Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 953
Filter
1.
Oncoimmunology ; 13(1): 2384667, 2024.
Article in English | MEDLINE | ID: mdl-39108501

ABSTRACT

Deficient (d) DNA mismatch repair (MMR) is a biomarker predictive of better response to PD-1 blockade immunotherapy in solid tumors. dMMR can be caused by mutations in MMR genes or by protein inactivation, which can be detected by sequencing and immunohistochemistry, respectively. To investigate the role of dMMR in diffuse large B-cell lymphoma (DLBCL), MMR gene mutations and expression of MSH6, MSH2, MLH1, and PMS2 proteins were evaluated by targeted next-generation sequencing and immunohistochemistry in a large cohort of DLBCL patients treated with standard chemoimmunotherapy, and correlated with the tumor immune microenvironment characteristics quantified by fluorescent multiplex immunohistochemistry and gene-expression profiling. The results showed that genetic dMMR was infrequent in DLBCL and was significantly associated with increased cancer gene mutations and favorable immune microenvironment, but not prognostic impact. Phenotypic dMMR was also infrequent, and MMR proteins were commonly expressed in DLBCL. However, intratumor heterogeneity existed, and increased DLBCL cells with phenotypic dMMR correlated with significantly increased T cells and PD-1+ T cells, higher average nearest neighbor distance between T cells and PAX5+ cells, upregulated immune gene signatures, LE4 and LE7 ecotypes and their underlying Ecotyper-defined cell states, suggesting the possibility that increased T cells targeted only tumor cell subsets with dMMR. Only in patients with MYC¯ DLBCL, high MSH6/PMS2 expression showed significant adverse prognostic effects. This study shows the immunologic and prognostic effects of genetic/phenotypic dMMR in DLBCL, and raises a question on whether DLBCL-infiltrating PD-1+ T cells target only tumor subclones, relevant for the efficacy of PD-1 blockade immunotherapy in DLBCL.


Subject(s)
DNA Mismatch Repair , Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , DNA Mismatch Repair/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Male , Female , Mutation , Middle Aged , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Adult , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
2.
Int J Gynecol Cancer ; 34(7): 993-1000, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950928

ABSTRACT

OBJECTIVE: Although early-detected cervical cancer is associated with good survival, the prognosis for late-stage disease is poor and treatment options are sparse. Mismatch repair deficiency (MMR-D) has surfaced as a predictor of prognosis and response to immune checkpoint inhibitor(s) in several cancer types, but its value in cervical cancer remains unclear. This study aimed to define the prevalence of MMR-D in cervical cancer and assess the prognostic value of MMR protein expression. METHODS: Expression of the MMR proteins MLH-1, PMS-2, MSH-2, and MSH-6 was investigated by immunohistochemical staining in a prospectively collected cervical cancer cohort (n=508) with corresponding clinicopathological and follow-up data. Sections were scored as either loss or intact expression to define MMR-D, and by a staining index, based on staining intensity and area, evaluating the prognostic potential. RNA and whole exome sequencing data were available for 72 and 75 of the patients and were used for gene set enrichment and mutational analyses, respectively. RESULTS: Five (1%) tumors were MMR-deficient, three of which were of neuroendocrine histology. MMR status did not predict survival (HR 1.93, p=0.17). MSH-2 low (n=48) was associated with poor survival (HR 1.94, p=0.02), also when adjusting for tumor stage, tumor type, and patient age (HR 2.06, p=0.013). MSH-2 low tumors had higher tumor mutational burden (p=0.003) and higher frequency of (frameshift) mutations in the double-strand break repair gene RAD50 (p<0.01). CONCLUSION: MMR-D is rare in cervical cancer, yet low MSH-2 expression is an independent predictor of poor survival.


Subject(s)
DNA Mismatch Repair , DNA-Binding Proteins , MutS Homolog 2 Protein , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/mortality , Prognosis , Middle Aged , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MutS Homolog 2 Protein/metabolism , MutS Homolog 2 Protein/biosynthesis , MutS Homolog 2 Protein/genetics , Adult , Aged , Mismatch Repair Endonuclease PMS2/metabolism , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/biosynthesis
3.
J Int Med Res ; 52(6): 3000605241259747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38902203

ABSTRACT

BACKGROUND: Breast cancer, particularly triple-negative breast cancer (TNBC), poses a significant global health burden. Chemotherapy was the mainstay treatment for TNBC patients until immunotherapy was introduced. Studies indicate a noteworthy prevalence (0.2% to 18.6%) of mismatch repair protein (MMRP) deficiency in TNBC, with recent research highlighting the potential of immunotherapy for MMRP-deficient metastatic breast cancer. This study aims to identify MMRP deficiency in TNBC patients using immunohistochemistry. METHODS: A retrospective cohort study design was used and included TNBC patients treated between 2015 and 2021 at King Hussein Cancer Center. Immunohistochemistry was conducted to assess MMRP expression. RESULTS: Among 152 patients, 14 (9.2%) exhibited deficient MMR (dMMR). Loss of PMS2 expression was observed in 13 patients, 5 of whom showed loss of MLH1 expression. Loss of MSH6 and MSH2 expression was observed in one patient. The median follow-up duration was 44 (3-102) months. Despite the higher survival rate (80.8%, 5 years) of dMMR patients than of proficient MMR patients (62.3%), overall survival did not significantly differ between the two groups. CONCLUSION: Approximately 9% of TNBC patients exhibit dMMR. dMMR could be used to predict outcomes and identify patients with TNBC who may benefit from immunotherapy.


Subject(s)
DNA Mismatch Repair , DNA-Binding Proteins , Mismatch Repair Endonuclease PMS2 , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Middle Aged , Adult , Retrospective Studies , Mismatch Repair Endonuclease PMS2/metabolism , Mismatch Repair Endonuclease PMS2/genetics , Aged , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MutL Protein Homolog 1/metabolism , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Survival Rate , Immunohistochemistry , Aged, 80 and over , Prognosis
4.
J Mol Diagn ; 26(8): 727-738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851388

ABSTRACT

The molecular diagnosis of mismatch repair-deficient cancer syndromes is hampered by difficulties in sequencing the PMS2 gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy. This study aimed to provide a refined bioinformatic pipeline for PMS2 mutational analysis and explore PMS2 germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. PMS2 mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the allelic ratio of paralogous sequence variants, and 13 samples enriched with PMS2 (likely) pathogenic variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align with the PMS2 reference sequence, except those corresponding to exon 11, where only those intersecting gene-specific invariant positions were considered. Afterward, the refined pipeline's accuracy was validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956, respectively) in the validation cohort, identifying all previously PMS2 pathogenic variants found by long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic PMS2 variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined open-source approach improved PMS2 mutational analysis accuracy, allowing its inclusion in the routine next-generation sequencing pipeline streamlining PMS2 screening.


Subject(s)
Computational Biology , Genetic Testing , High-Throughput Nucleotide Sequencing , Mismatch Repair Endonuclease PMS2 , Humans , Mismatch Repair Endonuclease PMS2/genetics , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Genetic Testing/methods , DNA Mutational Analysis/methods , Germ-Line Mutation , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/diagnosis
5.
HGG Adv ; 5(3): 100298, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38654521

ABSTRACT

Lynch syndrome (LS) is the most common hereditary cancer syndrome. Heterozygous loss-of-function variants in PMS2 are linked to LS. While these variants are not directly cancer causing, reduced PMS2 function results in the accumulation of somatic variants and increased cancer risk over time due to DNA mismatch repair dysfunction. It is reasonable that other types of genetic variation that impact the expression of PMS2 may also contribute to cancer risk. The Kozak sequence is a highly conserved translation initiation motif among higher eukaryotes and is defined as the nine base pairs upstream of the translation start codon through the first four bases of the translated sequence (5'-[GTT]GCATCCATGG-3'; human PMS2: NM_000535.7). While Kozak sequence variants in PMS2 have been reported in ClinVar in patients with suspected hereditary cancer, all variants upstream of the translation start site are currently classified as variants of undetermined significance (VUSs). We hypothesized that variants significantly disrupting the Kozak sequence of PMS2 would decrease PMS2 protein expression, contributing to increased cancer risk over time. Using a dual-luciferase reporter plasmid and site-directed mutagenesis, we generated the wild-type human PMS2 and the ClinVar VUSs within the PMS2 Kozak sequence. Besides the c.1A>C variant, which is already known to be pathogenic, we implicate six additional variants as American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) pathogenic supporting (PP) variants and classify ten as benign supporting (BP). In summary, we present a method developed for the classification of human PMS2 Kozak sequence variants that can contribute to the re-classification of VUSs identified in patients.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Mismatch Repair Endonuclease PMS2 , Humans , Mismatch Repair Endonuclease PMS2/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Mutation , Genetic Predisposition to Disease/genetics , DNA Mismatch Repair/genetics
6.
Cancer ; 130(16): 2763-2769, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38630906

ABSTRACT

PURPOSE: Several recurring pathogenic variants (PVs) in BRCA1/BRCA2 and additional cancer susceptibility genes are described in the ethnically diverse Israeli population. Since 2019, testing for these recurring PVs is reimbursed unselectively for all patients with breast cancer (BC) in Israel. The aim was to evaluate the yield of genotyping for these PVs in non-Ashkenazi Jewish (AJ) patients with BC diagnosed ≥age 50 years. METHODS: Clinical and genotyping data of all patients with BC undergoing oncogenetic counseling at the Oncology Institute at Sheba Medical Center from June 2017 to December 2023 were reviewed. RESULTS: Of 2706 patients with BC (mean age at diagnosis, 54 years; range, 20-92 years) counseled, 515 patients of non-AJ (all four grandparents) descent, diagnosed ≥age 50 years of age were genotyped, 55 with triple-negative BC (TNBC) and 460 with non-TNBC. One of the recurring PVs in BRCA1/BRCA2 were detected in 12.7% (7/55) of TNBC patients and 0.65% (3/460) of non-TNBC. One patient with non-TNBC had PMS2 PV. Low-penetrance variants were found in 2.5% of genotyped TNBC and in 3.7% of patients with non-TNBC, including CHEK2 c.499G>A (n = 3), APC c.3920T > A (n = 4), and heterozygous MUTYH c.1187G>A (n = 5). Following first-pass genotyping, 146 patients performed multigene panel testing, none carried a BRCA1/BRCA2 PV, and only 5/127 non-TNBC (3.9%) harbored PVs in CHEK2 (n = 2, c.846+1G>C and c.592+3A>T), ATM c.103C>T (n = 2), and NBN c.966C>G (n = 1). CONCLUSIONS: The observed low rates of PV detection in non-AJ non-TNBC cases ≥age 50 years at diagnosis, mostly for clinically insignificant variants, questions the justification of unselected genotyping in this subset of patients.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Checkpoint Kinase 2 , Genetic Predisposition to Disease , Jews , Humans , Middle Aged , Female , Aged , Adult , Checkpoint Kinase 2/genetics , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/ethnology , Jews/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Israel/epidemiology , Genotype , Young Adult , Ataxia Telangiectasia Mutated Proteins/genetics , Mismatch Repair Endonuclease PMS2/genetics , Adenomatous Polyposis Coli Protein/genetics , DNA Glycosylases/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/ethnology , Genetic Testing/methods
7.
J Transl Med ; 22(1): 292, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
8.
Fam Cancer ; 23(2): 187-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478259

ABSTRACT

In the 33 years since the first diagnostic cancer predisposition gene (CPG) tests in the Manchester Centre for Genomic Medicine, there has been substantial changes in the identification of index cases and cascade testing for at-risk family members. National guidelines in England and Wales are usually determined from the National Institute of healthcare Evidence and these have impacted on the thresholds for testing BRCA1/2 in Hereditary Breast Ovarian Cancer (HBOC) and in determining that all cases of colorectal and endometrial cancer should undergo screening for Lynch syndrome. Gaps for testing other CPGs relevant to HBOC have been filled by the UK Cancer Genetics Group and CanGene-CanVar project (web ref. https://www.cangene-canvaruk.org/ ). We present time trends (1990-2020) of identification of index cases with germline CPG variants and numbers of subsequent cascade tests, for BRCA1, BRCA2, and the Lynch genes (MLH1, MSH2, MSH6 and PMS2). For BRCA1/2 there was a definite increase in the proportion of index cases with ovarian cancer only and pre-symptomatic index tests both doubling from 16 to 32% and 3.2 to > 8% respectively. A mean of 1.73-1.74 additional family tests were generated for each BRCA1/2 index case within 2 years. Overall close to one positive cascade test was generated per index case resulting in > 1000 risk reducing surgery operations. In Lynch syndrome slightly more cascade tests were performed in the first two years potentially reflecting the increased actionability in males with 42.2% of pre-symptomatic tests in males compared to 25.8% in BRCA1/2 (p < 0.0001).


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Genetic Predisposition to Disease , Genetic Testing , Hereditary Breast and Ovarian Cancer Syndrome , Practice Guidelines as Topic , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Female , Genetic Testing/methods , Genetic Testing/standards , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , United Kingdom , BRCA1 Protein/genetics , BRCA2 Protein/genetics , MutS Homolog 2 Protein/genetics , Early Detection of Cancer/methods , MutL Protein Homolog 1/genetics , Germ-Line Mutation , DNA-Binding Proteins/genetics , Mismatch Repair Endonuclease PMS2/genetics , Male , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis
9.
Clin Chem ; 70(5): 737-746, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38531023

ABSTRACT

BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) is a rare and extraordinarily penetrant childhood-onset cancer predisposition syndrome. Genetic diagnosis is often hampered by the identification of mismatch repair (MMR) variants of unknown significance and difficulties in PMS2 analysis, the most frequently mutated gene in CMMRD. We present the validation of a robust functional tool for CMMRD diagnosis and the characterization of microsatellite instability (MSI) patterns in blood and tumors. METHODS: The highly sensitive assessment of MSI (hs-MSI) was tested on a blinded cohort of 66 blood samples and 24 CMMRD tumor samples. Hs-MSI scores were compared with low-pass genomic instability scores (LOGIC/MMRDness). The correlation of hs-MSI scores in blood with age of cancer onset and the distribution of insertion-deletion (indel) variants in microsatellites were analyzed in a series of 169 individuals (n = 68 CMMRD, n = 124 non-CMMRD). RESULTS: Hs-MSI achieved high accuracy in the identification of CMMRD in blood (sensitivity 98.5% and specificity 100%) and detected MSI in CMMRD-associated tumors. Hs-MSI had a strong positive correlation with whole low-pass genomic instability LOGIC scores (r = 0.89, P = 2.2e-15 in blood and r = 0.82, P = 7e-3 in tumors). Indel distribution identified PMS2 pathogenic variant (PV) carriers from other biallelic MMR gene PV carriers with an accuracy of 0.997. Higher hs-MSI scores correlated with younger age at diagnosis of the first tumor (r = -0.43, P = 0.011). CONCLUSIONS: Our study confirms the accuracy of the hs-MSI assay as ancillary testing for CMMRD diagnosis, which can also characterize MSI patterns in CMMRD-associated cancers. Hs-MSI is a powerful tool to pinpoint PMS2 as the affected germline gene and thus potentially personalize cancer risk.


Subject(s)
Germ-Line Mutation , Microsatellite Instability , Mismatch Repair Endonuclease PMS2 , Humans , Mismatch Repair Endonuclease PMS2/genetics , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis , Child , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Female , Male , DNA Mismatch Repair/genetics , Child, Preschool , Adolescent , Alleles
10.
Cancer Sci ; 115(5): 1646-1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38433331

ABSTRACT

The clinical features of sporadic mismatch repair deficiency (MMRd) and Lynch syndrome (LS) in Japanese patients with endometrial cancer (EC) were examined by evaluating the prevalence and prognostic factors of LS and sporadic MMRd in patients with EC. Targeted sequencing of five LS susceptibility genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) was carried out in 443 patients with EC who were pathologically diagnosed with EC at the National Cancer Center Hospital between 2011 and 2018. Pathogenic variants in these genes were detected in 16 patients (3.7%). Immunohistochemistry for MMR proteins was undertaken in 337 of the 433 (77.9%) EC patients, and 91 patients (27.0%) showed absent expression of at least one MMR protein. The 13 cases of LS with MMR protein loss (93.8%) showed a favorable prognosis with a 5-year overall survival (OS) rate of 100%, although there was no statistically significant difference between this group and the sporadic MMRd group (p = 0.27). In the MMRd without LS group, the 5-year OS rate was significantly worse in seven patients with an aberrant p53 expression pattern than in those with p53 WT (53.6% vs. 93.9%, log-rank test; p = 0.0016). These results suggest that p53 abnormalities and pathogenic germline variants in MMR genes could be potential biomarkers for the molecular classification of EC with MMRd.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Endometrial Neoplasms , Tumor Suppressor Protein p53 , Uterine Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Japan , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Prognosis , Tumor Suppressor Protein p53/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
11.
Clin Genitourin Cancer ; 22(3): 102052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461085

ABSTRACT

BACKGROUND: An estimated 20% to 30% of men with advanced prostate cancer carry a mutation in DNA damage repair genes, of which half are estimated to be germline. Eligibility criteria for germline genetic testing expanded significantly for Ontario patients in May 2021 and many centers adopted a "mainstream" model, defined as oncologist-initiated genetic testing. METHODS: We conducted a retrospective chart review to report on the first-year mainstream experience of a large tertiary oncologic center, the Sunnybrook Odette Cancer Centre. All patients who underwent mainstream at the discretion of their treating physician were included. A subset underwent somatic profiling as part of clinical trial screening. Descriptive statistics were used to report baseline clinicopathologic characteristics and treatments received. RESULTS: Between May 1, 2021, and May 30, 2022, 174 patients with prostate cancer underwent mainstream germline genetic testing with a 19-gene panel. Median age was 75 (IQR 68-80), and 82% of patients were diagnosed with either de novo metastatic or high-risk localized prostate adenocarcinoma. Fourteen patients (8%; 95% CI 4%-12%) were found to have a deleterious germline mutation, including pathogenic or likely pathogenic variants in BRCA1/2, ATM, CHEK2, PMS2, RAD51C, HOXB13, and BRIP1. Forty-nine patients (28%; 95% CI 21%-35%) were found to have a variant of uncertain significance. Thirty-four patients also had next-generation sequencing (NGS) of their somatic tissue. Among this subset, 8 of 34 (23%) had an alteration in homologous recombination repair (HRR) genes. Of the 14 patients with a germline mutation, none had a prior personal history of malignancy and 6 (43%) did not have any first- or second-degree relatives with history of prostate, pancreatic, breast, or ovarian cancer. CONCLUSION: We report on the real-world characteristics of prostate cancer patients who underwent mainstream germline genetic testing. Personal history and family history of cancer cannot reliably stratify patients for the presence of pathogenic germline variants.


Subject(s)
Genetic Testing , Germ-Line Mutation , Prostatic Neoplasms , Tertiary Care Centers , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Genetic Testing/methods , Retrospective Studies , Aged, 80 and over , Ontario , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Checkpoint Kinase 2/genetics , Mismatch Repair Endonuclease PMS2/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Homeodomain Proteins , RNA Helicases , Fanconi Anemia Complementation Group Proteins
13.
Cancer Med ; 13(7): e6994, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545852

ABSTRACT

BACKGROUND: While previous studies have indicated variability in distant metastatic potential among different mismatch repair (MMR) states in colorectal cancer (CRC), their findings remain inconclusive, especially considering potential differences across various ethnic backgrounds. Furthermore, the gene regulatory networks and the underlying mechanisms responsible for these variances in metastatic potential across MMR states have yet to be elucidated. METHODS: We collected 2058 consecutive primary CRC samples from the South West of China and assessed the expression of MMR proteins (MLH1, MSH2, MSH6, and PMS2) using immunohistochemistry. To explore the inconsistencies between different MMR statuses and recurrence, we performed a meta-analysis. To delve deeper, we employed Weighted Gene Co-expression Network Analysis (WGCNA), ClueGo, and iRegulon, pinpointing gene expression networks and key regulatory molecules linked to metastasis and recurrence in CRC. Lastly, both univariate and multivariate Cox regression analyses were applied to determine the impact of core regulatory molecules on metastasis. RESULTS: Of the samples, 8.2% displayed deficient MMR (dMMR), with losses of MLH1 and PSM2 observed in 40.8% and 63.9%, respectively. A unique 24.3% isolated loss of PMS2 without concurrent metastasis was identified, a result that diverges from established literature. Additionally, our meta-analysis further solidifies the reduced recurrence likelihood in dMMR CRC samples compared to proficient MMR (pMMR). Two gene expression networks tied to distant metastasis and recurrence were identified, with a majority of metastasis-related genes located on chromosomes 8 and 18. An IRF1 positive feedback loop was discerned in the metastasis-related network, and IRF1 was identified as a predictive marker for both recurrence-free and distant metastasis-free survival across multiple datasets. CONCLUSION: Geographical and ethnic factors might influence peculiarities in MMR protein loss. Our findings also highlight new gene expression networks and crucial regulatory molecules in CRC metastasis, enhancing our comprehension of the mechanisms driving distant metastasis.


Subject(s)
Colorectal Neoplasms , Protein Deficiency , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Mismatch Repair , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology
14.
Pathologica ; 116(1): 32-45, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38482673

ABSTRACT

Introduction: Endometrial carcinoma (EC) is the commonest gynecological cancer affecting women in Western populations. To predict patient risk, the 2020 edition of the World Health Organization (WHO) Classification of Tumors of the Female Genital Tract stressed the importance of integrated histo-molecular classification of the disease. This survey analysis poses attention on the most frequently used immunohistochemical and molecular markers adopted in daily categorization of ECs in European laboratories. Methods: We analyzed data collected through questionnaires administered to 40 Italian, 20 Spanish, 3 Swiss and 6 United Kingdom (UK) laboratories. We collected information regarding daily practice in EC evaluation, specifically concerning mismatch repair status (MMR) and microsatellite instability (MSI). Summary and descriptive statistical analyses were carried out to evaluate the current practice of each laboratory. Results: The results show that MMR status is mainly evaluated by using immunohistochemistry (IHC) on most EC samples. The most frequent approach for the analysis of MMR status is IHC of four proteins (PMS2, MSH6, MSH2, MLH1). MSI analysis by molecular methods is uncommon but useful as a supplemental tool in specific conditions. MLH1 promoter hypermethylation and BRAF V600 mutations analysis are performed in case of negative expression of MLH1/PMS2. Other markers (mainly p53 followed by POLE and PTEN) are investigated in particular in Spain and Switzerland in a consistent number of cases. Conclusion: Guidelines consultation and standardization of laboratory procedures are efficient means for EC prognostic risk stratification and improving the quality of care.


Subject(s)
Endometrial Neoplasms , Female , Humans , Mismatch Repair Endonuclease PMS2 , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Biomarkers , Europe
15.
Cell Mol Biol Lett ; 29(1): 37, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486171

ABSTRACT

BACKGROUND: DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS: Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS: We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS: Our findings reveal that MRE11A is a negative regulator of human MMR.


Subject(s)
DNA Mismatch Repair , Methylnitronitrosoguanidine , Humans , Chromatin , HeLa Cells , Methylnitronitrosoguanidine/pharmacology , Mismatch Repair Endonuclease PMS2
16.
Mod Pathol ; 37(3): 100423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191122

ABSTRACT

Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms , Female , Humans , DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Endometrial Neoplasms/pathology , Germ-Line Mutation , Mismatch Repair Endonuclease PMS2/genetics , Microsatellite Instability , DNA Methylation
17.
Diagn Pathol ; 19(1): 25, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297350

ABSTRACT

BACKGROUND: Multiple primary malignancies are rare in cancer patients, and risk factors may include genetics, viral infection, smoking, radiation, and other environmental factors. Lynch syndrome (LS) is the most prevalent form of hereditary predisposition to double primary colorectal and endometrial cancer in females. LS, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is a common autosomal dominant condition. Pathogenic germline variants in the DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6, and PMS2, and less frequently, deletions in the 3' end of EPCAM cause LS. It manifested itself as loss of MMR nuclear tumor staining (MMR protein deficient, dMMR). CASE PRESENTATION: This case study describes a double primary carcinoma in a 49-year-old female. In June 2022, the patient was diagnosed with highly to moderately differentiated endometrioid adenocarcinoma. The patient's mother died of esophageal cancer at age 50, and the father died of undefined reasons at age 70. Immunohistochemical stainings found ER (++), PR (++), P53 (+), MSH2 (-), MSH6 (+), MLH1 (+), and PMS2 (+). MMR gene sequencing was performed on endometrial tumor and peripheral blood samples from this patient. The patient carried two pathogenic somatic mutations in the endometrial tumor, MSH6 c.3261dupC (p.Phe1088LeufsTer5) and MSH2 c.445_448dup (p.Val150fs), in addition to a rare germline mutation MSH6 c.133G > C (p.Gly45Arg). Two years ago, the patient was diagnosed with moderately differentiated adenocarcinoma in the left-half colon. Immunohistochemical stainings found MSH2(-), MSH6(+), MLH1(+), and PMS2(+) (data not shown). CONCLUSIONS: In the case of a patient with double primary EC and CRC, a careful evaluation of the IHC and the genetic data was presented. The patient carried rare compound heterozygous variants, a germline missense mutation, and a somatic frameshift mutation of MSH6, combined with a novel somatic null variant of MSH2. Our study broadened the variant spectrum of double primary cancer and provided insight into the molecular basis for abnormal MSH2 protein loss and double primary carcinoma.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Endometrial Neoplasms , Neoplastic Syndromes, Hereditary , Female , Humans , Middle Aged , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Germ-Line Mutation , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics
18.
Mol Genet Genomic Med ; 12(1): e2360, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284451

ABSTRACT

BACKGROUND: Lynch syndrome represents one of the most common cancer predispositions worldwide and is caused by germline pathogenic variants (PV) in DNA mismatch repair (MMR) genes. We repeatedly identified a PV in the MMR gene PMS2, c.1831dup, accounting for 27% of all Swiss PMS2 PV index patients identified. Notably, 2/18 index patients had been diagnosed with colorectal cancer (CRC) before age 30. METHODS: In this study, we investigated if this PV could (i) represent a founder variant by haplotype analysis and (ii) be associated with a more severe clinical phenotype. RESULTS: Haplotype analysis identified a shared common region of about 0.7 Mb/1.3 cM in 13 (81%) out of 16 index patients. Genotype-phenotype correlations, combining data from the 18 Swiss and 18 literature-derived PMS2 c.1831dup PV index patients and comparing them to 43 Swiss index patients carrying other PMS2 PVs, indicate that the PMS2 c.1831dup variant may be associated with earlier (<50 y) age at CRC diagnosis (55% vs. 29%, respectively; p = 0.047). Notably, 30% (9/30) of cancers from c.1831dup carriers displayed atypical MMR protein expression patterns on immunohistochemistry. CONCLUSION: Our results suggest that the PMS2 c.1831dup PV represents a, probably ancient, founder mutation and is possibly associated with an earlier CRC diagnosis compared to other PMS2 PVs.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Adult , Colorectal Neoplasms/genetics , Mismatch Repair Endonuclease PMS2/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Genotype , Genetic Association Studies
19.
World J Surg Oncol ; 22(1): 36, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280988

ABSTRACT

BACKGROUND: Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This condition is characterized by germline variants in DNA mismatch repair (MMR) genes, including MLH1, MSH2, MSH6, and PMS2. In this study, we analyzed the molecular defects and clinical manifestations of two families affected with CRC and proposed appropriate individual preventive strategies for all carriers of the variant. METHODS: We recruited two families diagnosed with CRC and combined their family history and immunohistochemical results to analyze the variants of probands and those of other family members by using whole exome sequencing. Subsequently, gene variants in each family were screened by comparing them with the variants available in the public database. Sanger sequencing was performed to verify the variant sites. An online platform ( https://www.uniprot.org ) was used to analyze the functional domains of mutant proteins. RESULTS: A novel frameshift variant (NM_001281492, c.1129_1130del, p.R377fs) in MSH6 and a known deleterious variant (NM_000249.4:c.1731G > A, p.S577S) in MLH1 were identified in the two families with CRC. Using bioinformatics tools, we noted that the frameshift variant reduced the number of amino acids in the MSH6 protein from 1230 to 383, thereby leading to no MSH6 protein expression. The silent variant caused splicing defects and was strongly associated with LS. 5-Fluorouracil-based adjuvant chemotherapy is not recommended for patients with LS. CONCLUSIONS: The novel frameshift variant (MSH6, c.1129_1130del, p.R377fs) is likely pathogenic to LS, and the variant (MLH1, c.1731G > A, p.S577S) has been further confirmed to be pathogenic to LS. Our findings underscore the significance of genetic testing for LS and recommend that genetic consultation and regular follow-ups be conducted to guide individualized treatment for cancer-afflicted families, especially those with a deficiency in MMR expression.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Germ-Line Mutation , DNA-Binding Proteins/genetics , China/epidemiology , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism
20.
J Med Genet ; 61(2): 158-162, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37775264

ABSTRACT

Differential diagnosis between constitutional mismatch repair deficiency (CMMRD) and neurofibromatosis type 1 (NF1) is crucial as treatment and surveillance differ. We report the case of a girl with a clinical diagnosis of sporadic NF1 who developed a glioblastoma. Immunohistochemistry for MMR proteins identified PMS2 loss in tumour and normal cells and WES showed the tumour had an ultra-hypermutated phenotype, supporting the diagnosis of CMMRD. Germline analyses identified two variants (one pathogenic variant and one classified as variant(s) of unknown significance) in the PMS2 gene and subsequent functional assays on blood lymphocytes confirmed the diagnosis of CMMRD. The large plexiform neurofibroma of the thigh and the freckling were however more compatible with NF1. Indeed, a NF1 PV (variant allele frequencies of 20%, 3% and 9% and in blood, skin and saliva samples, respectively) was identified confirming a mosaicism for NF1. Retrospective analysis of a French cohort identified NF1 mosaicism in blood DNA in 2 out of 22 patients with CMMRD, underlining the existence of early postzygotic PV of NF1 gene in patients with CMMRD whose tumours have been frequently reported to exhibit somatic NF1 mutations. It highlights the potential role of this pathway in the pathogenesis of CMMRD-associated gliomas and argues in favour of testing MEK inhibitors in this context.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Neurofibromatosis 1 , Female , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Mosaicism , Retrospective Studies , Mismatch Repair Endonuclease PMS2/genetics , Neoplastic Syndromes, Hereditary/genetics , Brain Neoplasms/genetics , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics
SELECTION OF CITATIONS
SEARCH DETAIL