Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.661
Filter
1.
Acta Neuropathol ; 148(1): 15, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102080

ABSTRACT

Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aß) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aß, preserving brain health, and slowing AD pathology progression.


Subject(s)
Alzheimer Disease , Microglia , Plaque, Amyloid , tau Proteins , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , Microglia/metabolism , Microglia/pathology , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , tau Proteins/metabolism , Aged , Male , Aged, 80 and over , Female , Brain/pathology , Brain/metabolism , Cognitive Reserve/physiology , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism
2.
Sci Rep ; 14(1): 18981, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152179

ABSTRACT

Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.


Subject(s)
Altitude , Cognition , Hippocampus , Long-Term Potentiation , Mice, Inbred C57BL , Microglia , Neurons , Animals , Microglia/metabolism , Microglia/physiology , Male , Mice , Hippocampus/metabolism , Cognition/physiology , Neurons/physiology , Neurons/metabolism , Acclimatization/physiology , Fear/physiology , Memory/physiology , Glucose/metabolism , Organic Chemicals
3.
CNS Neurosci Ther ; 30(8): e14924, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143678

ABSTRACT

AIMS: Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS: We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS: Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION: EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.


Subject(s)
Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Postoperative Cognitive Complications , Receptors, CCR5 , Animals , Microglia/metabolism , Mice , Receptors, CCR5/metabolism , Neuroinflammatory Diseases/metabolism , Postoperative Cognitive Complications/metabolism , Male , Extracellular Vesicles/metabolism , Receptors, G-Protein-Coupled/metabolism , ras Proteins/metabolism , Cognition/physiology , Cognition/drug effects , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Cognitive Dysfunction/metabolism
4.
J Neuroinflammation ; 21(1): 196, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107821

ABSTRACT

Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf ß-amyloid (Aß) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aß peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aß into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aß. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Focal Adhesion Kinase 2 , Mice, Transgenic , Microglia , Phagocytosis , Focal Adhesion Kinase 2/metabolism , Focal Adhesion Kinase 2/antagonists & inhibitors , Animals , Amyloid beta-Peptides/metabolism , Microglia/drug effects , Microglia/metabolism , Mice , Phagocytosis/drug effects , Phagocytosis/physiology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , Mice, Inbred C57BL
5.
CNS Neurosci Ther ; 30(8): e14881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107960

ABSTRACT

BACKGROUND: Microglia and infiltrated macrophages (M/M) are integral components of the innate immune system that play a critical role in facilitating brain repair after ischemic stroke (IS) by clearing cell debris. Novel therapeutic strategies for IS therapy involve modulating M/M phenotype shifting. This study aims to elucidate the pivotal role of S100A9 in M/M and its downstream STAT6/PPARγ signaling pathway in neuroinflammation and phagocytosis after IS. METHODS: In the clinical study, we initially detected the expression pattern of S100A9 in monocytes from patients with acute IS and investigated its association with the long-term prognosis. In the in vivo study, we generated the S100A9 conditional knockout (CKO) mice and compared the stroke outcomes with the control group. We further tested the S100A9-specific inhibitor paqunimod (PQD), for its pharmaceutical effects on stroke outcomes. Transcriptomics and in vitro studies were adopted to explore the mechanism of S100A9 in modulating the M/M phenotype, which involves the regulation of the STAT6/PPARγ signaling pathway. RESULTS: S100A9 was predominantly expressed in classical monocytes and was correlated with unfavorable outcomes in patients of IS. S100A9 CKO mitigated infarction volume and white matter injury, enhanced cerebral blood flow and functional recovery, and prompted anti-inflammation phenotype and efferocytosis after tMCAO. The STAT6/PPARγ pathway, an essential signaling cascade involved in immune response and inflammation, might be the downstream target mediated by S100A9 deletion, as evidenced by the STAT6 phosphorylation inhibitor AS1517499 abolishing the beneficial effect of S100A9 inhibition in tMCAO mice and cell lines. Moreover, S100A9 inhibition by PQD treatment protected against neuronal death in vitro and brain injuries in vivo. CONCLUSION: This study provides evidence for the first time that S100A9 in classical monocytes could potentially be a biomarker for predicting IS prognosis and reveals a novel therapeutic strategy for IS. By demonstrating that S100A9-mediated M/M polarization and phagocytosis can be reversed by S100A9 inhibition in a STAT6/PPARγ pathway-dependent manner, this study opens up new avenues for drug development in the field.


Subject(s)
Calgranulin B , Ischemic Stroke , Macrophages , Mice, Knockout , Microglia , PPAR gamma , STAT6 Transcription Factor , Signal Transduction , Animals , Calgranulin B/genetics , Calgranulin B/metabolism , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/deficiency , STAT6 Transcription Factor/genetics , Microglia/metabolism , Microglia/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/pathology , Signal Transduction/physiology , Signal Transduction/drug effects , Mice, Inbred C57BL , Female , Middle Aged , Aged
6.
PLoS One ; 19(8): e0308464, 2024.
Article in English | MEDLINE | ID: mdl-39110702

ABSTRACT

Neuronal loss is a hallmark of stroke and other neurodegenerative diseases, and as such, neuronal loss caused by microglia has been thought to be a contributing factor to disease progression. Here, we show that microglia indeed contribute significantly to neuronal loss in a mouse model of stroke, but this microglial-dependent process of neuronal clearance specifically targets stressed and degenerating neurons in the ischemic cortical region and not healthy non-ischemic neurons. Nonspecific stimulation of microglia decreased the density of neurons in the ischemic cortical region, whereas specific inhibition of MFG-E8 signaling, which is required for microglial phagocytosis of neurons, had the opposite effect. In both scenarios, the effects were microglia specific, as the same treatments had no effect in mice whose microglia were depleted prior to stroke. Finally, even though the inhibition of MFG-E8 signaling increased neuronal density in the ischemic brain region, it substantially exacerbated the development of cortical infarction. In conclusion, microglia through MFG-E8 signaling contribute to the loss of ischemic neurons and, in doing so, minimize the development of cortical infarction after stroke.


Subject(s)
Antigens, Surface , Microglia , Milk Proteins , Neurons , Signal Transduction , Stroke , Animals , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Mice , Milk Proteins/metabolism , Antigens, Surface/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Male , Mice, Inbred C57BL , Disease Models, Animal , Cerebral Infarction/pathology , Cerebral Infarction/metabolism , Cerebral Infarction/etiology , Brain/metabolism , Brain/pathology , Phagocytosis , Cerebral Cortex/metabolism , Cerebral Cortex/pathology
7.
Behav Brain Res ; 472: 115174, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39098398

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a common and severe clinical feature of sepsis; however, therapeutic approaches are limited because of the unclear pathogenesis. Adiponectin receptor agonist (AdipoRon) is a small-molecule agonist of the adiponectin receptor that exhibits anti-inflammatory and memory-improving effects in various diseases. In the present study, we established lipopolysaccharide (LPS)-induced mice models of SAE and found that Adiponectin receptor 1 (AdipoR1) was significantly decreased in the hippocampus. Administration of AdipoRon improves memory impairment, mitigates synaptic damage, and alleviates neuronal death. Furthermore, AdipoRon reduces the number of microglia. More importantly, AdipoRon promotes the phosphorylation of adenosine 5 '-monophosphate activated protein kinase (pAMPK). In conclusion, AdipoRon is protective against SAE-induced memory decline and brain injury in the SAE models via activating the hippocampal adenosine 5 '-monophosphate activated protein kinase (AMPK).


Subject(s)
Disease Models, Animal , Hippocampus , Memory Disorders , Receptors, Adiponectin , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Lipopolysaccharides/pharmacology , Memory Disorders/drug therapy , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Piperidines/pharmacology , Receptors, Adiponectin/agonists , Receptors, Adiponectin/metabolism , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism
8.
Transl Psychiatry ; 14(1): 323, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107272

ABSTRACT

This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.


Subject(s)
Bipolar Disorder , Brain , Genome-Wide Association Study , Single-Cell Analysis , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Humans , Brain/pathology , Brain/metabolism , Astrocytes/metabolism , Microglia/metabolism , Microglia/pathology , Sequence Analysis, RNA , Adult , Transcriptome , Multiomics
9.
Mol Med Rep ; 30(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129303

ABSTRACT

Diospyros lotus has been traditionally used in Asia for medicinal purposes, exhibiting a broad spectrum of pharmacological effects including antioxidant, neuroprotective and anti­inflammatory properties. While the anti­itch effect of D. lotus leaves has been reported, studies on the detailed mechanism of action in microglia and astrocytes, which are members of the central nervous system, have yet to be revealed. The present study aimed to investigate effects of D. lotus leaf extract (DLE) and its main component myricitrin (MC) on itch­related cytokines and signaling pathways in lipopolysaccharide (LPS)­stimulated microglia. The effect of DLE and MC on activation of astrocyte stimulated by microglia was also examined. Cytokine production was evaluated through reverse transcription PCR and western blot analysis. Signaling pathway was analyzed by performing western blotting and immunofluorescence staining. The effect of microglia on astrocytes activation was evaluated via western blotting for receptors, signaling molecules and itch mediators and confirmed through gene silencing using short interfering RNA. DLE and MC suppressed the production of itch­related cytokine IL­6 and IL­31 in LPS­stimulated microglia. These inhibitory effects were mediated through the blockade of NF­κB, MAPK and JAK/STAT pathways. In astrocytes, stimulation by microglia promoted the expression of itch­related molecules such as oncostatin M receptor, interleukin 31 receptor a, inositol 1,4,5­trisphosphate receptor 1, lipocalin­2 (LCN2), STAT3 and glial fibrillary acidic protein. However, DLE and MC significantly inhibited these receptors. Additionally, astrocytes stimulated by microglia with IL­6, IL­31, or both genes silenced did not show activation of LCN2 or STAT3. The findings of the present study demonstrated that DLE and MC could suppress pruritic activity in astrocytes induced by microglia­derived IL­6 and IL­31. This suggested the potential of DLE and MC as functional materials capable of alleviating pruritus.


Subject(s)
Astrocytes , Diospyros , Flavonoids , Interleukin-6 , Microglia , Plant Extracts , Plant Leaves , Pruritus , Astrocytes/drug effects , Astrocytes/metabolism , Microglia/drug effects , Microglia/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Mice , Interleukin-6/metabolism , Interleukin-6/genetics , Plant Leaves/chemistry , Pruritus/drug therapy , Pruritus/metabolism , Diospyros/chemistry , Lipopolysaccharides , Signal Transduction/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Interleukins
10.
CNS Neurosci Ther ; 30(8): e14913, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39123294

ABSTRACT

BACKGROUND: Hyperglycemia-induced neuroinflammation significantly contributes to diabetic neuropathic pain (DNP), but the underlying mechanisms remain unclear. OBJECTIVE: To investigate the role of Sirt3, a mitochondrial deacetylase, in hyperglycemia-induced neuroinflammation and DNP and to explore potential therapeutic interventions. METHOD AND RESULTS: Here, we found that Sirt3 was downregulated in spinal dorsal horn (SDH) of diabetic mice by RNA-sequencing, which was further confirmed at the mRNA and protein level. Sirt3 deficiency exacerbated hyperglycemia-induced neuroinflammation and DNP by enhancing microglial aerobic glycolysis in vivo and in vitro. Overexpression of Sirt3 in microglia alleviated inflammation by reducing aerobic glycolysis. Mechanistically, high-glucose stimulation activated Akt, which phosphorylates and inactivates FoxO1. The inactivation of FoxO1 diminished the transcription of Sirt3. Besides that, we also found that hyperglycemia induced Sirt3 degradation via the mitophagy-lysosomal pathway. Blocking Akt activation by GSK69093 or metformin rescued the degradation of Sirt3 protein and transcription inhibition of Sirt3 mRNA, which substantially diminished hyperglycemia-induced inflammation. Metformin in vivo treatment alleviated neuroinflammation and diabetic neuropathic pain by rescuing hyperglycemia-induced Sirt3 downregulation. CONCLUSION: Hyperglycemia induces metabolic reprogramming and inflammatory activation in microglia through the regulation of Sirt3 transcription and degradation. This novel mechanism identifies Sirt3 as a potential drug target for treating DNP.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Down-Regulation , Glycolysis , Hyperglycemia , Mice, Inbred C57BL , Microglia , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Mice , Glycolysis/drug effects , Glycolysis/physiology , Down-Regulation/drug effects , Down-Regulation/physiology , Hyperglycemia/metabolism , Microglia/metabolism , Microglia/drug effects , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/metabolism , Inflammation/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Metformin/pharmacology
11.
Synapse ; 78(5): e22306, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39135278

ABSTRACT

BACKGROUND: Increasing evidence demonstrated the involvement of microRNAs (miRNAs) in the onset and development of neuropathic pain (NP). Exploring the molecular mechanism underlying NP and identifying key molecules could provide potential targets for the therapy of NP. The function and mechanism of miR-125b-5p in regulating NP have been studied, aiming to find a potential therapeutic target for NP. METHODS: NP rat models were established by the chronic constriction injury (CCI) method. The paw withdrawal threshold and paw withdrawal latency were assessed to evaluate the establishment and recovery of rats. Highly aggressive proliferating immortalized (HAPI) micoglia cell, a rat microglia cell line, was treated with lipopolysaccharide (LPS). The M1/M2 polarization and inflammation were evaluated by enzyme-linked immunosorbent assay and western blotting. RESULTS: Decreasing miR-125b-5p and increasing SOX11 were observed in CCI rats and LPS-induced HAPI cells. Overexpressing miR-125b-5p alleviated mechanical allodynia and thermal hyperalgesia and suppressed inflammation in CCI rats. LPS induced M1 polarization and inflammation of HAPI cells, which was attenuated by miR-125b-5p overexpression. miR-125-5p negatively regulated the expression of SOX11 in CCI rats and LPS-induced HAPI cells. Overexpressing SOX11 reversed the protective effects of miR-125b-5p on mechanical pain in CCI rats and the polarization and inflammation in HAPI cells, which was considered the mechanism underlying miR-125b-5p. CONCLUSION: miR-125b-5p showed a protective effect on NP by regulating inflammation and polarization of microglia via negatively modulating SOX11.


Subject(s)
Lipopolysaccharides , MicroRNAs , Microglia , Neuralgia , Rats, Sprague-Dawley , SOXC Transcription Factors , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Neuralgia/metabolism , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Male , Microglia/metabolism , Microglia/drug effects , Lipopolysaccharides/pharmacology , Hyperalgesia/metabolism , Neuroinflammatory Diseases/metabolism , Cell Line , Disease Models, Animal
12.
Mol Biol Rep ; 51(1): 908, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141244

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by oxidative stress and neuroinflammation. Sofalcone (SFC), a chalcone derivative known for its antioxidative and anti-inflammatory properties, is widely used clinically as a gastric mucosa protective agent. However, its therapeutic potential in PD remains to be fully explored. In this study, we investigated the neuroprotective effects of SFC in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. METHODS AND RESULTS: We found that SFC ameliorated MPTP-induced motor impairments in mice, as assessed by the rotarod and wire tests. Moreover, SFC administration prevented the loss of dopaminergic neurons and striatal degeneration induced by MPTP. Subsequent investigations revealed that SFC reversed MPTP-induced downregulation of NRF2, reduced elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased total antioxidant capacity (TAOC). Furthermore, SFC suppressed MPTP-induced activation of microglia and astrocytes, downregulated the pro-inflammatory cytokine TNF-α, and upregulated the anti-inflammatory cytokine IL-4. Additionally, SFC ameliorated the MPTP-induced downregulation of phosphorylation of Akt at Ser473. CONCLUSIONS: This study provides evidence for the neuroprotective effects of SFC, highlighting its antioxidative and anti-inflammatory properties and its role in Akt activation in the PD model. These findings underscore SFC's potential as a promising therapeutic candidate for PD, warranting further clinical investigation.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Chalcones , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Animals , Oxidative Stress/drug effects , Mice , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Chalcones/pharmacology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Antioxidants/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Microglia/drug effects , Microglia/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents/pharmacology
13.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39117458

ABSTRACT

Neuroinflammation, aging, and neurodegenerative disorders are associated with excessive accumulation of neutral lipids in lipid droplets (LDs) in microglia. Type 2 diabetes mellitus (T2DM) may cause neuroinflammation and is a risk factor for neurodegenerative disorders. Here, we show that hippocampal pyramidal neurons contain smaller, more abundant LDs than their neighboring microglia. The density of LDs varied between pyramidal cells in adjacent subregions, with CA3 neurons containing more LDs than CA1 neurons. Within the CA3 region, a gradual increase in the LD content along the pyramidal layer from the hilus toward CA2 was observed. Interestingly, the high neuronal LD content correlated with less ramified microglial morphotypes. Using the db/db model of T2DM, we demonstrated that diabetes increased the number of LDs per microglial cell without affecting the neuronal LD density. High-intensity interval exercise induced smaller changes in the number of LDs in microglia but was not sufficient to counteract the diabetes-induced changes in LD accumulation. The changes observed in response to T2DM may contribute to the cerebral effects of T2DM and provide a mechanistic link between T2DM and neurodegenerative disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Hippocampus , Lipid Droplets , Microglia , Neurons , Microglia/metabolism , Animals , Lipid Droplets/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Neurons/metabolism , Neurons/pathology , Male , Mice , Physical Conditioning, Animal , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Lipid Metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology
14.
Article in Russian | MEDLINE | ID: mdl-39113456

ABSTRACT

OBJECTIVE: To study the ultrastructure of microglia and neurons in contact with each other in the head of the caudate nucleus in continuous schizophrenia (CS) and paroxysmal-progressive schizophrenia (PPS) as compared to controls and to analyze correlations between the parameters of microglia and neurons in the control and schizophrenia groups. MATERIAL AND METHODS: Post-mortem electron microscopic morphometric study of microglia and neurons in contact with each other was performed in the head of the caudate nucleus in 9 cases of CS, 10 cases of PPS and 20 controls without mental pathology. Group comparisons were made using analysis of covariance and Pearson correlation analysis. RESULTS: The PPS group showed increased numerical density of microglia in young (≤50 years old) patients compared to elderly (>50 years old) controls and increased area of endoplasmic reticulum vacuoles in microglia in young patients compared to young controls. Decreased numerical density of microglia was found in the CS group compared to the PPS group (p<0.05), and increased volume fraction (Vv) and the number of lipofuscin granules in microglia were found in the CS group in elderly patients compared with young and elderly controls. In this group, negative correlations were revealed between the numerical density of microglia, microglia nuclear area and the duration of disease (r= -0.72, p=0.03; r= -0.8; p=0.01). Decreased Vv and the number of mitochondria in microglia and increased area and perimeter of neurons were revealed in both groups compared to the control group. In neurons, increased vacuole area was found in the PPS group and mitochondrial area in the NTS group compared to the control group. Correlation violations were found between the parameters of mitochondria in microglia and neurons in both PPS and CS groups and between the area of mitochondria in neurons and the area of vacuoles in microglia in the CS group compared to the control group. CONCLUSION: Disturbed interactions between microglia and neurons in the caudate nucleus are associated with the types of course of schizophrenia and with microglial reactivity. They might be caused by the damage of energy metabolism in microglia in both types of schizophrenia course and by stress of endoplasmic reticulum in microglia in CS.


Subject(s)
Caudate Nucleus , Microglia , Neurons , Schizophrenia , Humans , Schizophrenia/pathology , Schizophrenia/metabolism , Caudate Nucleus/pathology , Caudate Nucleus/metabolism , Microglia/metabolism , Microglia/pathology , Neurons/pathology , Neurons/metabolism , Female , Male , Middle Aged , Adult , Aged , Endoplasmic Reticulum/metabolism
15.
Bull Exp Biol Med ; 177(2): 207-211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090471

ABSTRACT

In an experimental model of Alzheimer's disease in mice, oral administration of trehalose disaccharide reduces neuroinflammation assessed by the expression level of microglia activation marker Iba1 and affects the neutrophil degranulation activity. A potential anti-inflammatory effect of 4% trehalose solution associated with a decrease in the activity of leukocyte elastase in plasma was revealed.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Microglia , Trehalose , Animals , Trehalose/pharmacology , Trehalose/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Microglia/drug effects , Microglia/metabolism , Mice , Microfilament Proteins/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Calcium-Binding Proteins/metabolism , Leukocyte Elastase/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Disaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology
16.
Sci Rep ; 14(1): 17949, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095453

ABSTRACT

Stroke is a leading cause of permanent disability worldwide. Despite intensive research over the last decades, key anti-inflammatory strategies that have proven beneficial in pre-clinical animal models have often failed in translation. The importance of neutrophils as pro- and anti-inflammatory peripheral immune cells has often been overlooked in ischemic stroke. However, neutrophils rapidly infiltrate into the brain parenchyma after stroke and secrete an array of pro-inflammatory factors including reactive oxygen species, proteases, cytokines, and chemokines exacerbating damage. In this study, we demonstrate the neuroprotective and anti-inflammatory effect of benserazide, a clinically used DOPA decarboxylase inhibitor, using both in vitro models of inflammation and in vivo mouse models of focal cerebral ischemia. Benserazide significantly attenuated PMA-induced NETosis in isolated human neutrophils. Furthermore, benserazide was able to protect both SH-SY5Y and iPSC-derived human cortical neurons when challenged with activated neutrophils demonstrating the clinical relevance of this study. Additional in vitro data suggest the ability of benserazide to polarize macrophages towards M2-phenotypes following LPS stimulation. Neuroprotective effects of benserazide are further demonstrated by in vivo studies where peripheral administration of benserazide significantly attenuated neutrophil infiltration into the brain, altered microglia/macrophage phenotypes, and improved the behavioral outcome post-stroke. Overall, our data suggest that benserazide could serve as a drug candidate for the treatment of ischemic stroke. The importance of our results for future clinical trials is further underlined as benserazide has been approved by the European Medicines Agency as a safe and effective treatment in Parkinson's disease when combined with levodopa.


Subject(s)
Benserazide , Ischemic Stroke , Neuroprotective Agents , Neutrophils , Benserazide/pharmacology , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Humans , Ischemic Stroke/drug therapy , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Mice , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Disease Models, Animal , Recovery of Function/drug effects , Male , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism
17.
J Cell Mol Med ; 28(15): e18554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103747

ABSTRACT

Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aß) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.


Subject(s)
Alzheimer Disease , Microglia , Microglia/metabolism , Microglia/pathology , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , Animals , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/metabolism
18.
J Transl Med ; 22(1): 724, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103885

ABSTRACT

BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Microglia , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Microglia/metabolism , Mice
19.
Behav Pharmacol ; 35(6): 314-326, 2024 09 01.
Article in English | MEDLINE | ID: mdl-39094014

ABSTRACT

Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15 th to the 22 nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29 th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1ß) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1ß levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.


Subject(s)
Antidepressive Agents , Astrocytes , Depression , Disease Models, Animal , Hippocampus , Microglia , Neuroinflammatory Diseases , Stress, Psychological , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Mice , Male , Microglia/drug effects , Microglia/metabolism , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Fluoxetine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Neuroprotective Agents/pharmacology , Behavior, Animal/drug effects , Glial Fibrillary Acidic Protein/metabolism
20.
Invest Ophthalmol Vis Sci ; 65(10): 8, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39102262

ABSTRACT

Purpose: Neuroinflammation is a characteristic feature of neurodegenerative diseases. Mesenchymal stem cell-derived exosomes (MSC-exo) have shown neuroprotective effects through immunoregulation, but the therapeutic efficacy remains unsatisfactory. This study aims to enhance the neuroprotective capacity of MSC-exo through IL-23 priming for treating retinal degeneration in mice. Methods: MSC were primed with IL-23 stimulation in vitro, and subsequently, exosomes (MSC-exo and IL-23-MSC-exo) were isolated and characterized. Two retinal degenerative disease models (NaIO3-induced mice and rd10 mice) received intravitreal injections of these exosomes. The efficacy of exosomes was assessed by examining retinal structural and functional recovery. Furthermore, exosomal microRNA (miRNA) sequencing was conducted, and the effects of exosomes on the M1 and M2 microglial phenotype shift were evaluated. Results: IL-23-primed MSC-derived exosomes (IL-23-MSC-exo) exhibited enhanced capability in protecting photoreceptor cells and retinal pigment epithelium (RPE) cells against degenerative damage and fostering the restoration of retinal neural function in both NaIO3-induced retinal degeneration mice and rd10 mice when compared with MSC-exo. The exosomal miRNA suppression via Drosha knockdown in IL-23-primed MSC would abolish the neuroprotective role of IL-23-MSC-exo, highlighting the miRNA-dependent mechanism. Bioinformatic analysis, along with further in vivo biological studies, revealed that IL-23 priming induced a set of anti-inflammatory miRNAs in MSC-exo, prompting the transition of M1 to M2 microglial polarization. Conclusions: IL-23 priming presents as a potential avenue for amplifying the immunomodulatory and neuroprotective effects of MSC-exo in treating retinal degeneration.


Subject(s)
Disease Models, Animal , Exosomes , Interleukin-23 , Mesenchymal Stem Cells , Mice, Inbred C57BL , Retinal Degeneration , Animals , Exosomes/metabolism , Exosomes/transplantation , Retinal Degeneration/therapy , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control , Mice , Mesenchymal Stem Cells/metabolism , Interleukin-23/metabolism , MicroRNAs/genetics , Intravitreal Injections , Neuroprotective Agents , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Iodates/toxicity , Cells, Cultured , Microglia/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL