Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Vet Parasitol ; 328: 110155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452531

ABSTRACT

The poultry red mite, Dermanyssus gallinae (Arachnida: Dermanyssidae) is a pest that causes significant economic loss in laying hens for which control methods are limited. In this study, the effects of 20 indigenous fungal strains on poultry red mites in chicken farms were investigated. All experiments were conducted under laboratory condition at 28 ± 1 °C and 80 ± 5% humidity. A screening test showed that Metharizium flavoviride strain As-2 and Beauveria bassiana strain Pa4 had the greatest measured effect on D. gallinae at 1 × 107 conidia/ml 7 days after application. In a subsequent does-response experiment, these strains also caused 92.7% mortality at 1 × 109 conidia/ml within the same period. The LC50 of these strains was 5.5 × 104 (95% CI: 0.8-37.5) conidia/ml for As-2 and 3.2 × 104 (95% CI: 0.4-26.0) conidia/ml for Pa4, and their LT50 were 1.94 and 1.57 days, respectively. The commercial Metarhizium anisopliae bioinsecticide Bio-Storm 1.15% WP, used as a comparator, had LC50 and LT50 1 × 105 (95% CI: 0.1-7.9) conidia/ml and 3.03 (95% CI: 2.4-3.8) days, respectively. It is suggested that mycoacaricides could be developed using the best two fungal strains found in this study (As-2 and Pa4), providing potential for biological control of poultry red mites.


Subject(s)
Chickens , Mite Infestations , Mites , Pest Control, Biological , Poultry Diseases , Animals , Pest Control, Biological/methods , Mites/microbiology , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens/parasitology , Mite Infestations/veterinary , Mite Infestations/prevention & control , Mite Infestations/parasitology , Beauveria/physiology , Female
2.
J Invertebr Pathol ; 204: 108084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452853

ABSTRACT

Opportunistic bacterial infections are common in insect populations but there is little information on how they are acquired or transmitted. We tested the hypothesis that Macrocheles mites can transmit systemic bacterial infections between Drosophila hosts. We found that 24% of mites acquired detectable levels of bacteria after feeding on infected flies and 87% of infected mites passed bacteria to naïve recipient flies. The probability that a mite could pass Serratia from an infected donor fly to a naïve recipient fly was 27.1%. These data demonstrate that Macrocheles mites are capable of serving as vectors of bacterial infection between insects.


Subject(s)
Mites , Animals , Mites/microbiology , Mites/physiology , Drosophila/microbiology , Drosophila/parasitology , Serratia/physiology , Drosophila melanogaster/microbiology
3.
Microb Ecol ; 86(4): 2400-2413, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37249591

ABSTRACT

Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.


Subject(s)
Mite Infestations , Mites , Poultry Diseases , Animals , Female , Chickens/parasitology , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Mites/microbiology , Life Cycle Stages , Bacteria/genetics , Mite Infestations/parasitology , Mite Infestations/prevention & control
4.
Microb Ecol ; 85(4): 1527-1540, 2023 May.
Article in English | MEDLINE | ID: mdl-35840683

ABSTRACT

Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.


Subject(s)
Acaridae , Bacillus , Bartonella , Microbiota , Mites , Pesticide Residues , Pesticides , Pyrethrins , Animals , Acaridae/microbiology , Pesticides/pharmacology , Pesticide Residues/pharmacology , Mites/microbiology , Bacillus/genetics , Pyrethrins/pharmacology
5.
Microbiol Spectr ; 10(6): e0265422, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36321911

ABSTRACT

Arthropod pathogens and other microorganisms have been documented from mass production systems aimed at producing natural enemies for pest control. If losses due to pathogens are encountered in such systems, they could lead to uneconomical production of natural enemies and/or a loss of predator quality for effective field control of target pests. Here, we identify and describe the laboratory transmission of a bacterial pathogen, Acaricomes phytoseiuli, in a Chinese strain of the local predatory mite Neoseiulus californicus following contact with Phytoseiulus persimilis, a predatory mite imported for the control of small sap-sucking pests in greenhouses. Analysis of the 16S rRNA gene and whole-genome sequences of A. phytoseiuli isolated from the Chinese strain of N. californicus showed 99.6 and 99.78% similarity, respectively, to the pathogen isolated from a European population (DSM14247 strain). This is the first report of P. persimilis infected with A. phytoseiuli outside Europe and transmitting to a local predatory mite species. A. phytoseiuli severely damaged local N. californicus, leading to a dorso-ventrally flattened body and reduced prey consumption and reproduction as well as early death. Through fluorescence in situ hybridization, A. phytoseiuli was shown to accumulate in the digestive tract of mites and in the oviductal bulb of adult females. Infected males had no obvious symptoms, but they still were able to pass on the infection to healthy females through contact and mating. The pathogen was transmitted vertically to offspring by either infected parent through adherence to eggshells. A. phytoseiuli could also persist in other herbivorous arthropods from the same habitat, suggesting wider potential risks. Our study highlights pathogen risk to predators in local biocontrol industries through pathogen spread from imported material. IMPORTANCE Predatory mites are important natural enemies for biological control of pests, but mass rearing of the mites can be affected by pathogens. In particular, the mite pathogen Acaricomes phytoseiuli may pose a threat to predatory mite production, and we have now detected this pathogen in China. We explored the pathogen's transmission within species, its ability to transfer to a locally important predatory mite species, and symptoms following transfer. The detection of A. phytoseiuli and its ability to transfer to a local predator where it reduces performance highlight the importance of ongoing monitoring and hygiene in the predatory mite industry.


Subject(s)
Mites , Animals , Female , Mites/microbiology , RNA, Ribosomal, 16S/genetics , In Situ Hybridization, Fluorescence , Pest Control, Biological
6.
J Vector Ecol ; 47(2): 195-201, 2022 12.
Article in English | MEDLINE | ID: mdl-36314674

ABSTRACT

The genus Bartonella contains facultative Gram-negative intracellular bacteria from the family Bartonellaceae that can cause diseases in humans and animals. Various Bartonella species have been detected in rodents' ectoparasites, such as fleas, ticks, mites, and lice. However, the role of laelapid mites (Mesostigmata: Laelapidae) as carriers of Bartonella spp. needs to be confirmed. We aimed to investigate the presence of Bartonella spp. in laelapid mites collected from small rodents in Lithuania using real-time PCR targeting the transfer-messenger RNA/tmRNA (ssrA) gene and to characterize Bartonella strains using nested PCR and sequence analysis of the 16S-23S rRNA intergenic transcribed spacer region (ITS). A total of 271 laelapid mites of five species (Laelaps agilis, Haemogamasus nidi, Eulaelaps stabularis, Myonyssus gigas, and Hyperlaelaps microti) were collected from five rodent species (Apodemus flavicollis, Apodemus agrarius, Clethrionomys glareolus, Micromys minutus, and Microtus oeconomus) during 2015-2016. Bartonella DNA was detected in three mite species L. agilis, M. gigas, and Hg. nidi with an overall prevalence of 11.4%. Sequence analysis of the 16S-23S rRNA ITS region revealed the presence of Bartonella taylorii in L. agilis, Hg. nidi, and M. gigas, and Bartonella grahamii in L. agilis. Our results suggest that laelapid mites are involved in the maintenance of rodent-associated Bartonella spp. in nature. To the best of the authors' knowledge, this is the first study to demonstrate the presence of Bartonella spp. DNA in laelapid mites from small rodents.


Subject(s)
Bartonella Infections , Bartonella , Mercury , Mites , Humans , Animals , Mites/genetics , Mites/microbiology , Lithuania/epidemiology , RNA, Ribosomal, 23S , Bartonella/genetics , Murinae , Arvicolinae , DNA, Intergenic , Phylogeny
7.
J Invertebr Pathol ; 189: 107733, 2022 03.
Article in English | MEDLINE | ID: mdl-35183553

ABSTRACT

Wolbachia is the most abundant intracellular symbiont among terrestrial Arthropoda. This bacterium together with other microorganisms, i.e., Cardinium, gained fame mainly as the causative agent of host sex-ratio distortion. Across the impressive diversity of oribatid mites (Acari: Oribatida), the microbes have been found in both parthenogenetic (Oppiella nova, Ceratozetes thienemanni, Hypochthonius rufulus) as well as sexually-reproducing (Gustavia microcephala, Achipteria coleoptrata, Microzetorchestes emeryi, Damaeus onustus) species. Wolbachia found in Oribatida represents supergroup E and is related to bacterial endosymbionts of springtails (Hexapoda: Collembola). Cardinium identified in O. nova and M. emeryi belongs to phylogenetic group A. In turn, Cardinium from A. coleoptrata constitutes a new separate group E. The occurrence of these bacterial endosymbionts in parthenogenetic and sexual oribatid mites species may suggests a different function other than manipulating host reproduction. Indeed, endosymbionts may have various "shades" of functions in invertebrate hosts, some of which cannot be excluded in the oribatid mites, e.g., enriching a nutrient-limited diet with B vitamins or contributing to host adaptation to colder and harsher climates. Nevertheless, the mystery behind the roles of bacteria in Oribatida still needs required to be unraveled.


Subject(s)
Mites , Wolbachia , Animals , Bacteria , Bacteroidetes , Mites/microbiology , Phylogeny
8.
Parasit Vectors ; 15(1): 29, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057849

ABSTRACT

The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae.


Subject(s)
Disease Vectors , Mite Infestations/transmission , Mite Infestations/veterinary , Poultry Diseases/parasitology , Poultry Diseases/transmission , Animals , Chickens/parasitology , Mites/microbiology , Mites/virology , Poultry/parasitology
9.
Infect Genet Evol ; 95: 105039, 2021 11.
Article in English | MEDLINE | ID: mdl-34438095

ABSTRACT

Wild rodents are considered as potential carriers of several zoonotic vector-borne bacteria but their epidemiology is poorly understood in Tunisia. A total of 305 biological samples (100 spleens, 100 livers, 100 kidneys, and 5 pooled ectoparasites (Xenopsylla cheopis, Laelaps echidninus, Ornithonyssus sp., Hoplopleura sp. and eggs of the rat fleas)) were collected from 100 wild rodents from three Tunisian governorates. Molecular screening was performed to reveal infections with main vector-borne bacteria. Captured rodents belonged to three rodent genera and species including Rattus rattus (n = 51, 51%), Meriones shawi (n = 24, 24%) and Mus musculus (n = 25, 25%). Examined rodents were found to be heavily infested by the rat flea X. cheopis (n = 32, 47%) and the rat mite L. echidninus (n = 22, 32.3%). However, the rat mite Ornithonyssus sp. (n = 13, 19.1%) and the rat lice Hoplopleura sp. (n = 1, 1.5%) were rarely identified. Based on 16S rRNA and msp4 genes, infection with Anaplasmataceae bacteria was detected in six specimens of R. rattus and one M. shawi. Pathogenic A. phagocytophilum (n = 1), A. phagocytophilum-like 1 (Anaplasma sp. Japan) (n = 1), and A. ovis (n = 5) were identified. On the basis of ompB, ompA and gltA genes, infection with Rickettsia spp. was identified in three specimens of R. rattus and one of M. shawi. Five Rickettsia species of the spotted fever group, corresponding to R. monacensis, R. helvetica, R. massiliae, R. africae, and R. aeschlimannii, were detected in mixed infections. Bartonella henselae DNA was also found in two R. rattus, based on rpoB partial sequences. All revealed Anaplasma, Rickettsia and Bartonella bacteria were detected in spleen samples. Ehrlichia, Coxiella and Borrelia spp. were not identified in any of the tested samples. In Tunisia, this is the first report indicating infections with Anaplasma, Rickettsia and Bartonella spp. in wild rodents, particularly present alongside domestic livestock and human. This represents a serious risk of potential bacterial transmission. Thus, controlling rodent population in animal herds, residential areas and sensitizing local people to this risk seem absolutely necessary.


Subject(s)
Bacterial Zoonoses/epidemiology , Gerbillinae , Mice , Mites/microbiology , Phthiraptera/microbiology , Rats , Rodent Diseases/epidemiology , Siphonaptera/microbiology , Anaplasma/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Animals , Bacterial Zoonoses/microbiology , Bartonella/isolation & purification , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Female , Gerbillinae/parasitology , Male , Mice/parasitology , Prevalence , Rats/parasitology , Rickettsia/isolation & purification , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rodent Diseases/microbiology , Tunisia/epidemiology
10.
J Proteomics ; 249: 104356, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34438106

ABSTRACT

Tyrophagus putrescentiae is an astigmatid mite of great economic, medical and veterinary importance. The microbiome, especially intracellular bacteria, may affect allergy/allergen expression. We targeted Wolbachia proteins, allergen comparisons and markers in Wolbachia-mite interactions in three mite populations. A decoy database was constructed by proteogenomics using the T. putrescentiae draft genome, Wolbachia transcriptome assembly and current T. putrescentiae-related sequences in GenBank. Among thousands of mite-derived proteins, 18 Wolbachia proteins were reliably identified. We suggest that peroxiredoxin, bacterioferritin, ankyrin repeat domain-containing protein and DegQ family serine endoprotease indicate a higher-level bacterium-bacterium-host interaction. We produced evidence that the host-Wolbachia interaction is modulated through pattern recognition receptors (PRRs), mannose-binding lectins/mannose receptors, the cholinergic anti-inflammatory pathway with TNF-α, and others. We observed Tyr p 3 suppression in mites with Wolbachia, linking trypsin to PRR modulation. Nine out of the 12 current WHO/IUIS official allergens were reliably identified, but the remaining three allergens, Tyr p 1, 8 and 35, were detected as only trace hits. This study provides numerous markers for further Wolbachia-host interaction research. For accuracy, mite allergens should be considered according to abundance in species, but mite populations/strains, as well as their microbiome structure, may be key factors. SIGNIFICANCE: The astigmatid mites occurring in homes are significant producers of allergens that are highly dangerous to humans and domesticated animals. Mites are tightly associated with microorganisms that affect their biology and consequently allergy signatures. Mite populations were found to be infected with certain intracellular bacteria, but some populations lacked an intracellular bacterium. Our previous research showed that some populations of Tyrophagus putrescentiae are infected with Wolbachia, but some populations host additional bacteria of interest. Thus, there are not only interactions between the mites and Wolbachia but also likely an additional level of interaction that can be found in the interaction between different bacteria in the mites. These "higher-level" signatures and consequences that bacteria affect, including allergen production, are not understood in mites. In this study, we identified Wolbachia-specific proteins in mites for the first time. This study provides Wolbachia- and mite-derived markers that can be clues for describing "higher-level" mite-bacterium-bacterium interactions. Indeed, the microbiome contribution to allergies can potentially be derived directly from bacterial proteins, especially if they are abundant.


Subject(s)
Allergens , Mites , Wolbachia , Animals , Mites/microbiology , Proteome , Proteomics
11.
Parasitol Res ; 120(9): 3255-3261, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34292377

ABSTRACT

Wolbachia, a maternally transmitted Gram-negative endosymbiont of onchocercid nematodes and arthropods, has a role in the biology of their host; thus it has been exploited for the filariasis treatment in humans. To assess the presence and prevalence of this endosymbiont in reptiles and their ectoparasites, blood and tail tissue as well as ticks and mites collected from them were molecularly screened for Wolbachia DNA using two sets of primers targeting partial 16S rRNA and Wolbachia surface protein (wsp) genes. Positive samples were screened for the partial 12S rRNA and cytochrome c oxidase subunit 1 (cox1) genes for filarioids. Of the different species of lizards (Podarcis siculus, Podarcis muralis and Lacerta bilineata) and snakes (Elaphe quatuorlineata and Boa constrictor constrictor) screened from three collection sites, only P. siculus scored positive for Wolbachia 16S rRNA. Among ectoparasites collected from reptiles (Ixodes ricinus ticks and Neotrombicula autumnalis, Ophionyssus sauracum and Ophionyssus natricis mites), I. ricinus (n = 4; 2.8%; 95% CI, 0.9-7) from P. siculus, N. autumnalis (n = 2 each; 2.8%; 95% CI, 0.9-6.5) from P. siculus and P. muralis and O. natricis (n = 1; 14.3%; 95% CI, 0.7-55.4) from Boa constrictor constrictor scored positive for Wolbachia DNA. None of the positive Wolbachia samples scored positive for filarioids. This represents the first report of Wolbachia in reptilian hosts and their ectoparasites, which follows a single identification in the intestinal cells of a filarioid associated with a gecko. This data could contribute to better understand the reptile filarioid-Wolbachia association and to unveil the evolutionary pattern of Wolbachia in its filarial host.


Subject(s)
Ixodes , Mites , Reptiles/microbiology , Wolbachia , Animals , Ixodes/microbiology , Mites/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Reptiles/parasitology , Wolbachia/genetics , Wolbachia/isolation & purification
12.
Infect Genet Evol ; 91: 104829, 2021 07.
Article in English | MEDLINE | ID: mdl-33794350

ABSTRACT

Data on the spread of intracellular bacteria in oribatid mites (Acari: Oribatida) are scarce. Our work fills a gap in the research on endosymbionts in this group of invertebrates and provides information on Wolbachia infection in Hypochthonius rufulus (Acari: Oribatida) from soil, litter and moss sample collected in south-eastern Poland. This is the first report of Wolbachia in H. rufulus. Phylogeny based on the analysis of the 16S rRNA, gatB, fbpA, gltA, ftsZ and hcpA gene sequences revealed that Wolbachia from H. rufulus represented supergroup E and was related to bacterial endosymbionts of Collembola. The unique sequence within Wolbachia supergroup E was detected for the 16S rRNA gene of the bacteria from H. rufulus. The sequences of Wolbachia 16S rRNA and housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies.


Subject(s)
Mites/microbiology , Wolbachia/isolation & purification , Animals , Phylogeny , Poland , Wolbachia/classification , Wolbachia/genetics
13.
PLoS Negl Trop Dis ; 15(3): e0009178, 2021 03.
Article in English | MEDLINE | ID: mdl-33705398

ABSTRACT

Bartonella species are recognized globally as emerging zoonotic pathogens. Small mammals such as rodents and shrews are implicated as major natural reservoirs for these microbial agents. Nevertheless, in several tropical countries, like India, the diversity of Bartonella in small mammals remain unexplored and limited information exists on the natural transmission cycles (reservoirs and vectors) of these bacteria. Using a multi-locus sequencing approach, we investigated the prevalence, haplotype diversity, and phylogenetic affinities of Bartonella in small mammals and their associated mites in a mixed-use landscape in the biodiverse Western Ghats in southern India. We sampled 141 individual small mammals belonging to eight species. Bartonella was detected in five of the eight species, including three previously unknown hosts. We observed high interspecies variability of Bartonella prevalence in the host community. However, the overall prevalence (52.5%) and haplotype diversity (0.9) was high for the individuals tested. Of the seven lineages of Bartonella identified in our samples, five lineages were phylogenetically related to putative zoonotic species-B. tribocorum, B. queenslandensis, and B. elizabethae. Haplotypes identified from mites were identical to those identified from their host species. This indicates that these Bartonella species may be zoonotic, but further work is necessary to confirm whether these are pathogenic and pose a threat to humans. Taken together, these results emphasize the presence of hitherto unexplored diversity of Bartonella in wild and synanthropic small mammals in mixed-use landscapes. The study also highlights the necessity to assess the risk of spillover to humans and other incidental hosts.


Subject(s)
Bartonella Infections/veterinary , Bartonella/classification , Mammals/microbiology , Mites/microbiology , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , DNA, Bacterial , Haplotypes/genetics , India/epidemiology , Mammals/parasitology , Mite Infestations/veterinary , Phylogeny , Polymerase Chain Reaction , Prevalence
14.
Pathog Dis ; 79(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33705517

ABSTRACT

Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.


Subject(s)
Arthropod Vectors/microbiology , Host-Pathogen Interactions , Rickettsia Infections/microbiology , Rickettsia/classification , Rickettsia/pathogenicity , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/microbiology , Animals , Host Specificity , Humans , Metabolic Networks and Pathways , Mites/microbiology , Phosphatidylinositols/metabolism , Phthiraptera/microbiology , Phylogeny , Rickettsia/growth & development , Rickettsia/metabolism , Rickettsia Infections/genetics , Rickettsia Infections/pathology , Siphonaptera/microbiology , Species Specificity , Ticks/microbiology
15.
Microbiol Mol Biol Rev ; 85(1)2021 02 17.
Article in English | MEDLINE | ID: mdl-33504654

ABSTRACT

Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.


Subject(s)
Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Caenorhabditis elegans/microbiology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecta/microbiology , Animals , Bacillus thuringiensis/genetics , Insecticides/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mites/microbiology , Pest Control, Biological , Virulence Factors/genetics , Virulence Factors/metabolism
16.
Ticks Tick Borne Dis ; 12(1): 101585, 2021 01.
Article in English | MEDLINE | ID: mdl-33113476

ABSTRACT

Trombidiformes and Mesostigmata mites, as well as Ixodida ticks, infest ectothermic tetrapods worldwide, potentially acting as vectors of bacteria, viruses and protozoa. The relationship among ectoparasites, transmitted pathogenic agents (e.g., Borrelia spp., Coxiella spp., Hepatozoon spp., and Rickettsia spp.) and ectothermic hosts has been scarcely investigated. This research focuses on a large collection of Brazilian herpetofauna screened for the presence of arthropod ectoparasites and vector-borne microbial agents. Reptiles (n = 121) and amphibians (n = 49) from various locations were infested by ectoparasites. Following genomic extraction, microbial agents were detected in 81 % of the Acari (i.e. n = 113 mites and n = 26 ticks). None of the mites, ticks and tissues from amphibians yielded positive results for any of the screened agents. Blood was collected from reptiles and processed through blood cytology and molecular analyses (n = 48). Of those, six snakes (12.5 %) showed intraerythrocytic alterations compatible with Hepatozoon spp. gamonts and Iridovirus inclusions. Hepatozoon spp. similar to Hepatozoon ayorgbor and Hepatozoon musa were molecularly identified from seven hosts, two mite and two tick species. Rickettsia spp. (e.g., Rickettsia amblyommatis, Rickettsia bellii-like, Rickettsia sp.) were detected molecularly from four mite species and Amblyomma rotundatum ticks. Phylogenetic analyses confirmed the molecular identification of the above-mentioned microbial agents of mites and ticks related to snakes and lizards. Overall, our findings highlighted that the Brazilian herpetofauna and its ectoparasites harbour potentially pathogenic agents, particularly from the northern and south-eastern regions. The detection of several species of spotted fever group Rickettsia pointed out the potential role of ectothermic hosts and related arthropod ectoparasites in the epidemiological cycle of these bacteria in Brazil.


Subject(s)
Eucoccidiida/isolation & purification , Iridoviridae/isolation & purification , Ixodidae , Mites , Reptiles , Rickettsia/isolation & purification , Animals , Brazil , Disease Reservoirs , Eucoccidiida/classification , Female , Iridoviridae/classification , Ixodidae/growth & development , Ixodidae/microbiology , Ixodidae/parasitology , Ixodidae/virology , Larva/growth & development , Larva/microbiology , Larva/parasitology , Larva/virology , Male , Mites/growth & development , Mites/microbiology , Mites/parasitology , Mites/virology , Nymph/growth & development , Nymph/microbiology , Nymph/parasitology , Nymph/virology , Phylogeny , Reptiles/microbiology , Reptiles/parasitology , Reptiles/virology , Rickettsia/classification
17.
Vet Parasitol ; 288: 109297, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248417

ABSTRACT

Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.


Subject(s)
Ectoparasitic Infestations/veterinary , Livestock , Wolbachia/physiology , Animals , Camelus/parasitology , Cattle/parasitology , Cimicidae/microbiology , Diptera/microbiology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/prevention & control , Goats/parasitology , Horses/parasitology , Mites/microbiology , Phthiraptera/microbiology , Sheep, Domestic/parasitology , Siphonaptera/microbiology , Sus scrofa/parasitology , Ticks/microbiology
18.
Am J Trop Med Hyg ; 103(6): 2542-2551, 2020 12.
Article in English | MEDLINE | ID: mdl-33146105

ABSTRACT

Small mammals are the natural reservoirs for many zoonotic pathogens. Using molecular tools, we assessed the prevalence of bacteria and protozoans in small mammals and their ectoparasites in Faladjè, Bougouni, and Bamoko, Mali. A total of 130 small mammals belonging to 10 different species were captured, of which 74 (56.9%) were infested by ectoparasites, including Laelaps echidnina, Xenopsylla cheopis, Amblyomma variegatum, Rhipicephalus sanguineus sensu lato, and Haemaphysalis spp. nymphs. DNA of Bartonella was found in 14/75 (18.7%), 6/48 (12.5%), and 3/7 (42.8%) small mammals from Faladjè, Bougouni, and Bamako, respectively. In Faladjè, Bartonella DNA was detected in 31/68 (45.6%) of L. echidnina and 14/22 (63.6%) of X. cheopis. In Bougouni, it was found in 2/26 (7.7%) of L. echidnina and 10/42 (23.8%) of X. cheopis. The sequences of Bartonella obtained from small mammals were close to those of Bartonella mastomydis, Bartonella elizabethae, and uncultured Bartonella spp. In Faladjè, Coxiella burnetii DNA was detected in 64.4% (29/45) of Haemaphysalis spp. ticks, 4.5% (2/44) of Mastomys erythroleucus, 12.5% (1/8) of Praomys daltoni, and 1.5% (1/68) of L. echidnina. We found DNA of Wolbachia in X. cheopis from Faladjè and DNA of Rickettsia africae and Ehrlichia ruminantium in Am. variegatum from Bougouni. The results of our study show that several small mammal species harbor and may serve as potential reservoirs of Bartonella spp., likely to play a major role in the maintenance, circulation, and potential transmission of bacteria in Mali. The pathogenicity of these bacteria for humans or animals remains to be demonstrated.


Subject(s)
Ectoparasitic Infestations/veterinary , Rodent Diseases/parasitology , Animals , Bacteria/isolation & purification , Disease Reservoirs , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology , Mali/epidemiology , Mites/microbiology , Phylogeny , Rodent Diseases/epidemiology , Rodentia , Siphonaptera/microbiology , Ticks/microbiology , Zoonoses
19.
Parasite ; 27: 54, 2020.
Article in English | MEDLINE | ID: mdl-33135998

ABSTRACT

Chlamydia spp. and Chlamydia-like organisms are able to infect vertebrates such as mammals, reptiles and birds, but also arthropods and protozoans. Since they have been detected in bats and bat feces, we expected Chlamydiae bacteria to also be present in the mite Spinturnix myoti, an ectoparasite of mouse-eared bats (Myotis spp.). The prevalence of Chlamydiales in 88 S. myoti was 57.95% and significantly depended on bat host species. In addition, the prevalence was significantly different between bat species living in sympatry or in allopatry. While there was uninterpretable sequencing for 16 samples, eight showed best BLAST hit identities lower than 92.5% and thus corresponded to new family-level lineages according to the established taxonomy cut-off. The four remaining sequences exhibited best BLAST hit identities ranging from 94.2 to 97.4% and were taxonomically assigned to three different family-level lineages, with two of them belonging to the Parachlamydiaceae, one to the Simkaniaceae, and one to the Chlamydiaceae. These results highlighted for the first time the presence of Chlamydia-like organisms and the possible zoonotic origin of Chlamydia sp. in S. myoti ectoparasites of bats, and therefore suggest that these ectoparasites may play a role in maintaining and/or transmitting members of the Chlamydiae phylum within Myotis spp. bat populations. Our results further highlight that the wide diversity of bacteria belonging to the Chlamydiae phylum is largely underestimated.


TITLE: Présence et diversité des bactéries Chlamydiae chez Spinturnix myoti, un acarien ectoparasite de chauve-souris. ABSTRACT: Les Chlamydia spp. et les organismes apparentés aux Chlamydia sont capables d'infecter des vertébrés tels que les mammifères, les reptiles et les oiseaux mais aussi des arthropodes et des protozoaires. Puisqu'elles ont été détectées dans des chauves-souris et des excréments de chauves-souris, nous nous attendions à ce que les bactéries du phylum Chlamydiae soient également présentes dans des Spinturnix myoti, des acariens ectoparasites de chauves-souris du groupe des murins (Myotis spp.). La prévalence des Chlamydiales dans 88 S. myoti était de 57,95 % et dépendait de manière significative des espèces hôtes de chauves-souris. De plus, la prévalence était significativement différente entre les chauves-souris vivant en sympatrie ou en allopatrie. Alors qu'il y avait un séquençage ininterprétable pour 16 échantillons, huit présentaient des résultats d'analyse de type de type BLAST avec une similarité inférieure à 92.5% et à 92,5 % et correspondaient donc à de nouvelles familles selon les seuils utilisés en taxonomie par les chlamydiologistes. Les quatre séquences restantes présentaient des résultats BLAST allant de 94,2 à 97,4 % et ont été taxonomiquement attribuées à trois familles ; deux d'entre elles appartenant aux Parachlamydiaceae, une aux Simkaniaceae et enfin une aux Chlamydiaceae. Ces résultats ont mis en évidence pour la première fois la présence d'organismes de type Chlamydia mais aussi d'organisme pouvant amener à des zoonoses tel que Chlamydia sp. chez Spinturnix myoti, un ectoparasite de chauves-souris. Ces résultats suggèrent donc que ces ectoparasites pourraient jouer un rôle dans le maintien et/ou la transmission des membres de l'embranchement des Chlamydiae au sein des populations de chauves-souris du genre Myotis. Nos résultats soulignent en outre que la grande diversité des bactéries appartenant à l'embranchement des Chlamydiae est largement sous-estimée.


Subject(s)
Chiroptera , Chlamydia , Ectoparasitic Infestations , Mites , Animals , Chiroptera/parasitology , Chlamydia/classification , Chlamydia/genetics , DNA, Bacterial/genetics , Ectoparasitic Infestations/microbiology , Mites/microbiology
20.
Parasit Vectors ; 13(1): 513, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33054854

ABSTRACT

BACKGROUND: The poultry red mite Dermanyssus gallinae (De Geer, 1778) is a major ectoparasite of poultry. Infestations are found in most laying hen farms in Europe, and breeder flocks have also been reported to be affected. Mite infestation has detrimental effects on animal welfare, it causes significant economic losses, and, additionally, D. gallinae is often considered as a vector for pathogens. Despite suspicion of a close relationship between the poultry red mite and Salmonella enterica enterica serovar Gallinarum biovar Gallinarum (serovar Gallinarum), the causative agent of fowl typhoid disease (FT), there has been no definitive proof of mite-mediated transmission. Therefore, an investigation was conducted to determine if D. gallinae-mediated transmission of serovar Gallinarum could be demonstrated among four different hen groups. METHODS: Two groups of 8 hens (A and B) were experimentally infected with serovar Gallinarum in two isolators. After 7 days, when birds showed signs of FT, about 25,000 mites were introduced. After 3 days, mites were harvested and used to infest two other hen groups of 8 (C and D), in two separate isolators. The health status of hens was constantly monitored; detection and quantification of serovar Gallinarum were performed by PCR and qPCR from mites and organs of dead hens. The maximum likelihood estimation of the infection rate and mite vectorial capacity were calculated. RESULTS: Clinical disease was observed in groups infected with serovar Gallinarum (A and B) and in hens of groups C and D infested with mites harvested from the isolators containing groups A and B. In all four groups, serovar Gallinarum was detected from liver, spleen, ovary, and cecum of hens, thus confirming the diagnosis of FT. Mite analysis demonstrated the presence of the pathogen, with an estimated infection rate ranging between 13.72 and 55.21 infected per thousand mites. Vectorial capacity was estimated to be 73.79. CONCLUSIONS: Mites harvested from birds infected with serovar Gallinarum were shown to carry the mite, and then to transfer serovar Gallinarum to isolated groups of pathogen-free birds that subsequently showed signs of FT. Mite vectorial capacity was high, demonstrating that D. gallinae should be considered an effective vector of FT.


Subject(s)
Arachnid Vectors/microbiology , Chickens/parasitology , Mite Infestations/veterinary , Mites/microbiology , Poultry Diseases/parasitology , Salmonella enterica/immunology , Typhoid Fever/veterinary , Animals , Chickens/microbiology , Female , Mite Infestations/parasitology , Poultry Diseases/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Serogroup , Typhoid Fever/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...