Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.892
Filter
2.
Nat Commun ; 15(1): 4277, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769288

ABSTRACT

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.


Subject(s)
Mitochondria, Heart , Sodium , Animals , Rats , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Sodium/metabolism , Male , Myocardium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Heart Failure/metabolism , Heart Failure/drug therapy , Adenosine Triphosphate/metabolism , Citric Acid Cycle/drug effects , Rats, Sprague-Dawley , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/metabolism , Sodium-Calcium Exchanger/metabolism , Ubiquinone/metabolism , Ubiquinone/analogs & derivatives , Sodium-Potassium-Exchanging ATPase/metabolism , Oxidation-Reduction , Succinic Acid/metabolism
3.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Article in English | MEDLINE | ID: mdl-38738849

ABSTRACT

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


Subject(s)
NF-kappa B , Oxidation-Reduction , Particulate Matter , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Wistar , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Particulate Matter/toxicity , Rats , Female , Oxidation-Reduction/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , NF-kappa B/metabolism , TOR Serine-Threonine Kinases/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Oxidative Stress/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731929

ABSTRACT

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Subject(s)
Cardiomyopathies , Sepsis , Sepsis/complications , Sepsis/metabolism , Humans , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Animals , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitophagy , Energy Metabolism , Mitochondria/metabolism , Mitochondria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis , Adenosine Triphosphate/metabolism
5.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724987

ABSTRACT

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
7.
Int J Med Sci ; 21(6): 983-993, 2024.
Article in English | MEDLINE | ID: mdl-38774750

ABSTRACT

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Subject(s)
Cardiomyopathies , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Prohibitins , Pyruvate Kinase , Sepsis , Animals , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/etiology , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Humans , Organelle Biogenesis , Lipopolysaccharides/toxicity , Male , Disease Models, Animal
8.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Article in English | MEDLINE | ID: mdl-38705401

ABSTRACT

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Subject(s)
Brain-Derived Neurotrophic Factor , Flavones , Membrane Potential, Mitochondrial , Myocytes, Cardiac , Palmitic Acid , Proto-Oncogene Proteins c-akt , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Palmitic Acid/toxicity , Palmitic Acid/pharmacology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Cell Line , Membrane Potential, Mitochondrial/drug effects , Flavones/pharmacology , Cell Survival/drug effects , Signal Transduction/drug effects , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Reactive Oxygen Species/metabolism
9.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744811

ABSTRACT

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Subject(s)
Cardiomegaly , Fibrosis , Sirtuin 3 , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis/genetics , Rats , Mice , Isoproterenol , Humans , Mice, Knockout , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardium/pathology , Myocardium/metabolism , Male
10.
FASEB J ; 38(9): e23654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38717442

ABSTRACT

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Subject(s)
Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Rats, Inbred SHR , Unfolded Protein Response , Animals , Metformin/pharmacology , Unfolded Protein Response/drug effects , Male , Rats , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Hypertension/metabolism , Hypertension/drug therapy , Ventricular Remodeling/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Rats, Inbred WKY
12.
Acta Physiol (Oxf) ; 240(6): e14151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676357

ABSTRACT

AIMS: Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS: Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS: Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION: The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.


Subject(s)
Calcium , Mitochondria, Heart , Animals , Mice , Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Male , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Hypoxia/metabolism , Membrane Potentials/drug effects , Oxygen Consumption/drug effects , Oxygen/metabolism
13.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38614260

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Mice, Inbred C57BL , Mitophagy , Myocytes, Cardiac , Unfolded Protein Response , Animals , Mitophagy/drug effects , Unfolded Protein Response/drug effects , Mice , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Tablets , Cell Line , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
14.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38618716

ABSTRACT

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Subject(s)
Lipid Peroxidation , Mice, Inbred C57BL , Mitochondria, Heart , Mitochondria, Liver , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Myocardial Reperfusion Injury , Reactive Oxygen Species , Animals , Lipid Peroxidation/drug effects , Mitochondrial Permeability Transition Pore/metabolism , Reactive Oxygen Species/metabolism , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondria, Liver/drug effects , Calcium/metabolism , Mitochondrial Swelling/drug effects
15.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38655715

ABSTRACT

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Subject(s)
ATP-Binding Cassette Transporters , Ferroptosis , Lysosomes , Mice, Knockout , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ferroptosis/genetics , Humans , Lysosomes/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/genetics , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , HeLa Cells , Iron/metabolism , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Male
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588780

ABSTRACT

OBJECTIVES: Diabetic cardiomyopathy (DCM) is the leading cause of mortality in type 2 diabetes mellitus (T2DM) patients, with its underlying mechanisms still elusive. This study aims to investigate the role of cholesterol-25-monooxygenase (CH25H) in T2DM induced cardiomyopathy. METHODS: High fat diet combined with streptozotocin (HFD/STZ) were used to establish a T2DM model. CH25H and its product 25-hydroxycholesterol (25HC) were detected in the hearts of T2DM model. Gain- or loss-of-function of CH25H were performed by receiving AAV9-cTNT-CH25H or CH25H knockout (CH25H-/-) mice with HFD/STZ treatment. Cardiac function was evaluated using echocardiography, and cardiac tissues were collected for immunoblot analysis, histological assessment and quantitative polymerase chain reaction (qPCR). Mitochondrial morphology and function were evaluated using transmission electron microscopy (TEM) and Seahorse XF Cell Mito Stress Test Kit. RNA-sequence analysis was performed to determine the molecular changes associated with CH25H deletion. RESULTS: CH25H and 25HC were significantly decreased in the hearts of T2DM mice. CH25H-/- mice treated with HFD/STZ exhibited impaired mitochondrial function and structure, increased lipid accumulation, and aggregated cardiac dysfunction. Conversely, T2DM mice receiving AAV9-CH25H displayed cardioprotective effects. Mechanistically, RNA sequencing and qPCR analysis revealed that CH25H deficiency decreased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its target gene expression. Additionally, administration of ZLN005, a potent PGC-1α activator, partially protected against high glucose and palmitic acid induced mitochondria dysfunction and lipid accumulation in vitro. CONCLUSION: Our study provides compelling evidence supporting the protective role of CH25H in T2DM-induced cardiomyopathy. Furthermore, the regulation of PGC-1α may be intricately involved in this cardioprotective process.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Mice, Knockout , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Mice , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Steroid Hydroxylases/metabolism , Steroid Hydroxylases/genetics , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Hydroxycholesterols/metabolism , Myocardium/metabolism , Myocardium/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
17.
Free Radic Res ; 58(4): 293-310, 2024.
Article in English | MEDLINE | ID: mdl-38630026

ABSTRACT

Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation. In this study, we show that this dietetic intervention prevents cardiac protein elevation, avoids fetal gene reprogramming (atrial natriuretic peptide), and blocks the increase in heart weight per tibia length index (HW/TL) seen in isoproterenol-induced cardiac hypertrophy. Our findings suggest that calorie restriction inhibits cardiac pathological growth while also lowering mitochondrial reverse electron transport-induced hydrogen peroxide formation and improving mitochondrial content. Calorie restriction also attenuated the opening of the Ca2+-induced mitochondrial permeability transition pore. We also found that calorie restriction blocked the negative correlation of antioxidant enzymes (superoxide dimutase and glutatione peroxidase activity) and HW/TL, leading to the maintenance of protein sulphydryls and glutathione levels. Given the nature of isoproterenol-induced cardiac hypertrophy, we investigated whether calorie restriction could alter cardiac beta-adrenergic sensitivity. Using isolated rat hearts in a Langendorff system, we found that calorie restricted hearts have preserved beta-adrenergic signaling. In contrast, hypertrophic hearts (treated for seven days with isoproterenol) were insensitive to beta-adrenergic activation using isoproterenol (50 nM). Despite protecting against cardiac hypertrophy, calorie restriction did not alter the lack of responsiveness to isoproterenol in isolated hearts harvested from isoproterenol-treated rats. These results suggest (through a series of mitochondrial, oxidative stress, and cardiac hemodynamic studies) that calorie restriction possesses beneficial effects against hypertrophic cardiomyopathy.


Subject(s)
Calcium , Caloric Restriction , Oxidative Stress , Animals , Rats , Calcium/metabolism , Male , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Electron Transport , Isoproterenol , Mitochondria/metabolism , Mitochondria, Heart/metabolism , Rats, Sprague-Dawley
18.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
19.
Toxicol Appl Pharmacol ; 486: 116940, 2024 May.
Article in English | MEDLINE | ID: mdl-38677602

ABSTRACT

L-theanine (L-THE), a non-protein amino acid isolated from Camelia sinensis, has antioxidant properties that could prevent oxidative damage and mitochondrial dysfunction generated by myocardial ischemia and reperfusion (I/R) injury. The present study aimed to identify the effects of pretreatment with L-THE in rat hearts undergoing I/R. Wistar rats received vehicle or 250 mg/Kg L-THE intragastrically for 10 days. On day 11, hearts were removed under anesthesia and exposed to I/R injury in the Langendorff system. Measurement of left ventricular developed pressure and heart rate ex vivo demonstrates that L-THE prevents I/R-induced loss of cardiac function. Consequently, the infarct size of hearts subjected to I/R was significantly decreased when L-THE was administered. L-THE also mitigated I/R-induced oxidative injury in cardiac tissue by decreasing reactive oxygen species and malondialdehyde levels, while increasing the activity of antioxidant enzymes, SOD and CAT. Additionally, L-THE prevents oxidative phosphorylation breakdown and loss of inner mitochondrial membrane potential caused by I/R, restoring oxygen consumption levels, increasing respiratory control and phosphorylation efficiency, as well as buffering calcium overload. Finally, L-THE modifies the expression of genes involved in the antioxidant response through the overexpression of SOD1, SOD2 and CAT; as well as the transcriptional factors PPARα and Nrf2 in hearts undergoing I/R. In conclusion, L-THE confers cardioprotection against I/R injury by preventing oxidative stress, protecting mitochondrial function, and promoting overexpression of antioxidant genes. More studies are needed to place L-THE at the forefront of cardiovascular research and recommend its therapeutic use.


Subject(s)
Antioxidants , Glutamates , Mitochondria, Heart , Myocardial Reperfusion Injury , Oxidative Stress , Rats, Wistar , Animals , Oxidative Stress/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Antioxidants/pharmacology , Glutamates/pharmacology , Male , Rats , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , NF-E2-Related Factor 2/metabolism
20.
J Transl Med ; 22(1): 390, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671439

ABSTRACT

BACKGROUND: The progression of diabetic cardiomyopathy (DCM) is noticeably influenced by mitochondrial dysfunction. Variants of caveolin 3 (CAV3) play important roles in cardiovascular diseases. However, the potential roles of CAV3 in mitochondrial function in DCM and the related mechanisms have not yet been elucidated. METHODS: Cardiomyocytes were cultured under high-glucose and high-fat (HGHF) conditions in vitro, and db/db mice were employed as a diabetes model in vivo. To investigate the role of CAV3 in DCM and to elucidate the molecular mechanisms underlying its involvement in mitochondrial function, we conducted Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and functional experiments. RESULTS: Our findings demonstrated significant downregulation of CAV3 in the cardiac tissue of db/db mice, which was found to be associated with cardiomyocyte apoptosis in DCM. Importantly, cardiac-specific overexpression of CAV3 effectively inhibited the progression of DCM, as it protected against cardiac dysfunction and cardiac remodeling associated by alleviating cardiomyocyte mitochondrial dysfunction. Furthermore, mass spectrometry analysis and immunoprecipitation assays indicated that CAV3 interacted with NDUFA10, a subunit of mitochondrial complex I. CAV3 overexpression reduced the degradation of lysosomal pathway in NDUFA10, restored the activity of mitochondrial complex I and improved mitochondrial function. Finally, our study demonstrated that CAV3 overexpression restored mitochondrial function and subsequently alleviated DCM partially through NDUFA10. CONCLUSIONS: The current study provides evidence that CAV3 expression is significantly downregulated in DCM. Upregulation of CAV3 interacts with NDUFA10, inhibits the degradation of lysosomal pathway in NDUFA10, a subunit of mitochondrial complex I, restores the activity of mitochondrial complex I, ameliorates mitochondrial dysfunction, and thereby protects against DCM. These findings indicate that targeting CAV3 may be a promising approach for the treatment of DCM.


Subject(s)
Caveolin 3 , Diabetic Cardiomyopathies , Electron Transport Complex I , Mitochondria , Myocytes, Cardiac , Animals , Male , Mice , Apoptosis , Caveolin 3/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Electron Transport Complex I/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...