Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.528
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 351, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720272

ABSTRACT

BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.


Subject(s)
Abortion, Spontaneous , Biomarkers , Embryo Transfer , MicroRNAs , Humans , Female , Pregnancy , MicroRNAs/blood , Adult , Biomarkers/blood , Abortion, Spontaneous/blood , Embryo Implantation , Machine Learning
2.
PLoS One ; 19(5): e0302868, 2024.
Article in English | MEDLINE | ID: mdl-38723001

ABSTRACT

To identify a biomarker for the early diagnosis of enzootic bovine leukosis (EBL) caused by bovine leukemia virus (BLV), we investigated the expression of a microRNA, bta-miR-375, in cattle serum. Using quantitative reverse-transcriptase PCR analysis, we measured bta-miR-375 levels in 27 samples from cattle with EBL (EBL cattle), 45 samples from animals infected with BLV but showing no clinical signs (NS cattle), and 30 samples from cattle uninfected with BLV (BLV negative cattle). In this study, we also compared the kinetics of bta-miR-375 with those of the conventional biomarkers of proviral load (PVL), lactate dehydrogenase (LDH), and thymidine kinase (TK) from the no-clinical-sign phase until EBL onset in three BLV-infected Japanese black (JB) cattle. Bta-miR-375 expression was higher in NS cattle than in BLV negative cattle (P < 0.05) and greater in EBL cattle than in BLV negative and NS cattle (P < 0.0001 for both comparisons). Receiver operating characteristic curves demonstrated that bta-miR-375 levels distinguished EBL cattle from NS cattle with high sensitivity and specificity. In NS cattle, bta-miR-375 expression was increased as early as at 2 months before EBL onset-earlier than the expression of PVL, TK, or LDH isoenzymes 2 and 3. These results suggest that serum miR-375 is a promising biomarker for the early diagnosis of EBL.


Subject(s)
Biomarkers , Early Diagnosis , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , MicroRNAs , Animals , Cattle , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/blood , Enzootic Bovine Leukosis/virology , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Leukemia Virus, Bovine/genetics , ROC Curve , L-Lactate Dehydrogenase/blood
3.
Ann Hematol ; 103(6): 2089-2102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691145

ABSTRACT

Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.


Subject(s)
Fever , Hematopoietic Stem Cell Transplantation , Machine Learning , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Female , Male , Adult , Middle Aged , Fever/etiology , Fever/diagnosis , Fever/blood , Algorithms , MicroRNAs/blood , Biomarkers/blood , Adolescent , Young Adult
4.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747908

ABSTRACT

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , STAT3 Transcription Factor , Severity of Illness Index , Humans , MicroRNAs/blood , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Female , Male , Intestinal Mucosa/metabolism , Adult , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Middle Aged , Case-Control Studies , ROC Curve , Biomarkers/blood , Interleukin-23/blood , Interleukin-23/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism
5.
Article in English | MEDLINE | ID: mdl-38715982

ABSTRACT

Purpose: Investigate the efficacy of blood microRNAs (miRNAs) as diagnostic biomarkers for Chronic Obstructive Pulmonary Disease (COPD). Patients and Methods: We conducted a comprehensive search in English and Chinese databases, selecting studies based on predetermined criteria. Diagnostic parameters like summarized sensitivity (SSEN), summarized specificity (SSPE), summarized positive likelihood ratio (SPLR), summarized negative likelihood ratio (SNLR), and diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic (SROC) curves were analyzed using a bivariate model. Each parameter was accompanied by a 95% confidence interval (CI). Results: Eighteen high-quality studies were included. For diagnosing COPD with blood miRNAs, the SSEN was 0.83 (95% CI 0.76-0.89), SSPE 0.76 (95% CI 0.70-0.82), SPLR 3.50 (95% CI 2.66-4.60), SNLR 0.22 (95% CI 0.15-0.33), DOR 15.72 (95% CI 8.58-28.77), and AUC 0.86 (95% CI 0.82-0.88). In acute exacerbations, SSEN was 0.85 (95% CI 0.76-0.91), SSPE 0.80 (95% CI 0.73-0.86), SPLR 4.26 (95% CI 3.05-5.95), SNLR 0.19 (95% CI 0.12-0.30), DOR 22.29 (95% CI 11.47-43.33), and AUC 0.89 (95% CI 0.86-0.91). Conclusion: Blood miRNAs demonstrate significant accuracy in diagnosing COPD, both in general and during acute exacerbations, suggesting their potential as reliable biomarkers.


Subject(s)
Area Under Curve , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , ROC Curve , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/genetics , Humans , Odds Ratio , MicroRNAs/blood , Biomarkers/blood , Middle Aged , Aged , Genetic Markers , Male , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Prognosis , Lung/physiopathology
6.
Clin Interv Aging ; 19: 715-725, 2024.
Article in English | MEDLINE | ID: mdl-38716143

ABSTRACT

Objective: Atrial fibrillation (AF) is a common arrhythmia. This study explored serum miR-29b-3p expression in AF patients and its value in predicting AF recurrence after radiofrequency catheter ablation (RFCA). Methods: Totally 100 AF patients who underwent RFCA were enrolled, with 100 individuals without AF as controls. Serum miR-29b-3p expression in participants was determined using RT-qPCR. The correlation between miR-29b-3p and atrial fibrosis markers (FGF-21/FGF-23) was assessed by Pearson analysis. The diagnostic efficacy of serum miR-29b-3p and FGF-21/FGF-23 in predicting AF recurrence after RFCA was analyzed by the receiver operating characteristic (ROC) curves. The Kaplan-Meier method was adopted to evaluate the effect of miR-29b-3p expression on the incidence of AF recurrence after RFCA. The independent risk factors for AF recurrence after RFCA were analyzed by logistic regression analysis. Results: Serum miR-29b-3p was poorly expressed in AF patients. After RFCA, AF patients showed elevated serum miR-29b-3p expression. Serum miR-29b-3p expression in AF patients negatively correlated with serum FGF-21 and FGF-23 concentrations. The cut-off values of serum miR-29b-3p, FGF-21, and FGF-23 in identifying AF recurrence were 0.860 (sensitivity: 100.00%, specificity: 39.71%), 222.2 pg/mL (sensitivity: 96.88%, specificity: 32.35%) and 216.3 ng/mL (sensitivity: 53.13%, specificity: 70.59%), respectively. Patients with low miR-29b-3p expression had a significantly higher incidence of AF recurrence than patients with high miR-29b-3p expression. Serum miR-29b-3p expression was one of the independent risk factors for AF recurrence after RFCA. Conclusion: Low miR-29b-3p expression in AF patients has certain predictive values and is one of the independent risk factors for AF recurrence after RFCA.


Subject(s)
Atrial Fibrillation , Catheter Ablation , MicroRNAs , Recurrence , Humans , Atrial Fibrillation/blood , Male , Female , MicroRNAs/blood , Middle Aged , Fibroblast Growth Factor-23 , Aged , Risk Factors , ROC Curve , Predictive Value of Tests , Biomarkers/blood , Fibroblast Growth Factors/blood
7.
Sci Rep ; 14(1): 10082, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698242

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. However, effective diagnostic, therapeutic and prognostic biomarkers are still lacking. Our research group previously revealed through high-throughput sequencing that the serum exosomes miR-133a-3p, miR-206, and miR-549a-3p differ significantly in severe TBI (sTBI), mild or moderate TBI (mTBI), and control groups. However, convincing experimental evidence is lacking. To solve this problem, we used qPCR in this study to further verify the expression levels of serum exosomes miR-133a-3p, miR-206 and miR-549a-3p in TBI patients. The results showed that the serum exosomes miR-206 and miR-549a-3p showed good predictive value as biomarkers of TBI. In addition, in order to further verify whether serum exosomes miR-206 and miR-549a-3p can be used as potential biomarkers in patients with TBI and to understand the mechanism of their possible effects, we further determined the contents of SOD, BDNF, VEGF, VEGI, NSE and S100ß in the serum of TBI patients. The results showed that, serum exosomes miR-206 and miR-549a-3p showed good correlation with BDNF, NSE and S100ß. In conclusion, serum exosomes miR-206 and miR-549a-3p have the potential to serve as potential biomarkers in patients with TBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , Exosomes , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/genetics , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/genetics , Biomarkers/blood , Male , Female , Adult , Middle Aged , Young Adult , Aged , Case-Control Studies
8.
J Matern Fetal Neonatal Med ; 37(1): 2345850, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38714508

ABSTRACT

BACKGROUND: Neonatal sepsis is the third leading cause of mortality during the neonatal period, with manifestations atypical and obscure. But the gold standard-blood culture test, requiring 3-5 days, makes it difficult to unveil the final pathogen and leads to the increasing ratio of false-negative results. The empirical method is consulting traditional biomarkers, such as procalcitonin (PCT), C-reactive protein (CRP), and white blood cell count. However, they are not specific for neonate in diagnostic capacity, especially for infants within three days after delivery, so more novel biomarkers are urgently needed to assist diagnosing neonatal sepsis. microRNAs (miRNAs) have been widely studied in recent years for their diagnostic and prognostic values in different diseases and we conducted a meta-analysis of miRNAs on the topic that whether they are potentially novel biomarkers in early detection of neonatal sepsis. OBJECTIVES: The purpose of the study was to assess whether circulating miRNAs could be used as potential biomarkers for neonatal sepsis, including early and late-onset neonatal sepsis, then calculate their overall accuracy (OA) via meta-analysis. METHODS: PubMed, Cochrane Library, Embase, Web of Science, Scopus, and Ovid databases were retrieved; data cutoff for this analysis was 15 January 2023. Methodological quality assessment of included studies was performed through the Quality in Prognostic Studies tool. Corresponding 95% confidence interval (95%CI) was calculated to present miRNAs' diagnostic value including the pooled sensitivity (Sen), specificity (Spe), positive or negative likelihood ratios (PLR or NLR), diagnostic odds ratio (DOR), and area under the curve (AUC). Differences in OA between the septic group and non-septic group were compared using Chi-square test. RESULTS: After identification, 16 records out of 11 selected articles were eligible for systematic review of miRNAs and four records for PCT; the case group for miRNAs included 945 neonatal sepsis cases; contrast group included 190 respiratory tract infections or pneumonia cases, 60 systemic inflammatory response syndrome (SIRS) cases and 559 healthy neonates. The pooled Sen, Spe, and DOR of miRNAs were 0.87 (95%CI 0.81-0.91), 0.79 (95%CI 0.71-0.85), and 24 (95%CI 12-50), respectively. The pooled Sen, Spe, and DOR of PCT were 0.92 (95%CI 0.83-0.96), 0.64 (95%CI 0.56-0.70), and 20 (95%CI, 7-56), respectively. The OA value of miRNAs was 80.38% and that of PCT was 77.36%, which were not statistically significant difference (p = .13) after the Chi-square test. In addition, no significant publication bias was indicated (p = .92). CONCLUSIONS: Circulating miRNA levels could be applied as diagnostic biomarkers in neonatal sepsis.


Subject(s)
Biomarkers , MicroRNAs , Neonatal Sepsis , Humans , Neonatal Sepsis/diagnosis , Neonatal Sepsis/blood , Infant, Newborn , Biomarkers/blood , MicroRNAs/blood
9.
Mol Biol Rep ; 51(1): 617, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705955

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are epigenetic factors regulating many genes involved in brain development. Dysregulation of miRNA could result in dysregulation of genes which may contribute to diseases affecting the brain and behavior (e.g., schizophrenia). miR-29 family is a miRNA family contributing to brain maturation. miR-29 knockout in animal studies is reported to correlate with psychiatric disorders very similar to those seen in schizophrenia. In this study, we aimed to evaluate the miR-29a level in patients with schizophrenia and its potential value in the diagnosis of schizophrenia. MATERIALS AND METHODS: The serum sample of 42 patients with schizophrenia and 40 healthy subjects were obtained from the Azeri Recent onset/Acute phase psychosis Survey (ARAS) Cohort study. After preparations, the expression level of miR-29a was investigated by real-time PCR. The SPSS and GraphPad prism software were used to analyze the relation between miR-29a level and clinical parameters and its potential as a biomarker for the diagnosis of schizophrenia. RESULTS: Our study showed a significantly lower miR-29a level in patients compared to healthy controls (p = 0.0012). Furthermore, miR-29a level was significantly lower in some types of schizophrenia (p = 0.024). miR-29a level was not related to sex, age, or heredity (p > 0.05). miR-29a also showed 80% specificity and 71.43% sensitivity in the diagnosis of schizophrenia. CONCLUSION: Downregulation of miR-29a in schizophrenia is significantly related to the development of this illness. It might have the potential as a biomarker for schizophrenia.


Subject(s)
Biomarkers , Down-Regulation , MicroRNAs , Schizophrenia , Humans , MicroRNAs/genetics , MicroRNAs/blood , Schizophrenia/genetics , Schizophrenia/diagnosis , Schizophrenia/blood , Male , Female , Adult , Biomarkers/blood , Down-Regulation/genetics , Case-Control Studies , Young Adult , Middle Aged
10.
Physiol Rep ; 12(9): e16016, 2024 May.
Article in English | MEDLINE | ID: mdl-38697940

ABSTRACT

Concurrent resistance and endurance exercise training (CET) has well-studied benefits; however, inherent hormonal and genetic differences alter adaptive responses to exercise between sexes. Extracellular vesicles (EVs) are factors that contribute to adaptive signaling. Our purpose was to test if EV characteristics differ between men and women following CET. 18 young healthy participants underwent 12-weeks of CET. Prior to and following CET, subjects performed an acute bout of heavy resistance exercise (AHRET) consisting of 6 × 10 back squats at 75% 1RM. At rest and following AHRET, EVs were isolated from plasma and characteristics and miRNA contents were analyzed. AHRET elevated EV abundance in trained men only (+51%) and AHRET-induced changes were observed for muscle-derived EVs and microvesicles. There were considerable sex-specific effects of CET on EV miRNAs, highlighted by larger variation following the 12-week program in men compared to women at rest. Pathway analysis based on differentially expressed EV miRNAs predicted that AHRET and 12 weeks of CET in men positively regulates hypertrophy and growth pathways more so than in women. This report highlights sex-based differences in the EV response to resistance and concurrent exercise training and suggests that EVs may be important adaptive signaling factors altered by exercise training.


Subject(s)
Extracellular Vesicles , MicroRNAs , Resistance Training , Humans , Female , Male , Extracellular Vesicles/metabolism , Resistance Training/methods , Adult , MicroRNAs/blood , MicroRNAs/metabolism , Young Adult , Exercise/physiology , Sex Characteristics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Endurance Training/methods , Sex Factors
11.
Anal Chim Acta ; 1306: 342581, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692785

ABSTRACT

Cancer detection is still a major challenge in public health. Identification of oncogene is the first step toward solving this problem. Studies have revealed that various cancers are associated with miRNA expression. Therefore, the sensitive detection of miRNA is substantially important to solve the cancer problem. In this study, let-7a, a representative substance of miRNA, was selected as the detection target. With the assistance of magnetic beads commonly used in biosensors and self-synthesized graphene oxide materials, specificity and sensitivity detection of the target gene let-7a were achieved via protease-free signal amplification. The limit of detection (LOD) was as low as 15.015pM. The fluorescence signal intensity showed a good linear relationship with the logarithm of let-7a concentration. The biosensor could also detect let-7a in complex human serum samples. Overall, this fluorescent biosensor is not only simple to operate, but also strongly specificity to detect let-7a. Therefore, it has substantial potential for application in the early diagnosis of clinical medicine and biological research.


Subject(s)
Biosensing Techniques , Graphite , Limit of Detection , MicroRNAs , Biosensing Techniques/methods , Humans , Graphite/chemistry , MicroRNAs/analysis , MicroRNAs/blood , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Neoplasms/diagnosis , Neoplasms/blood
12.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692796

ABSTRACT

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Subject(s)
Exosomes , Magnetite Nanoparticles , MicroRNAs , Parkinson Disease , Transferrin , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Exosomes/chemistry , MicroRNAs/blood , Magnetite Nanoparticles/chemistry , Transferrin/chemistry , Brain/metabolism , Biomarkers/blood , Male , Female
13.
Cell Commun Signal ; 22(1): 264, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734696

ABSTRACT

BACKGROUND: Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS: CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS: The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS: ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.


Subject(s)
Biomarkers , Kidney , Leukocytes, Mononuclear , Protein Serine-Threonine Kinases , RNA, Messenger , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Leukocytes, Mononuclear/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Biomarkers/metabolism , Biomarkers/blood , Mice , Kidney/pathology , Kidney/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/blood , MicroRNAs/metabolism , Disease Models, Animal , Fibrosis
14.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734860

ABSTRACT

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Subject(s)
Biomarkers , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic , Dog Diseases , MicroRNAs , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Animals , Dogs , MicroRNAs/genetics , MicroRNAs/blood , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Biomarkers/blood , Dog Diseases/genetics , Dog Diseases/diagnosis , Dog Diseases/blood , Male , Leukocytes, Mononuclear/metabolism , Female
15.
Anal Chim Acta ; 1308: 342667, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740453

ABSTRACT

BACKGROUND: High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification. Thus, it is crucial to create a modular probe with a controlled structure, high local concentration, and ease of synthesis. RESULTS: Inspired by the natural spatial-confinement effect based on a well-known streptavidin-biotin interaction, we constructed a protein-DNA hybrid, named protein-scaffolded DNA tetrads (PDT), which consists of four biotinylated Y-shaped DNA (Y-DNA) surrounding a streptavidin protein center via a streptavidin-biotin bridge. The streptavidin-biotin recognition system significantly increased the local concentration and intermolecular distance of the probes to achieve enhanced reaction efficiency and kinetics. The PDT-based assay starts with the target miRNA binding to Y-DNA, which disassembles the Y-DNA structures into three types of hairpin-shaped structures via self-primed strand displacement amplification (SPSDA) and generates remarkable fluorescence signal that is proportional to the miRNA concentration. Results demonstrated that PDT enabled a more efficient detection of miRNA-21 with a sensitivity of 1 fM. Moreover, it was proven reliable for the detection of clinical serum samples, suggesting great potential for advancing the development of rapid and robust signal amplification technologies for early diagnosis. SIGNIFICANCE: This simple yet robust system contributes to the early diagnosis of miR-21 with satisfactory sensitivity and specificity, and display a significantly improved nuclease resistance owing to their unique structure. The results suggested that the strategy is expected to provide a promising potential platform for tumor diagnosis, prognosis and therapy.


Subject(s)
Biotin , DNA , MicroRNAs , Nucleic Acid Amplification Techniques , Streptavidin , MicroRNAs/blood , Humans , Streptavidin/chemistry , DNA/chemistry , DNA/blood , Biotin/chemistry , Biosensing Techniques/methods , Limit of Detection
16.
Mikrochim Acta ; 191(6): 321, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727732

ABSTRACT

The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.


Subject(s)
Biotin , Gold , Limit of Detection , Metal Nanoparticles , MicroRNAs , Spectrum Analysis, Raman , MicroRNAs/blood , MicroRNAs/analysis , Metal Nanoparticles/chemistry , Gold/chemistry , Spectrum Analysis, Raman/methods , Biotin/chemistry , Humans , Catalysis , Streptavidin/chemistry
17.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673940

ABSTRACT

Hepatic complications are an acknowledged cause of mortality and morbidity among patients undergoing hematopoietic stem cell transplantation. In this study, we aimed to evaluate the potential role in the prediction of liver injury of five selected microRNAs (miRNAs)-miR-122-5p, miR-122-3p, miR-15b-5p, miR-99b-5p, and miR-125a-5p-in the setting of autologous hematopoietic stem cell transplantation (ASCT). A total of 66 patients were included in the study: 50 patients (75.8%) with multiple myeloma (MM) and 16 (24.2%) with lymphoma. Blood samples were collected after the administration of the conditioning regimen, on the day of transplant (day 0). The expression levels of selected miRNAs were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the miRCURY LNA miRNA Custom PCR Panels (QIAGEN). In a multivariate logistic regression analysis adjusted for age, sex, and the administered conditioning regimen, two miRNAs, hsa-miR-122-5p (odds ratio, OR 2.10, 95% confidence interval, CI: 1.29-3.42, p = 0.0029) and hsa-miR-125a-5p (OR 0.27, 95% CI: 0.11-0.71, p = 0.0079), were independent for hepatic toxicity occurrence during the 14 days after transplant. Our model in 10-fold cross-validation preserved its diagnostic potential with a receiver operating characteristics area under the curve (ROC AUC) of 0.75, 95% CI: 0.63-0.88 and at optimal cut-off reached 72.0% sensitivity and 74.4% specificity. An elevated serum level of miR-122-5p and decreased level of miR-125a-5p on day 0 are independent risk factors for hepatotoxicity in ASCT recipients, showing promise in accurately predicting post-ASCT complications. Identifying patients susceptible to complications has the potential to reduce procedure costs and optimize the selection of inpatient or outpatient procedures.


Subject(s)
Hematopoietic Stem Cell Transplantation , MicroRNAs , Transplantation, Autologous , Humans , MicroRNAs/blood , MicroRNAs/genetics , Male , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Middle Aged , Transplantation, Autologous/adverse effects , Adult , Aged , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Multiple Myeloma/blood , Biomarkers/blood , ROC Curve , Lymphoma/blood , Lymphoma/genetics , Lymphoma/therapy
18.
Mol Biol Rep ; 51(1): 548, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642142

ABSTRACT

INTRODUCTION: Paracetamol (acetaminophen) overdose is a leading cause of acute liver failure in many Western countries. Diagnostic tools for this poisoning may be suboptimal in some cases and new biomarkers have been investigated. We investigated the role of capillary microRNA-122 (miR-122) as a prognostic biomarker of liver injury in the clinical management of patients with paracetamol overdose. METHODS: In a paracetamol overdose patient cohort, miR-122 was measured by quantitative polymerase chain reaction in a blood drop obtained by a finger prick at the end of an antidote cycle treatment with N-acetylcysteine treatment (12 h). Liver injury was defined as serum alanine aminotransferase (ALT) activity > 100 IU/L collected at 10 or 20 h after the start of treatment. Pearson's correlation analyses were performed. RESULTS: In patients with paracetamol overdose, capillary miR-122 was positively correlated with ALT measured at 10 h and at 20 h (r = 0.83, P < 0.0001; r = 0.96, P < 0.0001, respectively). CONCLUSION: This work supports the potential use of capillary miR-122 as a prognostic biomarker of liver injury throughout clinical management of patients with paracetamol overdose. Capillary miR-122 can be measured in a blood drop collected by a finger prick, a minimally invasive diagnostic test for patient stratification.


Subject(s)
Analgesics, Non-Narcotic , Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , MicroRNAs , Humans , Acetaminophen/adverse effects , Biomarkers , Chemical and Drug Induced Liver Injury/diagnosis , MicroRNAs/blood , MicroRNAs/genetics , Prognosis , Chemical and Drug Induced Liver Injury, Chronic/diagnosis , Chemical and Drug Induced Liver Injury, Chronic/genetics
19.
Int J Cardiol ; 406: 132073, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38643804

ABSTRACT

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES: We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS: Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS: Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.


Subject(s)
Clopidogrel , Down-Regulation , MicroRNAs , Ticagrelor , Humans , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , MicroRNAs/blood , MicroRNAs/biosynthesis , MicroRNAs/genetics , Male , Female , Middle Aged , Aged , Down-Regulation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Myocardial Infarction/genetics , Percutaneous Coronary Intervention , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology , Ticlopidine/therapeutic use
20.
J Mol Neurosci ; 74(2): 46, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652370

ABSTRACT

ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8.2 ± 2) and neurotypical ones in Group II (N = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner's parent rating scale-R. Measuring the expression levels of the miRNAs was performed by qRT-PCR for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner's scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (p = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (p = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain-Derived Neurotrophic Factor , MicroRNAs , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/blood , MicroRNAs/blood , MicroRNAs/genetics , Male , Female , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/blood , Child , Egypt , Biomarkers/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...