Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 614: 161-168, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35597153

ABSTRACT

Vacuoles and lysosomes are organelles involved in the degradation of cytoplasmic proteins and organelles. Vacuolar morphology is dynamically regulated by fission and fusion in budding yeast. Vacuolar fusion is elicited in nutrient-depleted conditions and mediated by inactivation of target of rapamycin complex 1 (TORC1) protein kinase. However, it is unknown whether and how vacuolar morphology affects macroautophagy and microautophagy, which are induced by nutrient starvation and TORC1 inactivation. Here, we developed a system to control vacuolar fission in budding yeast. Vacuolar fragmentation promoted microautophagy but not macroautophagy. Vacuolar fragmentation caused multiple nucleus-vacuole junctions. Multiple vacuoles caused by vacuolar fragmentation also improved micronucleophagy (microautophagic degradation of a portion of the nucleus). However, vacuolar morphology did not impact nucleolar remodeling, condensation of the rDNA (rRNA gene) region, or separation of ribosomal DNA from nucleolar proteins, which is evoked by TORC1 inactivation. Thus, this study provides insights into the impacts of vacuolar/lysosomal morphology on macroautophagy and microautophagy.


Subject(s)
Macroautophagy , Microautophagy , Saccharomyces cerevisiae Proteins , Saccharomycetales , Vacuoles , Autophagy , DNA, Ribosomal/genetics , Macroautophagy/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Microautophagy/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Vacuoles/metabolism
2.
Mol Biol Cell ; 32(22): br12, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34668753

ABSTRACT

Microlipophagy (µLP), degradation of lipid droplets (LDs) by microautophagy, occurs by autophagosome-independent direct uptake of LDs at lysosomes/vacuoles in response to nutrient limitations and ER stressors in Saccharomyces cerevisiae. In nutrient-limited yeast, liquid-ordered (Lo) microdomains, sterol-rich raftlike regions in vacuolar membranes, are sites of membrane invagination during LD uptake. The endosome sorting complex required for transport (ESCRT) is required for sterol transport during Lo formation under these conditions. However, ESCRT has been implicated in mediating membrane invagination during µLP induced by ER stressors or the diauxic shift from glycolysis- to respiration-driven growth. Here we report that ER stress induced by lipid imbalance and other stressors induces Lo microdomain formation. This process is ESCRT independent and dependent on Niemann-Pick type C sterol transfer proteins. Inhibition of ESCRT or Lo microdomain formation partially inhibits lipid imbalance-induced µLP, while inhibition of both blocks this µLP. Finally, although the ER stressors dithiothreitol or tunicamycin induce Lo microdomains, µLP in response to these stressors is ESCRT dependent and Lo microdomain independent. Our findings reveal that Lo microdomain formation is a yeast stress response, and stress-induced Lo microdomain formation occurs by stressor-specific mechanisms. Moreover, ESCRT and Lo microdomains play functionally distinct roles in LD uptake during stress-induced µLP.


Subject(s)
Lipid Droplets/metabolism , Membrane Microdomains/metabolism , Microautophagy/physiology , Saccharomyces cerevisiae/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Endoplasmic Reticulum Stress , Endosomal Sorting Complexes Required for Transport/metabolism , Lipid Droplets/chemistry , Membrane Microdomains/chemistry , Oxidation-Reduction , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/chemistry , Vacuoles/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
3.
Autophagy ; 17(8): 1828-1840, 2021 08.
Article in English | MEDLINE | ID: mdl-32559125

ABSTRACT

As one of the major, highly conserved catabolic pathways, autophagy delivers cytosolic components to lysosomes for degradation. It is essential for development, cellular homeostasis, and coping with stress. Reduced autophagy increases susceptibility to protein aggregation diseases and leads to phenotypes associated with aging. Of the three major forms of autophagy, macroautophagy (MA) can degrade organelles or aggregated proteins, and chaperone-mediated autophagy is specific for soluble proteins containing KFERQ-related targeting motifs. During endosomal microautophagy (eMI), cytoplasmic proteins are engulfed into late endosomes in an ESCRT machinery-dependent manner. eMI can be KFERQ-specific or occur in bulk and be induced by prolonged starvation. Its physiological regulation and function, however, are not understood. Here, we show that eMI in the Drosophila fat body, akin to the mammalian liver, is induced upon oxidative or genotoxic stress in an ESCRT and partially Hsc70-4-dependent manner. Interestingly, eMI activation is selective, as ER stress fails to elicit a response. Intriguingly, we find that reducing MA leads to a compensatory enhancement of eMI, suggesting a tight interplay between these degradative processes. Furthermore, we show that mutations in DNA damage response genes are sufficient to trigger eMI and that the response to oxidative stress is under the control of MAPK/JNK signaling. Our data suggest that, controlled by various signaling pathways, eMI allows an organ to react and adapt to specific types of stress and is thus likely critical to prevent disease.Abbreviations:Atg: autophagy-related; CMA: chaperone-mediated autophagy; DDR: DNA damage repair; Df: deficiency (deletion); (E)GFP: (enhanced) green fluorescent protein; eMI: endosomal microautophagy; ER: endoplasmatic reticulum; ESCRT: endosomal sorting complexes required for transport; Eto: etoposide; FLP: flipase; Hsc: heat shock cognate protein; LAMP2A: lysosomal-associated membrane protein 2A; LE: late endosome; MA: macroautophagy; MI: microautophagy; MVB: multivesicular body; PA: photoactivatable; Para: paraquat; ROS: reactive oxygen species; SEM: standard error of means; Tor: target of rapamycin [serine/threonine kinase]; UPR: unfolded protein response; Vps: vacuolar protein sorting.


Subject(s)
Autophagy/physiology , Lysosomes/metabolism , Microautophagy/physiology , Stress, Physiological/physiology , Animals , Autophagy/genetics , Endosomes/metabolism , Lysosomal Membrane Proteins/metabolism , Multivesicular Bodies/metabolism , Protein Transport/physiology , Proteolysis , Starvation/metabolism
4.
BMC Mol Cell Biol ; 21(1): 70, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028189

ABSTRACT

BACKGROUND: Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required. RESULTS: Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation. CONCLUSIONS: These findings provide evidence for the direct role of ESCRT in microautophagy induction.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Microautophagy/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Yeast, Dried/metabolism , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Protein Transport/physiology , Vacuoles/metabolism
5.
Curr Genet ; 66(4): 683-687, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32077993

ABSTRACT

Proteasomes are highly abundant protein complexes that are responsible for most regulated protein degradation in cells under favorable growth conditions. When yeast cells are under nutritional stress, most proteasomes exit the nucleus and either accumulate in cytoplasmic condensates called proteasome storage granules (PSGs) or are directed to the vacuole by autophagy. Nitrogen starvation does not cause PSG formation but leads to degradation of proteasomes through the classical macroautophagy pathway. By contrast, carbon starvation or extended incubation in stationary phase results in both PSG formation and macroautophagy of proteasomes. Unexpectedly, we found that glucose limitation also causes proteasomes to be taken up directly into vacuoles by a microautophagy mechanism. Macro- and micro-autophagy occur in parallel in glucose-starved cells, and microautophagy appears biased toward aberrant or inactive proteasomes, leaving functional proteasomes to accumulate in PSGs. PSGs dissolve and proteasomes remobilize to the nucleus within minutes after glucose refeeding. We showed that AMP-activated protein kinase (AMPK) and endosomal-sorting-complex-required-for-transport (ESCRT) factors are required for proteasome microautophagy and also impact PSG dissipation and nuclear reimport of proteasomes after glucose refeeding. The insoluble protein deposit (IPOD) compartment provides an alternative means of proteasome homeostasis, including when microautophagy is impaired. Our findings reveal a surprising diversity of mechanisms for proteasome quality and quantity control during starvation. A mechanistic understanding of the AMPK-regulated ESCRT-mediated microautophagy pathway could provide new avenues for manipulating proteasome homeostasis and treating human disease.


Subject(s)
Microautophagy/physiology , Proteasome Endopeptidase Complex/metabolism , AMP-Activated Protein Kinases/metabolism , Cytoplasm/metabolism , Glucose/metabolism , Proteostasis
6.
Autophagy ; 16(4): 763-764, 2020 04.
Article in English | MEDLINE | ID: mdl-31958035

ABSTRACT

Changing conditions necessitate cellular adaptation, which frequently entails adjustment of organelle size and shape. The endoplasmic reticulum (ER) is an organelle of exceptional morphological plasticity. In budding yeast, ER stress triggers the de novo formation of ER subdomains called ER whorls. These whorls are selectively degraded by a poorly defined type of microautophagy. We recently showed that ESCRT proteins are essential for microautophagic uptake of ER whorls into lysosomes, likely by mediating the final scission of the lysosomal membrane. Furthermore, ER-selective microautophagy acts in parallel with ER-selective macroautophagy. The molecular machineries for these two types of autophagy are distinct and their contributions to ER turnover vary according to conditions, suggesting that they serve different functions. Our study provides evidence for a direct role of ESCRTs in microautophagy and extends our understanding of how autophagy promotes organelle homeostasis.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Microautophagy/physiology , Endoplasmic Reticulum Stress/physiology , Homeostasis/physiology , Humans , Intracellular Membranes
7.
FASEB J ; 33(4): 5626-5640, 2019 04.
Article in English | MEDLINE | ID: mdl-30640524

ABSTRACT

During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.


Subject(s)
Endosomes/metabolism , Microautophagy/physiology , Protein Transport/physiology , Secretory Pathway/physiology , Animals , Autophagy/physiology , Cell Line , Cell Membrane/metabolism , Cell Movement/physiology , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Exosomes/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Mice , Multivesicular Bodies/metabolism , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...