Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.537
Filter
1.
J Breath Res ; 18(3)2024 May 07.
Article in English | MEDLINE | ID: mdl-38663377

ABSTRACT

In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.


Subject(s)
Breath Tests , Butadienes , Hemiterpenes , Pentanes , Humans , Hemiterpenes/analysis , Butadienes/analysis , Pentanes/analysis , Breath Tests/methods , Exhalation , Mevalonic Acid/metabolism , Cholesterol/metabolism , Cholesterol/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
2.
J Agric Food Chem ; 72(17): 9984-9993, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635942

ABSTRACT

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.


Subject(s)
Homologous Recombination , Metabolic Engineering , Squalene , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Squalene/metabolism , Fermentation , Mevalonic Acid/metabolism
3.
Article in English | MEDLINE | ID: mdl-38621758

ABSTRACT

Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY: In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.


Subject(s)
Acetyl Coenzyme A , Carotenoids , Lycopene , Metabolic Engineering , Saccharomyces cerevisiae , Lycopene/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Acetyl Coenzyme A/metabolism , Mevalonic Acid/metabolism , Biosynthetic Pathways , Promoter Regions, Genetic , NADP/metabolism , Metabolic Networks and Pathways/genetics , Acetates/metabolism
4.
Front Immunol ; 15: 1328401, 2024.
Article in English | MEDLINE | ID: mdl-38481989

ABSTRACT

Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.


Subject(s)
Cystatins , Monocytes , Humans , Animals , Mice , Ascaris lumbricoides , Mevalonic Acid/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Differentiation , Cytokines/metabolism , Inflammation/metabolism , Immunity , Dendritic Cells , RNA/metabolism
5.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473803

ABSTRACT

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Subject(s)
Coleoptera , Phosphotransferases (Alcohol Group Acceptor) , Tribolium , Animals , Tribolium/genetics , Coleoptera/metabolism , Mevalonic Acid/metabolism , Juvenile Hormones/metabolism
6.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453353

ABSTRACT

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Subject(s)
Mevalonic Acid , Proto-Oncogene Proteins c-akt , Rats , Male , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mevalonic Acid/metabolism , Mevalonic Acid/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Hindlimb Suspension/physiology , Signal Transduction/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism
7.
Biophys J ; 123(5): 622-637, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38327055

ABSTRACT

Serial crystallography and time-resolved data collection can readily be employed to investigate the catalytic mechanism of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-coenzyme-A (CoA) reductase (PmHMGR) by changing the environmental conditions in the crystal and so manipulating the reaction rate. This enzyme uses a complex mechanism to convert mevalonate to HMG-CoA using the co-substrate CoA and cofactor NAD+. The multi-step reaction mechanism involves an exchange of bound NAD+ and large conformational changes by a 50-residue subdomain. The enzymatic reaction can be run in both forward and reverse directions in solution and is catalytically active in the crystal for multiple reaction steps. Initially, the enzyme was found to be inactive in the crystal starting with bound mevalonate, CoA, and NAD+. To observe the reaction from this direction, we examined the effects of crystallization buffer constituents and pH on enzyme turnover, discovering a strong inhibition in the crystallization buffer and a controllable increase in enzyme turnover as a function of pH. The inhibition is dependent on ionic concentration of the crystallization precipitant ammonium sulfate but independent of its ionic composition. Crystallographic studies show that the observed inhibition only affects the oxidation of mevalonate but not the subsequent reactions of the intermediate mevaldehyde. Calculations of the pKa values for the enzyme active site residues suggest that the effect of pH on turnover is due to the changing protonation state of His381. We have now exploited the changes in ionic inhibition in combination with the pH-dependent increase in turnover as a novel approach for triggering the PmHMGR reaction in crystals and capturing information about its intermediate states along the reaction pathway.


Subject(s)
Hydroxymethylglutaryl CoA Reductases , NAD , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/metabolism , NAD/metabolism , Crystallography , Mevalonic Acid/metabolism , Hydrogen-Ion Concentration , Kinetics
8.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 203-215, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38411551

ABSTRACT

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.


Subject(s)
Archaea , Mevalonic Acid , Mevalonic Acid/metabolism , Archaea/metabolism , Methanosarcinaceae/chemistry , Methanosarcinaceae/metabolism , Phosphotransferases (Alcohol Group Acceptor)/chemistry
9.
EMBO Mol Med ; 16(3): 445-474, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355749

ABSTRACT

TP53-mutant acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are characterized by chemotherapy resistance and represent an unmet clinical need. Chimeric antigen receptor (CAR) T-cells might be a promising therapeutic option for TP53-mutant AML/MDS. However, the impact of TP53 deficiency in AML cells on the efficacy of CAR T-cells is unknown. We here show that CAR T-cells engaging TP53-deficient leukemia cells exhibit a prolonged interaction time, upregulate exhaustion markers, and are inefficient to control AML cell outgrowth in vitro and in vivo compared to TP53 wild-type cells. Transcriptional profiling revealed that the mevalonate pathway is upregulated in TP53-deficient AML cells under CAR T-cell attack, while CAR T-cells engaging TP53-deficient AML cells downregulate the Wnt pathway. In vitro rational targeting of either of these pathways rescues AML cell sensitivity to CAR T-cell-mediated killing. We thus demonstrate that TP53 deficiency confers resistance to CAR T-cell therapy and identify the mevalonate pathway as a therapeutic vulnerability of TP53-deficient AML cells engaged by CAR T-cells, and the Wnt pathway as a promising CAR T-cell therapy-enhancing approach for TP53-deficient AML/MDS.


Subject(s)
Leukemia, Myeloid, Acute , Mevalonic Acid , Humans , Mevalonic Acid/metabolism , Wnt Signaling Pathway , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy, Adoptive , T-Lymphocytes , Tumor Suppressor Protein p53/genetics
10.
J Biol Chem ; 300(2): 105644, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218226

ABSTRACT

Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Mevalonic Acid , Aspartic Acid Endopeptidases , Cholesterol/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Mevalonic Acid/metabolism , Terpenes , HEK293 Cells , Humans
11.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229297

ABSTRACT

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Subject(s)
Organophosphorus Compounds , Terpenes , beta Carotene , Terpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Squalene , Hemiterpenes/metabolism , Mitochondria/metabolism , Mevalonic Acid/metabolism
12.
Pediatr Dermatol ; 41(2): 296-297, 2024.
Article in English | MEDLINE | ID: mdl-37726979

ABSTRACT

A 2-year-old boy presented with an extensive, asymptomatic, photosensitive eruption refractory to topical steroids and tretinoin; examination and biopsies were consistent with generalized linear porokeratosis involving the face, limbs, and trunk. Treatment with topical cholesterol-lovastatin was initiated, and it successfully improved early erythematous lesions. Whole exome sequencing that targeted mevalonate pathway genes crucial in cholesterol synthesis later revealed a pathogenic, paternally inherited, porokeratosis-associated MVD, c.70+5 G>A, mutation. Topical cholesterol-lovastatin is a safe and effective empiric treatment for porokeratosis when used in the early, erythematous phase, and its success is likely mediated through its role in targeting mevalonate pathway mutations.


Subject(s)
Lovastatin , Porokeratosis , Child, Preschool , Humans , Male , Cholesterol , Lovastatin/therapeutic use , Mevalonic Acid/metabolism , Porokeratosis/drug therapy , Porokeratosis/diagnosis , Treatment Outcome
13.
J Biosci Bioeng ; 137(1): 16-23, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042754

ABSTRACT

Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.


Subject(s)
Saccharomyces cerevisiae , Terpenes , Saccharomyces cerevisiae/metabolism , Mevalonic Acid/metabolism , Diphosphates , Squalene/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Metabolic Engineering
14.
Metab Eng ; 81: 110-122, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056688

ABSTRACT

Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.


Subject(s)
Corynebacterium glutamicum , Monoterpenes , Monoterpenes/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Mevalonic Acid/metabolism , Terpenes/metabolism , Metabolic Engineering
15.
Biotechnol J ; 19(1): e2300285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37953664

ABSTRACT

Simultaneous modification of the expression levels of many metabolic enzyme genes results in diverse expression ratios of these genes; however, the relationship between gene expression levels and chemical productivity remains unclear. However, clarification of this relationship is expected to improve the productivity of useful chemicals. Supervised machine learning is considered to be an effective means to clarify this relationship. In this study, to improve the productivity of carotenoids in yeast Saccharomyces cerevisiae, we aimed to build a machine-learning model that can predict the optimal gene expression level for carotenoid production. First, we obtained data on the expression levels of mevalonate pathway enzyme genes and carotenoid production. Then, based on these data, we built a machine-learning model to predict carotenoid productivity based on gene expression levels. The prediction accuracy of 0.6292 (coefficient of determination) was achieved using the test data. The maximum predicted carotenoid productivity was 4.3 times higher in the engineered strain than in the parental strain, suggesting that the expression levels of the mevalonate pathway enzyme genes tHMG1 and ERG8 have a particularly large impact on carotenoid productivity. This study could be one of the important achievements in addressing the uncertainty of genotype-phenotype correlations, which is one of the challenges facing metabolic engineering strategies.


Subject(s)
Mevalonic Acid , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Mevalonic Acid/metabolism , Carotenoids/metabolism , Metabolic Engineering/methods , Gene Expression , Machine Learning
16.
Enzyme Microb Technol ; 174: 110374, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147781

ABSTRACT

The enzymes of the mevalonate pathway need to be improved to achieve high yields of isoprenoids in the yeast Saccharomyces cerevisiae. The red yeast Rhodosporidium toruloides produces high levels of carotenoids and may have evolved to carry a naturally high flux of isoprenoids. Enzymes from such yeasts are likely to be promising candidates for improvement. Towards this end, we have systematically investigated the various enzymes of the mevalonate pathway of R. toruloides and custom synthesized, expressed, and evaluated six key enzymes in S. cerevisiae. The two nodal enzymes geranyl pyrophosphate synthase (RtGGPPS) and truncated HMG-CoA reductase (RttHMG) of R. toruloides showed a significant advantage to the cells for isoprenoid production as seen by a visual carotenoid screen. These two were analyzed further, and attempts were also made at further improvement. RtGGPPS was confirmed to be superior to the S. cerevisiae enzyme, as seen from in vitro activity determinations and in vivo production of the heterologous diterpenoid sclareol. Four mutants were created through rational mutagenesis but were unable to improve the activity further. In the case of RttHMG, functional evaluation of the enzyme revealed that it was very unstable despite functioning very well in S. cerevisiae. We succeeded in stabilizing the enzyme through mutation of a conserved serine in the catalytic region, which did not alter the enzyme activity per se. In vivo evaluation of the mutant revealed that it could enable better sclareol yields. Therefore, these two enzymes from the red yeast are excellent candidates for heterologous isoprenoid production.


Subject(s)
Acyl Coenzyme A , Biological Products , Diterpenes , Terpenes , Terpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mevalonic Acid/metabolism , Carotenoids/metabolism , Biological Products/metabolism
17.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123597

ABSTRACT

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Subject(s)
Breast Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Mevalonic Acid/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cholesterol/metabolism , Cell Movement
18.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986175

ABSTRACT

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ovarian Neoplasms , Female , Mice , Animals , Humans , Fallopian Tubes/metabolism , Simvastatin/pharmacology , Simvastatin/metabolism , Simvastatin/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Mevalonic Acid/metabolism , Mevalonic Acid/therapeutic use , Epithelial Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/pathology
19.
Cancer Commun (Lond) ; 43(12): 1326-1353, 2023 12.
Article in English | MEDLINE | ID: mdl-37920878

ABSTRACT

BACKGROUND: Metabolism reprogramming plays a vital role in glioblastoma (GBM) progression and recurrence by producing enough energy for highly proliferating tumor cells. In addition, metabolic reprogramming is crucial for tumor growth and immune-escape mechanisms. Epidermal growth factor receptor (EGFR) amplification and EGFR-vIII mutation are often detected in GBM cells, contributing to the malignant behavior. This study aimed to investigate the functional role of the EGFR pathway on fatty acid metabolism remodeling and energy generation. METHODS: Clinical GBM specimens were selected for single-cell RNA sequencing and untargeted metabolomics analysis. A metabolism-associated RTK-fatty acid-gene signature was constructed and verified. MK-2206 and MK-803 were utilized to block the RTK pathway and mevalonate pathway induced abnormal metabolism. Energy metabolism in GBM with activated EGFR pathway was monitored. The antitumor effect of Osimertinib and Atorvastatin assisted by temozolomide (TMZ) was analyzed by an intracranial tumor model in vivo. RESULTS: GBM with high EGFR expression had characteristics of lipid remodeling and maintaining high cholesterol levels, supported by the single-cell RNA sequencing and metabolomics of clinical GBM samples. Inhibition of the EGFR/AKT and mevalonate pathways could remodel energy metabolism by repressing the tricarboxylic acid cycle and modulating ATP production. Mechanistically, the EGFR/AKT pathway upregulated the expressions of acyl-CoA synthetase short-chain family member 3 (ACSS3), acyl-CoA synthetase long-chain family member 3 (ACSL3), and long-chain fatty acid elongation-related gene ELOVL fatty acid elongase 2 (ELOVL2) in an NF-κB-dependent manner. Moreover, inhibition of the mevalonate pathway reduced the EGFR level on the cell membranes, thereby affecting the signal transduction of the EGFR/AKT pathway. Therefore, targeting the EGFR/AKT and mevalonate pathways enhanced the antitumor effect of TMZ in GBM cells and animal models. CONCLUSIONS: Our findings not only uncovered the mechanism of metabolic reprogramming in EGFR-activated GBM but also provided a combinatorial therapeutic strategy for clinical GBM management.


Subject(s)
Glioblastoma , Animals , Cell Line, Tumor , Energy Metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Fatty Acids , Glioblastoma/drug therapy , Glioblastoma/genetics , Ligases/metabolism , Mevalonic Acid/antagonists & inhibitors , Mevalonic Acid/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use
20.
Mol Reprod Dev ; 90(10-11): 774-781, 2023.
Article in English | MEDLINE | ID: mdl-37733694

ABSTRACT

Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.


Subject(s)
Cholesterol , Mevalonic Acid , Male , Humans , Mevalonic Acid/metabolism , Cholesterol/metabolism , Reproduction , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...