Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Gene ; 916: 148449, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38588931

ABSTRACT

Germline-specific genes are usually activated in cancer cells and drive cancer progression; such genes are called cancer-germline or cancer-testis genes. The RNA-binding protein DAZL is predominantly expressed in germ cells and plays a role in gametogenesis as a translational activator or repressor. However, its expression and role in non-small cell lung cancer (NSCLC) are unknown. Here, mining of RNA-sequencing data from public resources and immunohistochemical analysis of tissue microarrays showed that DAZL was expressed exclusively in testis among normal human tissues but ectopically expressed in NSCLC tissues. Testis and NSCLC cells expressed the shorter and longer transcript variants of the DAZL gene, respectively. Overexpression of the longer DAZL transcript promoted tumor growth in a mouse xenograft model. Silencing of DAZL suppressed cell proliferation, colony formation, migration, invasion, and cisplatin resistance in vitro and tumor growth in vivo. Quantitative proteomic analysis based on tandem mass tag and Western blot analysis showed that DAZL upregulated the expression of JAK2 and MCM8. RNA-binding protein immunoprecipitation assays showed that DAZL bound to the mRNA of JAK2 and MCM8. The JAK2 inhibitor fedratinib attenuated the oncogenic outcomes induced by DAZL overexpression, whereas silencing MCM8 counteracted the effects of DAZL overexpression on cisplatin-damaged DNA synthesis and half-maximal inhibitory concentration of cisplatin. In conclusion, DAZL was identified as a novel cancer-germline gene that enhances the translation of JAK2 and MCM8 to promote NSCLC progression and resistance to cisplatin, respectively. These findings suggest that DAZL is a potential therapeutic target in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Janus Kinase 2 , Lung Neoplasms , RNA-Binding Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Animals , Mice , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Up-Regulation , Cell Line, Tumor , Cell Proliferation/drug effects , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Disease Progression , Mice, Nude , Xenograft Model Antitumor Assays , Female , Mice, Inbred BALB C
2.
Nat Commun ; 15(1): 3584, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678026

ABSTRACT

HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity. MCM8-9-HROB prefer branched DNA structures, and display low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexamer that assembles from dimers on DNA in the presence of ATP. The hexamer involves two repeating protein-protein interfaces between the alternating MCM8 and MCM9 subunits. One of these interfaces is quite stable and forms an obligate heterodimer across which HROB binds. The other interface is labile and mediates hexamer assembly, independently of HROB. The ATPase site formed at the labile interface contributes disproportionally more to DNA unwinding than that at the stable interface. Here, we show that HROB promotes DNA unwinding downstream of MCM8-9 loading and ring formation on ssDNA.


Subject(s)
Minichromosome Maintenance Proteins , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Humans , DNA, Single-Stranded/metabolism , Protein Binding , DNA/metabolism , DNA/chemistry , DNA-Binding Proteins/metabolism , Adenosine Triphosphate/metabolism , Protein Multimerization
3.
Mol Diagn Ther ; 28(3): 249-264, 2024 May.
Article in English | MEDLINE | ID: mdl-38530633

ABSTRACT

The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.


Subject(s)
DNA Replication , Minichromosome Maintenance Proteins , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Genomic Instability , Biomarkers, Tumor/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Animals
4.
Genes (Basel) ; 15(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540419

ABSTRACT

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.


Subject(s)
DNA Replication , DNA , Humans , DNA/genetics , DNA/metabolism , DNA Replication/genetics , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Genomic Instability
5.
BMC Cancer ; 24(1): 319, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454443

ABSTRACT

BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.


Subject(s)
Lung Neoplasms , Minichromosome Maintenance Proteins , Humans , Chemokine CXCL1 , Minichromosome Maintenance Proteins/genetics , Proteins , Neoplastic Stem Cells/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Cell Cycle Proteins/genetics , Tumor Microenvironment
6.
Biomed Pharmacother ; 173: 116408, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479176

ABSTRACT

Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , DNA Replication , Minichromosome Maintenance Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
7.
Commun Biol ; 7(1): 167, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336851

ABSTRACT

Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.


Subject(s)
DNA Replication , Neoplasms , Humans , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Neoplasms/genetics
8.
Histol Histopathol ; 39(4): 471-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37526267

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor in the world and has a poor prognosis. The family of minichromosome maintenance proteins (MCM) improves the stability of genome replication by inhibiting the rate of DNA replication in eukaryotic cells, thus, small changes in physiological MCM levels would increase the instability of gene replication and increase the incidence of tumor formation, most of which are significantly elevated in multiple cancers. However, the expression of different MCM families in HNSC and their prognostic value remain unclear. METHODS: ONCOMINE and GEPIA databases were used to analyze the expression of MCMs in HNSC. The Kaplan-Meier plotter database was used to identify molecules with prognostic values. We collected 77 HNSC tissues and 50 normal tissues to validate the results of the bioinformatics analysis by immunohistochemical staining. RESULTS: The expression of MCM3, MCM5 and MCM6 in mRNA and protein levels were higher in HNSC. Moreover, the increased expression of MCM3, MCM5 and MCM6 in mRNA and protein levels predicted better prognosis of HNSC patients. Furthermore, multivariate analysis showed that high expressions of MCM3, MCM5 and MCM6 in protein level may be independent prognostic factors for HNSC patients. CONCLUSION: The results of this study indicated that MCM3, MCM5 and MCM6 play an important role in occurrence and development in HNSC and might be risk factors for the survival of HNSC patients.


Subject(s)
Head and Neck Neoplasms , Minichromosome Maintenance Proteins , Humans , Squamous Cell Carcinoma of Head and Neck , Prognosis , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , RNA, Messenger
9.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119621, 2024 01.
Article in English | MEDLINE | ID: mdl-37907194

ABSTRACT

The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Humans , Saccharomyces cerevisiae/metabolism , DNA Replication/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , DNA
10.
Sci Rep ; 13(1): 17701, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848534

ABSTRACT

Microchromosome maintenance (MCM) proteins are a number of nuclear proteins with significant roles in the development of cancer by influencing the process of cellular DNA replication. Of the MCM protein family, MCM10 is a crucial member that maintains the stability and extension of DNA replication forks during DNA replication and is significantly overexpressed in a variety of cancer tissues, regulating the biological behaviour of cancer cells. But little is understood about MCM10's functional role and regulatory mechanisms in a range of malignancies. We investigate the impact of MCM10 in human cancers by analyzing data from databases like the Gene Expression Profiling Interaction Analysis (GEPIA2), Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), among others. Possible relationships between MCM10 and clinical staging, diagnosis, prognosis, Mutation burden (TMB), microsatellite instability (MSI), immunological checkpoints, DNA methylation, and tumor stemness were identified. The findings demonstrated that MCM10 expression was elevated in the majority of cancer types and was connected to tumor dryness, immunocytic infiltration, immunological checkpoints, TMB and MSI. Functional enrichment analysis in multiple tumors also identified possible pathways of MCM10 involvement in tumorigenesis. We also discovered promising MCM10-targeting chemotherapeutic drugs. In conclusion, MCM10 may be a desirable pan-cancer biomarker and offer fresh perspectives on cancer therapy.


Subject(s)
Neoplasms , Humans , Prognosis , Neoplasms/diagnosis , Neoplasms/genetics , Carcinogenesis , Biomarkers, Tumor/genetics , Cell Division , Microsatellite Instability , Minichromosome Maintenance Proteins/genetics
11.
Nat Commun ; 14(1): 6735, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872142

ABSTRACT

Chromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences. However, less is known about the dynamics of ORC proteins in the presence of nucleosomes and attendant consequences for MCM loading. To address this, we harnessed an in vitro single-molecule approach to interrogate a chromatinized origin of replication. We find that ORC binds the origin of replication with similar efficiency independently of whether the origin is chromatinized, despite ORC mobility being reduced by the presence of nucleosomes. Recruitment of MCM also proceeds efficiently on a chromatinized origin, but subsequent movement of MCM away from the origin is severely constrained. These findings suggest that chromatinized origins in yeast are essential for the local retention of MCM, which may facilitate subsequent assembly of the replisome.


Subject(s)
Origin Recognition Complex , Saccharomyces cerevisiae Proteins , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Nucleosomes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/metabolism , DNA/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Replication Origin
12.
J Cell Mol Med ; 27(21): 3354-3362, 2023 11.
Article in English | MEDLINE | ID: mdl-37817427

ABSTRACT

MCM4 forms the pre-replication complex (MCM2-7) with five other minichromosome maintenance (MCM) proteins. This complex binds to replication origins at G1 stage in cell cycle process, playing a critical role in DNA replication initiation. Recently, MCM4 is reported to have a complex interaction with multiple cancer progression, including gastric, ovarian and cervical cancer. Here, this study mainly focused on the expression of MCM4 and its values in lung adenocarcinoma (LUAD). MCM4 was highly expressed in LUAD tumours and cells, and had an important effect on the overall survival. Overexpression of MCM4 promoted the proliferation, and suppressed the apoptosis in LUAD cells. However, MCM4 silence led to the opposite results. In vivo, knockdown of MCM4 inhibited tumour volume and weight in xenograft mouse model. As a member of DNA helicase, knockdown of MCM4 caused cell cycle arrest at G1 stage through inducing the expression of P21, a CDK inhibitor. These findings indicate that MCM4 may be a possible new therapeutic target for LUAD in the future.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Animals , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , Minichromosome Maintenance Complex Component 4/genetics , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Biomarkers
13.
Front Biosci (Landmark Ed) ; 28(9): 230, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37796706

ABSTRACT

BACKGROUND: Epigenetic modifications, such as transcription, DNA repair, and replication significantly influence tumour development. Aberrant gene expression and modifications can have a crucial impact on the initiation and progression of tumours. The minichromosome maintenance (MCM) protein family, which is responsible for DNA synthesis, plays a crucial role in tumorigenesis and chemotherapy resistance by regulating the cell cycle and DNA replication stress. Recent studies have shown that dysregulation of the MCMs can lead to these negative outcomes. This study aimed to examine the role of the MCM proteins in DNA synthesis in 33 types of cancers. METHODS: Various public databases were used to examine the expression, methylation regulation, mutations, and functions of eight MCM proteins (MCM2-9) in pan-cancer. The study investigated the correlation between abnormal MCM expression and clinical outcomes, including prognosis and drug response. The microRNA-mRNA network upstream of the MCM genes and the downstream signalling pathways were extensively investigated to determine the molecular mechanisms that drive tumour development. RESULTS: The study found that the MCM gene expressions differed depending on the type of cancer; high MCM gene expression was linked to poor overall survival in most cancers. Additionally, MCM gene expression was associated with various immunological features and drug sensitivity. These findings offer important insights for the development of targeted cancer therapies. CONCLUSIONS: Altogether, this study reveals that the MCM genes are differentially expressed across various cancers and are associated with clinical prognoses. These genes may influence the occurrence and development of tumours through several pathways, including the PI3K-AKT, PAS/MAPK and TSC/mTOR signalling pathways and immune-related pathways.


Subject(s)
Multiomics , Neoplasms , Humans , Phosphatidylinositol 3-Kinases , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Neoplasms/genetics , DNA , Cell Cycle Proteins/genetics
14.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37820732

ABSTRACT

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Subject(s)
Cell Cycle Proteins , DNA Helicases , Nuclear Proteins , Animals , Humans , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Enzyme Activation
15.
Science ; 381(6664): eadi3448, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37590370

ABSTRACT

CDC45-MCM2-7-GINS (CMG) helicase assembly is the central event in eukaryotic replication initiation. In yeast, a multi-subunit "pre-loading complex" (pre-LC) accompanies GINS to chromatin-bound MCM2-7, leading to CMG formation. Here, we report that DONSON, a metazoan protein mutated in microcephalic primordial dwarfism, is required for CMG assembly in vertebrates. Using AlphaFold to screen for protein-protein interactions followed by experimental validation, we show that DONSON scaffolds a vertebrate pre-LC containing GINS, TOPBP1, and DNA pol ε. Our evidence suggests that DONSON docks the pre-LC onto MCM2-7, delivering GINS to its binding site in CMG. A patient-derived DONSON mutation compromises CMG assembly and recapitulates microcephalic dwarfism in mice. These results unify our understanding of eukaryotic replication initiation, implicate defective CMG assembly in microcephalic dwarfism, and illustrate how in silico protein-protein interaction screening accelerates mechanistic discovery.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA-Binding Proteins , Minichromosome Maintenance Proteins , Nuclear Proteins , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins , Protein Interaction Mapping/methods , Computer Simulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Dwarfism/genetics , Microcephaly/genetics , Xenopus laevis
16.
Science ; 381(6664): eadi4932, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37590372

ABSTRACT

Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , DNA Replication , Minichromosome Maintenance Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Protein Domains
17.
FEBS Open Bio ; 13(9): 1737-1755, 2023 09.
Article in English | MEDLINE | ID: mdl-37517032

ABSTRACT

Lung cancer is the most common cause of cancer-related death worldwide, accounting for 1.8 million deaths annually. Analysis of The Cancer Genome Atlas data showed that all members of the minichromosome maintenance (MCM) family (hexamers involved in DNA replication: MCM2-MCM7) were upregulated in lung adenocarcinoma (LUAD) tissues. High expression of MCM4 (P = 0.0032), MCM5 (P = 0.0032), and MCM7 (P = 0.0110) significantly predicted 5-year survival rates in patients with LUAD. Simurosertib (TAK-931) significantly suppressed the proliferation of LUAD cells by inhibiting cell division cycle 7-mediated MCM2 phosphorylation. This finding suggested that MCM2 might be a therapeutic target for LUAD. Moreover, analysis of the epigenetic regulation of MCM2 showed that miR-139-3p, miR-378a-5p, and miR-2110 modulated MCM2 expression in LUAD cells. In patients with LUAD, understanding the role of these miRNAs may improve prognoses.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Clinical Relevance , Epigenesis, Genetic , Adenocarcinoma of Lung/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
18.
EMBO J ; 42(17): e114131, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37458194

ABSTRACT

CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.


Subject(s)
Minichromosome Maintenance Proteins , Saccharomyces cerevisiae Proteins , Animals , Humans , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication , Saccharomyces cerevisiae/metabolism , Vertebrates
19.
Int J Biol Macromol ; 248: 125854, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37460074

ABSTRACT

With limited therapeutic options for hepatocellular carcinoma (HCC), it is of great significance to investigate the underlying mechanisms and identifying tumor drivers. MCM6, a member of minichromosome maintenance proteins (MCMs), was significantly elevated in HCC progression and associated with poor prognosis. Knockdown of MCM6 significantly inhibited the proliferation and migration of HCC cells with the increased apoptosis ratio and cell cycle arrest, whereas overexpression of MCM6 induced adverse effects. Mechanistically, MCM6 could decrease the P53 activity by inducing the degradation of P53 protein. In addition, MCM6 enhanced the ubiquitination of P53 by recruiting UBE3A to form a triple complex. Furthermore, overexpression of UBE3A significantly rescued the P53 activation and suppression of malignant behaviors mediated by MCM6 inhibition. In conclusion, MCM6 facilitated aggressive phenotypes of HCC cells by UBE3A/P53 signaling, providing potential biomarkers and targets for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Ubiquitination , Family , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
J Cell Mol Med ; 27(12): 1708-1724, 2023 06.
Article in English | MEDLINE | ID: mdl-37246638

ABSTRACT

Molecular profiling has been applied for uterine corpus endometrial carcinoma (UCEC) management for many years. The aim of this study was to explore the role of MCM10 in UCEC and construct its overall survival (OS) prediction models. Data from TCGA, GEO, cbioPotal and COSMIC databases and the methods, such as GO, KEGG, GSEA, ssGSEA and PPI, were employed to bioinformatically detect the effects of MCM10 on UCEC. RT-PCR, Western blot and immunohistochemistry were used to validate the effects of MCM10 on UCEC. Based on Cox regression analysis using the data from TCGA and our clinical data, two OS prediction models for UCEC were established. Finally, the effects of MCM10 on UCEC were detected in vitro. Our study revealed that MCM10 was variated and overexpressed in UCEC tissue and involved in DNA replication, cell cycle, DNA repair and immune microenvironment in UCEC. Moreover, silencing MCM10 significantly inhibited the proliferation of UCEC cells in vitro. Importantly, based on MCM10 expression and clinical features, the OS prediction models were constructed with good accuracy. MCM10 could be an effective treatment target and a prognostic biomarker for UCEC patients. The OS prediction models might help establish the strategies of follow-up and treatment for UCEC patients.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Humans , Female , Prognosis , Treatment Outcome , Blotting, Western , Biomarkers , Endometrial Neoplasms/genetics , Tumor Microenvironment , Minichromosome Maintenance Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...