lower invasion capacity, and 5 to 7.5% (P=0.004-0.025) lower viability compared with control (20 nM) or supplemented (100 nM) cells, respectively. FA concentration had no effect on progesterone or hCG secretion. Small interfering RNA (siRNA) knockdown of MTR gene and protein expression resulted in 17.7% (P<0.0001) lower proliferation and 61% (P=0.014) higher progesterone secretion, but had no effect on cell invasion and hCG secretion. siRNA knockdown of MTHFD1 gene expression in the absence of detectable changes in protein expression resulted in 10.3% (P=0.001) lower cell proliferation, but had no effect on cell invasion and progesterone or hCG secretion. Our data indicate that impaired folate metabolism can result in lower trophoblast proliferation, and could alter viability, invasion capacity and progesterone secretion, which may explain in part the observed associations between folate and placenta-related complications.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Folic Acid/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Placenta/metabolism , Placentation , Progesterone/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/antagonists & inhibitors , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Choriocarcinoma/metabolism , Choriocarcinoma/pathology , Chorionic Gonadotropin/metabolism , Female , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Minor Histocompatibility Antigens , Neoplasm Invasiveness , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osmolar Concentration , Placenta/cytology , Placenta/pathology , Pregnancy , RNA Interference , RNA, Small Interfering , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
15.
Biochemistry ; 39(21): 6325-35, 2000 May 30.
Article in English | MEDLINE | ID: mdl-10828945

ABSTRACT

Enzymes involved in tetrahydrofolate metabolism are of particular pharmaceutical interest, as their function is crucial for amino acid and DNA biosynthesis. The crystal structure of the human cytosolic methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DC301) domain of a trifunctional enzyme has been determined previously with a bound NADP cofactor. While the substrate binding site was identified to be localized in a deep and rather hydrophobic cleft at the interface between two protein domains, the unambiguous assignment of catalytic residues was not possible. We succeeded in determining the crystal structures of three ternary DC301/NADP/inhibitor complexes. Investigation of these structures followed by site-directed mutagenesis studies allowed identification of the amino acids involved in catalysis by both enzyme activities. The inhibitors bind close to Lys56 and Tyr52, residues of a strictly conserved motif for active sites in dehydrogenases. While Lys56 is in a good position for chemical interaction with the substrate analogue, Tyr52 was found stacking against the inhibitors' aromatic rings and hence seems to be more important for proper positioning of the ligand than for catalysis. Also, Ser49 and/or Cys147 were found to possibly act as an activator for water in the cyclohydrolase step. These and the other residues (Gln100 and Asp125), with which contacts are made, are strictly conserved in THF dehydrogenases. On the basis of structural and mutagenesis data, we propose a reaction mechanism for both activities, the dehydrogenase and the cyclohydrolase.


Subject(s)
Aminohydrolases/chemistry , Aminohydrolases/metabolism , Folic Acid Antagonists/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Tetrahydrofolates/chemistry , Amino Acid Sequence , Aminohydrolases/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Drosophila , Escherichia coli/enzymology , Folic Acid Antagonists/pharmacology , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Mice , Models, Molecular , Molecular Sequence Data , Multienzyme Complexes/antagonists & inhibitors , Mutagenesis, Site-Directed , NADP/metabolism , Protein Conformation , Rats , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship , Tetrahydrofolates/pharmacology
16.
J Pharmacol Exp Ther ; 287(1): 315-21, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9765352

ABSTRACT

5,6,7,8-Tetrahydro-N5,N10-carbonylfolic acid (LY354899) has been demonstrated to inhibit the dehydrogenase activity of C1-tetrahydrofolate synthase. This compound was only moderately antiproliferative toward CCRF-CEM lymphocytic leukemia cells in culture, but induced apoptosis after long incubation times. Slightly greater potency was observed in CEM cells adapted to grow in low folate media. Cell cycle alterations induced by LY354899 were unique relative to antifolates that inhibit either the purine or thymidine de novo biosynthetic pathways. Based on the observed changes in DNA content, we hypothesized that inhibition of the dehydrogenase resulted in two temporally distinct events: the first was a purineless-like effect and the second was a thymineless-like effect that resulted in apoptosis. To test this hypothesis, we combined LY354899 with the purine salvage metabolite, hypoxanthine. This combination resulted in an earlier and more dramatic apoptotic response, indicating that the thymineless effect had been potentiated. Biochemical analysis of ribo- and deoxyribonucleoside triphosphates confirmed that inhibition of the dehydrogenase activity initially resulted in decreased pools of deoxypurines and deoxypyrimidines, followed 16 hr later by an increase in deoxyadenosine triphosphate (dATP) and a further decrease in deoxythymidine triphosphate (dTTP). These studies demonstrate that the inhibition of the dehydrogenase activity of C1-tetrahydrofolate synthase may represent a viable target for the development of novel antifolates. The results are discussed in terms of deoxypurine and deoxypyrimidine biosynthesis.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Folic Acid/analogs & derivatives , Hypoxanthine/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Division/drug effects , Deoxyadenine Nucleotides/metabolism , Drug Synergism , Folic Acid/pharmacology , Humans , Thymine Nucleotides/metabolism , Tumor Cells, Cultured
17.
Cancer Res ; 57(6): 1116-23, 1997 Mar 15.
Article in English | MEDLINE | ID: mdl-9067281

ABSTRACT

N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl ]-benzoyl]-L-glutamic acid (LY231514) is a novel pyrrolo[2,3-d]pyrimidine-based antifolate currently undergoing extensive Phase II clinical trials. Previous studies have established that LY231514 and its synthetic gamma-polyglutamates (glu3 and glu5) exert potent inhibition against thymidylate synthase (TS). We now report that LY231514 and its polyglutamates also markedly inhibit other key folate-requiring enzymes, including dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT). For example, the Ki values of the pentaglutamate of LY231514 are 1.3, 7.2, and 65 nM for inhibition against TS, DHFR, and GARFT, respectively. In contrast, although a similar high level of inhibitory potency was observed for the parent monoglutamate against DHFR (7.0 nM), the inhibition constants (Ki) for the parent monoglutamate are significantly weaker for TS (109 nM) and GARFT (9,300 nM). The effects of LY231514 and its polyglutamates on aminoimidazole carboxamide ribonucleotide formyltransferase, 5,10-methylenetetrahydrofolate dehydrogenase, and 10-formyltetrahydrofolate synthetase were also evaluated. The end product reversal studies conducted in human cell lines further support the concept that multiple enzyme-inhibitory mechanisms are involved in cytotoxicity. The reversal pattern of LY231514 suggests that although TS may be a major site of action for LY231514 at concentrations near the IC50, higher concentrations can lead to inhibition of DHFR and/or other enzymes along the purine de novo pathway. Studies with mutant cell lines demonstrated that LY231514 requires polyglutamation and transport via the reduced folate carrier for cytotoxic potency. Therefore, our data suggest that LY231514 is a novel classical antifolate, the antitumor activity of which may result from simultaneous and multiple inhibition of several key folate-requiring enzymes via its polyglutamated metabolites.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Folic Acid Antagonists/pharmacology , Glutamates/pharmacology , Guanine/analogs & derivatives , Hydroxymethyl and Formyl Transferases , Tetrahydrofolate Dehydrogenase/drug effects , 5,10-Methylenetetrahydrofolate Reductase (FADH2) , Acyltransferases/antagonists & inhibitors , Aminohydrolases/antagonists & inhibitors , Formate-Tetrahydrofolate Ligase/antagonists & inhibitors , Glutamates/chemistry , Guanine/chemistry , Guanine/pharmacology , Humans , Methotrexate/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Reductase (NADPH2) , Molecular Structure , Multienzyme Complexes/antagonists & inhibitors , Oxidoreductases/antagonists & inhibitors , Pemetrexed , Phosphoribosylaminoimidazolecarboxamide Formyltransferase , Phosphoribosylglycinamide Formyltransferase , Polyglutamic Acid/pharmacology , Quinazolines/pharmacology , Tetrahydrofolates/pharmacology , Thiophenes/pharmacology , Thymidylate Synthase/antagonists & inhibitors , Tumor Cells, Cultured/drug effects
18.
Biochemistry ; 34(39): 12673-80, 1995 Oct 03.
Article in English | MEDLINE | ID: mdl-7548019

ABSTRACT

The bifunctional dehydrogenase/cyclohydrolase domain of the human NADP-dependent trifunctional methyleneH4folate dehydrogenase/methenylH4folate cyclohydrolase/formylH4folate synthetase (H4folate = tetrahydrofolate) catalyzes two sequential reactions involved in the interconversion of H4folate derivatives. We have established by equilibrium dialysis that a single H4folate-binding site exists per monomer of the dimeric domain and that the presence of nucleotides has two unexpected effects on H4folate substrate binding. Nucleotides containing a 5'-phosphate cause positive cooperativity in the binding of methyleneH4folate but not of 10-formylH4folate, and NADP increases the affinity for 10-formylH4folate by a factor of 25. The results indicate that dinucleotide preferentially binds before 10-formylH4folate in the reverse cyclohydrolase reaction, and this mechanism increases the efficiency of conversion of 10-formylH4folate to methyleneH4folate. We report new kinetic data that are also consistent with a steady-state random mechanism for this enzyme. To assess whether the enzyme functions at equilibrium in vivo, we determined the overall chemical equilibrium constant of Keq = 16 for ([10- formylH4folate][NADPH])/([methyleneH4folate][NADP]). Using this value and reported ratios of free dinucleotides and folate derivatives in vivo, we estimate that the cytosolic dehydrogenase/cyclohydrolase reactions exist near the equilibrium position. However, the NAD-dependent dehydrogenase/cyclohydrolase reactions in mitochondria are far from equilibrium and are poised toward 10-formylH4folate synthesis. The results of the binding and kinetic studies indicate that the bifunctional nature of the methyleneH4folate dehydrogenase/methenylH4folate cyclohdrolase domain is designed to optimize the overall reverse reactions in vivo.


Subject(s)
Aminohydrolases/metabolism , Leucovorin/analogs & derivatives , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Tetrahydrofolates/metabolism , Binding Sites , Humans , Leucovorin/metabolism , Methenyltetrahydrofolate Cyclohydrolase , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Nucleotides/metabolism , Substrate Specificity
19.
Biochemistry ; 33(7): 1900-6, 1994 Feb 22.
Article in English | MEDLINE | ID: mdl-8110794

ABSTRACT

The bifunctional dehydrogenase/cyclohydrolase domain of the human trifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase catalyzes two sequential reactions with significant channeling of the intermediate, methenyltetrahydrofolate. Equilibrium dialysis established that a single, high-affinity NADP+ binding site exists per monomer of the dimeric enzyme. Kinetic characterization of NADP+ binding to the dehydrogenase using analogs as inhibitors demonstrated that affinity for this substrate is due almost exclusively to binding at the 2',5'-ADP subsite. The same structural specificities for binding are exhibited by these analogs in their effects on the cyclohydrolase. Both NADP+ and its 3-aminopyridine analog AADP partially inhibit the activity of the cyclohydrolase when assayed with added methenyltetrahydrofolate as substrate. However, under the same conditions, the cyclohydrolase is actually activated by 2',5'-ADP; activation requires the presence of the 5'-phosphate since 2'-AMP binds but does not activate. Nicotinamide ribose monophosphate (NMN) has no detectable effect either alone or in combination with 2',5'-ADP. The results are consistent with the existence of a shared dehydrogenase/cyclohydrolase active site proximal to the 2',5'-ADP subsite. NADP+ reduces the rate of the fully activated cyclohydrolase by 2-fold. Inhibition appears to be due to the loosely bound nicotinamide ring interacting with the common folate subsite, resulting in only partial inhibition by NADP+. The interaction of 2',5'-ADP with the cyclohydrolase suggests a potential role for this portion of the molecule in promoting the efficiency of the channeling of endogenously generated methenyltetrahydrofolate.


Subject(s)
Adenosine Diphosphate/metabolism , Aminohydrolases/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , NADP/pharmacology , Adenine Nucleotides/pharmacology , Adenosine Monophosphate/metabolism , Aminohydrolases/antagonists & inhibitors , Binding Sites , Binding, Competitive , Fluorescent Dyes , Humans , Kinetics , Methenyltetrahydrofolate Cyclohydrolase , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , NADP/metabolism , Phenylglyoxal/metabolism , Tetrahydrofolates/metabolism
20.
J Bacteriol ; 173(4): 1414-9, 1991 Feb.
Article in English | MEDLINE | ID: mdl-1899860

ABSTRACT

The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP)/isolation & purification , Peptostreptococcus/enzymology , Chromatography, Gel , Dose-Response Relationship, Drug , Edetic Acid/pharmacology , Electrophoresis, Polyacrylamide Gel , Hydroxylamine , Hydroxylamines/pharmacology , Mercury/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/analysis , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , NADP/metabolism , NADP/pharmacology , Phenanthrolines/pharmacology , Phenylhydrazines/pharmacology , Sodium/pharmacology , Spectrum Analysis , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...