Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 808
Filter
1.
J Environ Sci (China) ; 146: 81-90, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969464

ABSTRACT

Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.


Subject(s)
Arsenic , Carps , Eutrophication , Microcystis , Water Pollutants, Chemical , Microcystis/metabolism , Animals , Carps/metabolism , Arsenic/metabolism , Arsenic/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
mSystems ; 9(7): e0033424, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38916306

ABSTRACT

Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.


Subject(s)
Microcystis , Secondary Metabolism , Microcystis/genetics , Microcystis/metabolism , Secondary Metabolism/genetics , Multigene Family/genetics , Lakes/microbiology , Microcystins/metabolism , Microcystins/genetics , Microcystins/biosynthesis , Metabolome , Metabolomics , Harmful Algal Bloom , Genome, Bacterial/genetics
3.
Water Res ; 260: 121948, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38906082

ABSTRACT

Harmful algal blooms pose tremendous threats to ecological safety and human health. In this study, simulated solar light (SSL) irradiation was used to activate periodate (PI) for the inactivation of Microcystis aeruginosa and degradation of microcystin-LR (MC-LR). We found that PI-SSL system could effectively inactivate 5 × 106 cells·mL-1 algal cells below the limit of detection within 180 min. ·OH and iodine (IO3· and IO4·) radicals generated in PI-SSL system could rupture cell membranes, releasing intracellular substances including MC-LR into the reaction system. However, the released MC-LR could be degraded into non-toxic small molecules via hydroxylation and ring cleavage processes in PI-SSL system, reducing their environmental risks. High algae inactivation performance of PI-SSL system in solution with a wide pH range (3-9), with the coexisting anions (Cl-, NO3- and SO42-) and the copresence of natural organic matters (humic acid and fulvic acid), real water (lake water and river water), as well as in continuous-flow reactor (14 h) were also achieved. In addition, under natural sunlight irradiation, effective algae inactivation could also be achieved in an enlarged reactor (1 L). Overall, our study showed that PI-SSL system could avoid the inference by the background substances and could be employed as a feasible technique to treat algal bloom water.


Subject(s)
Microcystins , Microcystis , Sunlight , Microcystis/metabolism , Microcystins/metabolism , Marine Toxins , Harmful Algal Bloom
4.
Environ Res ; 257: 119291, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38823607

ABSTRACT

The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.


Subject(s)
Microcystis , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Microcystins/biosynthesis , Biomass , Cell Membrane/drug effects , Cell Membrane/metabolism , Marine Toxins/biosynthesis , Parabens/pharmacology , Antioxidants/metabolism
5.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928400

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) posed a major challenge to healthcare systems worldwide, especially as mutations in the culprit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) complicated the development of vaccines and antiviral drugs. Therefore, the search for natural products with broad anti-SARS-CoV-2 capabilities is an important option for the prevention and treatment of similar infectious diseases. Lectins, which are widely recognized as antiviral agents, could contribute to the development of anti-SARS-CoV-2 drugs. This study evaluated the binding affinity of six lectins (including the cyanobacterial lectin from Microcystis viridis NIES-102 (MVL), and Jacalin, a lectin from the breadfruit, Artocarpus altilis) to the receptor binding domain (RBD) of the spike protein on the original (wild) SARS-CoV-2 and three of its mutants: Alpha, Delta, and Omicron. MVL and Jacalin showed distinct binding affinity to the RBDs of the four SARS-CoV-2 strains. The remaining four lectins (DB1, ConA, PHA-M and CSL3) showed no such binding affinity. Although the glycan specificities of MVL and Jacalin were different, they showed the same affinity for the spike protein RBDs of the four SARS-CoV-2 strains, in the order of effectiveness Alpha > Delta > original > Omicron. The verification of glycan-specific inhibition revealed that both lectins bind to RBDs by glycan-specific recognition, but, in addition, MVL binds to RBDs through protein-protein interactions.


Subject(s)
Lectins , Microcystis , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Lectins/metabolism , Lectins/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Microcystis/metabolism , Humans , COVID-19/virology , COVID-19/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protein Interaction Domains and Motifs , Cyanobacteria/metabolism , Plant Lectins/metabolism , Plant Lectins/chemistry , Binding Sites , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mutation
6.
Microbes Environ ; 39(2)2024.
Article in English | MEDLINE | ID: mdl-38763742

ABSTRACT

Microcystins (MCs) produced by Microcystis aeruginosa are harmful to animal and human health, and there is currently no effective method for their removal. Therefore, the development of biological approaches that inhibit cyanobacteria and remove MCs is needed. We identified strain MB1, confirmed as Morchella, using morphological and mole-cular evolution methods. To assess the impact of strain MB1 on M. aeruginosa, we conducted an experiment in which we inoculated M. aeruginosa with Morchella strain MB1. After their co-cultivation for 4| |d, the inoculation with 0.9696| |g MB1 completely inhibited and removed M. aeruginosa while concurrently removing up to 95% of the MC content. Moreover, within 3| |d of their co-cultivation, MB1 removed more than 50% of nitrogen and phosphorus from the M. aeruginosa solution. Therefore, the development of effective biological techniques for MC removal is paramount in safeguarding both the environment and human well-being. We herein successfully isolated MB1 from its natural habitat. This strain effectively inhibited and removed M. aeruginosa and also reduced the content of nitrogen and phosphorus in the M. aeruginosa solution. Most importantly, it exhibited a robust capability to eliminate MCs. The present results offer a new method and technical reference for mitigating harmful algal blooms.


Subject(s)
Harmful Algal Bloom , Microcystins , Microcystis , Nitrogen , Phosphorus , Microcystins/metabolism , Microcystis/metabolism , Microcystis/growth & development , Microcystis/chemistry , Phosphorus/metabolism , Nitrogen/metabolism
7.
J Hazard Mater ; 474: 134767, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820757

ABSTRACT

Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM). However, the influencing mechanism of MPs and NPs exposure on MC-LR synthesis and release have still not been clearly evaluated. In this work, under both acute (4d) and long-term exposure (10d), only high-concentration (10 mg/L) exposure of amino-modified polystyrene NPs (PS-NH2-NPs) promoted MC-LR synthesis (32.94 % and 42.42 %) and release (27.35 % and 31.52 %), respectively. Mechanistically, PS-NH2-NPs inhibited algae cell density, interrupted pigment synthesis, weakened photosynthesis efficiency, and induced oxidative stress, with subsequent enhancing the MC-LR synthesis. Additionally, PS-NH2-NPs exposure up-regulated MC-LR synthesis pathway genes (mcyA, mcyB, mcyD, and mcyG) combined with significantly increased metabolomics (Leucine and Arginine), thereby enhancing MC-LR synthesis. PS-NH2-NPs exposure enhanced the MC-LR release from M. aeruginosa via up-regulated MC-LR transport pathway genes (mcyH) and the shrinkage of plasma membrane. Our results provide new insights into the long-time coexistence of NPs with algae in freshwater systems might pose a potential threat to aquatic environments and human health.


Subject(s)
Marine Toxins , Microcystins , Microcystis , Polystyrenes , Microcystis/metabolism , Microcystis/drug effects , Microcystins/metabolism , Microcystins/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Photosynthesis/drug effects , Oxidative Stress/drug effects , Arginine/chemistry , Arginine/metabolism , Nanoparticles/toxicity , Nanoparticles/chemistry , Microplastics/toxicity
8.
Microbiol Spectr ; 12(6): e0029824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38695606

ABSTRACT

The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE: The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.


Subject(s)
Bacteriophages , Microcystis , Microcystis/virology , Microcystis/genetics , Microcystis/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , China , Transcriptome , Lakes/microbiology , Lakes/virology , Genome, Viral/genetics , Evolution, Molecular
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38718148

ABSTRACT

Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.


Subject(s)
Microbiota , Microcystins , Microcystis , Nitrogen , Microcystis/metabolism , Microcystis/growth & development , Microcystins/metabolism , Nitrogen/metabolism , Amino Acids/metabolism
10.
Bioresour Technol ; 402: 130806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718906

ABSTRACT

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Subject(s)
Microcystis , Oxidation-Reduction , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Reactive Oxygen Species/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/chemistry , Peracetic Acid/pharmacology , Hot Temperature , Hydroxyl Radical/metabolism , Kinetics
11.
Sci Rep ; 14(1): 10934, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740841

ABSTRACT

Cyanobacteria bloom and the secondary metabolites released by the microorganism are extremely harmful to aquatic animals, yet study on their adverse effects in zoobenthos is rare. Corbicula fluminea widely distributed in freshwater environment with algal blooms. It is a typical filter feeding zoobenthos that may be affected by the secondary metabolites of cyanobacteria due to its high filtering rate. In this study, C. fluminea was exposed to Microcystis aeruginosa exudates (MaE) for 96 h, which was obtained from 5 × 105 cells/mL and 2.5 × 106 cells/mL exponential stage M. aeruginosa culture solution that represented cyanobacteria cell density needs environmental risk precaution control and emergent control, respectively. The responses of C. fluminea critical organs to MaE were analyzed and evaluated based on histopathological sections, antitoxicity biomarkers, and organ function biomarkers. The results showed that all the organs underwent structural disorders, cell vacuolization, apoptosis, and necrosis, and the damage levels increased as MaE concentration increased. The detoxification and antioxidant defense systems biomarkers in each organ response to MaE exposure differently and the level of reaction improved when MaE concentration increased. The siphon rate and acetylcholinesterase activity showed that the filtration function decreased significantly as the MaE concentration increased. Increased activity of glutathione S-transferase and amylase in the digestive gland indicate that it is the major detoxification organ of C. fluminea. Increased vitellogenin concentration and enlarged oocytes in the gonad indicate that MaE may have an estrogenic effect on C. fluminea. This study demonstrates that cyanobacteria threat benthic bivalves by inducing oxidative stress, inhibiting filtering feeding system, and disturbing digestion system and reproduction potential of C. fluminea.


Subject(s)
Corbicula , Microcystis , Reproduction , Animals , Microcystis/metabolism , Corbicula/metabolism , Corbicula/microbiology , Filtration , Biomarkers/metabolism
12.
Microbiome ; 12(1): 88, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741135

ABSTRACT

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Subject(s)
Lakes , Microbiota , Microcystis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , China , Lakes/microbiology , Nutrients/metabolism , Phototrophic Processes , Aerobiosis , Eutrophication , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Carbon/metabolism
13.
J Hazard Mater ; 473: 134678, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781856

ABSTRACT

Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.


Subject(s)
Antiviral Agents , Indoles , Microalgae , Microcystis , Transcriptome , Water Pollutants, Chemical , Indoles/toxicity , Antiviral Agents/toxicity , Antiviral Agents/pharmacology , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Microcystis/drug effects , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Eutrophication/drug effects , Chlorophyll/metabolism
14.
Bioresour Technol ; 403: 130898, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797360

ABSTRACT

Astaxanthin is a high-value natural antioxidant, and can be accumulated in Microcystis aeruginosa. To enhance astaxanthin accumulation in the microalgae by using salt stress, the cell growth, photosynthetic abilities, reactive oxygen species (ROS) levels, astaxanthin and its precursor content, and gene expression were investigated under NaCl and KCl stresses. The two salt stresses inhibited the cell growth by lowering photosynthetic abilities and raising ROS levels. During the 6-day treatment, the two salt stresses improved the levels of astaxanthin, precursors (ß-carotene and zeaxanthin) and carotenoids, which might be caused by the raised ROS up-regulating expression of 7 related genes. At the same concentration, KCl stress showed stronger inducing effect on astaxanthin and its precursor production than NaCl stress, due to higher expression of related genes. Therefore, NaCl and KCl stresses have obvious ion differences on astaxanthin accumulation, of which KCl stress is more suitable for the high-value antioxidant production from microalgae.


Subject(s)
Microcystis , Photosynthesis , Potassium Chloride , Reactive Oxygen Species , Sodium Chloride , Xanthophylls , Microcystis/drug effects , Microcystis/metabolism , Xanthophylls/metabolism , Sodium Chloride/pharmacology , Potassium Chloride/pharmacology , Reactive Oxygen Species/metabolism , Photosynthesis/drug effects , Stress, Physiological/drug effects , Salt Stress/drug effects , Antioxidants/metabolism
15.
Harmful Algae ; 134: 102623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705613

ABSTRACT

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Subject(s)
Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
16.
J Microbiol ; 62(3): 249-260, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38587591

ABSTRACT

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.


Subject(s)
Fresh Water , Microcystis , Microcystis/growth & development , Microcystis/drug effects , Microcystis/metabolism , Fresh Water/microbiology , Harmful Algal Bloom , Eutrophication , Ecosystem , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Microcystins/metabolism , Photosynthesis , Climate Change
17.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677120

ABSTRACT

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Subject(s)
Calcium , Extracellular Polymeric Substance Matrix , Microcystis , Microcystis/metabolism , Calcium/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Methylobacterium/metabolism , Methylobacterium/genetics
18.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678710

ABSTRACT

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Subject(s)
Biomarkers , Chlorophyll A , Diclofenac , Microcystis , Synechocystis , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Diclofenac/toxicity , Diclofenac/metabolism , Biomarkers/metabolism , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Chlorophyll A/metabolism , Microcystins/metabolism , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
19.
J Photochem Photobiol B ; 255: 112924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688041

ABSTRACT

Whether rapid oxygen isotopic exchange between bicarbonate and water occurs in photosynthesis is the key to determine the source of oxygen by classic 18O-labeled photosynthetic oxygen evolution experiments. Here we show that both Microcystis aeruginosa and Chlamydomonas reinhardtii utilize a significant proportion (>16%) of added bicarbonate as a carbon source for photosynthesis. However, oxygen isotopic signal in added bicarbonate cannot be traced in the oxygen in organic matter synthesized by these photosynthetic organisms. This contradicts the current photosynthesis theory, which states that photosynthetic oxygen evolution comes only from water, and oxygen in photosynthetic organic matter comes only from carbon dioxide. We conclude that the photosynthetic organisms undergo rapid exchange of oxygen isotope between bicarbonate and water during photosynthesis. At the same time, this study also provides isotopic evidence for a new mechanism that half of the oxygen in photosynthetic oxygen evolution comes from bicarbonate photolysis and half comes from water photolysis, which provides a new explanation for the bicarbonate effect, and suggests that the Kok-Joliot cycle of photosynthetic oxygen evolution, must be modified to include a molecule of bicarbonate in addition to one molecule of water which in turn must be incorporated into the cycle instead of two water molecules. Furthermore, this study provides a theoretical basis for constructing a newer artificial photosynthetic reactor coupling light reactions with the dark reactions.


Subject(s)
Bicarbonates , Chlamydomonas reinhardtii , Oxygen Isotopes , Photosynthesis , Water , Bicarbonates/chemistry , Bicarbonates/metabolism , Water/chemistry , Water/metabolism , Oxygen Isotopes/chemistry , Chlamydomonas reinhardtii/metabolism , Microcystis/metabolism , Oxygen/metabolism , Oxygen/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry
20.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38659192

ABSTRACT

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Subject(s)
Microcystis , Nitrogen , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Microcystins/metabolism , Polystyrenes/chemistry , Particle Size , Microplastics/metabolism , Nanoparticles/chemistry , Nitrates/metabolism , Nitrates/chemistry , Urea/metabolism , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL