Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.775
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(8): 841-847, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39238408

ABSTRACT

OBJECTIVE: To investigate the protective effects and mechanisms of targeted inhibition of type 3 deiodinase (Dio3) on skeletal muscle mitochondria in sepsis. METHODS: (1) In vivo experiments: adeno-associated virus (AAV) was employed to specifically target Dio3 expression in the anterior tibial muscle of rats, and a septic rat model was generated using cecal ligation and puncture (CLP). The male Sprague-Dawley (SD) rats were divided into shNC+Sham group, shD3+Sham group, shNC+CLP group, and shD3+CLP group by random number table method, with 8 rats in each group. After CLP modeling, tibial samples were collected and Western blotting analysis was conducted to assess the protein levels of Dio3, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), and silence-regulatory protein 1 (SIRT1). Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was utilized to examine mRNA expression of genes including thyroid hormone receptors (THRα, THRß), monocarboxylate transporter 10 (MCT10), mitochondrial DNA (mtDNA), and PGC1α. Transmission electron microscopy was employed to investigate mitochondrial morphology. (2) In vitro experiments: involved culturing C2C12 myoblasts, interfering with Dio3 expression using lentivirus, and constructing an endotoxin cell model by treating cells with lipopolysaccharide (LPS). C2C12 cells were divided into shNC group, shD3 group, shNC+LPS group, and shD3+LPS group. Immunofluorescence colocalization analysis was performed to determine the intracellular distribution of PGC1α. Co-immunoprecipitation assay coupled with Western blotting was carried out to evaluate the acetylation level of PGC1α. RESULTS: (1) In vivo experiments: compared with the shNC+Sham group, the expression of Dio3 protein in skeletal muscle of the shNC+CLP group was significantly increased (Dio3/ß-Tubulin: 3.32±0.70 vs. 1.00±0.49, P < 0.05), however, there was no significant difference in the shD3+Sham group. Dio3 expression in the shD3+CLP group was markedly reduced relative to the shNC+CLP group (Dio3/ß-Tubulin: 1.42±0.54 vs. 3.32±0.70, P < 0.05). Compared with the shNC+CLP group, the expression of T3-regulated genes in the shD3+CLP group were restored [THRα mRNA (2-ΔΔCt): 0.67±0.05 vs. 0.33±0.01, THRß mRNA (2-ΔΔCt): 0.94±0.05 vs. 0.67±0.02, MCT10 mRNA (2-ΔΔCt): 0.65±0.03 vs. 0.57±0.02, all P < 0.05]. Morphology analysis by electron microscopy suggested prominent mitochondrial damage in the skeletal muscle of the shNC+CLP group, while the shD3+CLP group exhibited a marked improvement. Compared with the shNC+Sham group, the shNC+CLP group significantly reduced the number of mitochondria (cells/HP: 10.375±1.375 vs. 13.750±2.063, P < 0.05), while the shD3+CLP group significantly increased the number of mitochondria compared to the shNC+CLP group (cells/HP: 11.250±2.063 vs. 10.375±1.375, P < 0.05). The expression of mtDNA in shNC+CLP group was markedly reduced compared with shNC+Sham group (copies: 0.842±0.035 vs. 1.002±0.064, P < 0.05). Although no difference was detected in the mtDNA expression between shD3+CLP group and shNC+CLP group, but significant increase was found when compared with the shD3+Sham group (copies: 0.758±0.035 vs. 0.474±0.050, P < 0.05). In the shD3+CLP group, PGC1α expression was significantly improved at both transcriptional and protein levels relative to the shNC+CLP group [PGC1α mRNA (2-ΔΔCt): 1.49±0.13 vs. 0.68±0.06, PGC1α/ß-Tubulin: 0.76±0.02 vs. 0.62±0.04, both P < 0.05]. (2) In vitro experiments: post-24-hour LPS treatment of C2C12 cells, the cellular localization of PGC1α became diffuse; interference with Dio3 expression promoted PGC1α translocation to the perinuclear region and nucleus. Moreover, the acetylated PGC1α level in the shD3+LPS group was significantly lower than that in the shNC+LPS group (acetylated PGC1α/ß-Tubulin: 0.59±0.01 vs. 1.24±0.01, P < 0.05), while the expression of the deacetylating agent SIRT1 was substantially elevated following Dio3 inhibition (SIRT1/ß-Tubulin: 1.04±0.04 vs. 0.58±0.03, P < 0.05). When SIRT1 activity was inhibited by using EX527, PGC1α protein expression was notably decreased compared to the shD3+LPS group (PGC1α/ß-Tubulin: 0.92±0.03 vs. 1.58±0.03, P < 0.05). CONCLUSIONS: Inhibition of Dio3 in skeletal muscle reduced the acetylation of PGC1α through activating SIRT1, facilitating nuclear translocation of PGC1α, thereby offering protection against sepsis-induced skeletal muscle mitochondrial damage.


Subject(s)
Iodide Peroxidase , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Sprague-Dawley , Sepsis , Animals , Male , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sepsis/metabolism , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Muscle, Skeletal/metabolism , Sirtuin 1/metabolism , Mitochondria, Muscle/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Nat Commun ; 15(1): 7677, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227581

ABSTRACT

Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.


Subject(s)
Exercise , Mitochondrial Proteins , Humans , Male , Mitochondrial Proteins/metabolism , Adult , Exercise/physiology , Proteomics/methods , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Young Adult , Muscle Fibers, Skeletal/metabolism , Rest/physiology , Mitochondria/metabolism , Proteome/metabolism , Adaptation, Physiological
3.
Physiol Rep ; 12(17): e70048, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39256892

ABSTRACT

Insulin-like growth factor-1-induced activation of ATP citrate lyase (ACLY) improves muscle mitochondrial function through an Akt-dependent mechanism. In this study, we examined whether Akt1 deficiency alters skeletal muscle fiber type and mitochondrial function by regulating ACLY-dependent signaling in male Akt1 knockout (KO) mice (12-16 weeks old). Akt1 KO mice exhibited decreased body weight and muscle wet weight, with reduced cross-sectional areas of slow- and fast-type muscle fibers. Loss of Akt1 did not affect the phosphorylation status of ACLY in skeletal muscle. The skeletal muscle fiber type and expression of mitochondrial oxidative phosphorylation complex proteins were unchanged in Akt1 KO mice compared with the wild-type control. These observations indicate that Akt1 is important for the regulation of skeletal muscle fiber size, whereas the regulation of muscle fiber type and muscle mitochondrial content occurs independently of Akt1 activity.


Subject(s)
Mice, Knockout , Proto-Oncogene Proteins c-akt , Animals , Male , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Mice , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/deficiency , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/deficiency
4.
Int J Mol Sci ; 25(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39337383

ABSTRACT

Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration of rhodacyanine MKT077 (5 mg/kg/day), which is able to suppress glucose-regulated protein 75 (GRP75)-mediated Ca2+ transfer from the sarcoplasmic reticulum (SR) to mitochondria, on the Ca2+ overload of skeletal muscle mitochondria in dystrophin-deficient mdx mice and the concomitant mitochondrial dysfunction contributing to muscle pathology. MKT077 prevented Ca2+ overload of quadriceps mitochondria in mdx mice, reduced the intensity of oxidative stress, and improved mitochondrial ultrastructure, but had no effect on impaired oxidative phosphorylation. MKT077 eliminated quadriceps calcification and reduced the intensity of muscle fiber degeneration, fibrosis level, and normalized grip strength in mdx mice. However, we noted a negative effect of MKT077 on wild-type mice, expressed as a decrease in the efficiency of mitochondrial oxidative phosphorylation, SR stress development, ultrastructural disturbances in the quadriceps, and a reduction in animal endurance in the wire-hanging test. This paper discusses the impact of MKT077 modulation of mitochondrial dysfunction on the development of skeletal muscle pathology in mdx mice.


Subject(s)
Calcium , Dystrophin , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Animals , Mice , Calcium/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Dystrophin/metabolism , Dystrophin/deficiency , Dystrophin/genetics , Oxidative Stress/drug effects , Male , Oxidative Phosphorylation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Mitochondria, Muscle/ultrastructure
5.
Free Radic Biol Med ; 223: 384-397, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39097206

ABSTRACT

AIM: High-resolution respirometry in human permeabilized muscle fibers is extensively used for analysis of mitochondrial adaptions to nutrition and exercise interventions, and is linked to athletic performance. However, the lack of standardization of experimental conditions limits quantitative inter- and intra-laboratory comparisons. METHODS: In our study, an international team of investigators measured mitochondrial respiration of permeabilized muscle fibers obtained from three biopsies (vastus lateralis) from the same healthy volunteer to avoid inter-individual variability. High-resolution respirometry assays were performed together at the same laboratory to assess whether the heterogenity in published results are due to the effects of respiration media (MiR05 versus Z) with or without the myosin inhibitor blebbistatin at low- and high-oxygen regimes. RESULTS: Our findings reveal significant differences between respiration media for OXPHOS and ETcapacities supported by NADH&succinate-linked substrates at different oxygen concentrations. Respiratory capacities were approximately 1.5-fold higher in MiR05 at high-oxygen regimes compared to medium Z near air saturation. The presence or absence of blebbistatin in human permeabilized muscle fiber preparations was without effect on oxygen flux. CONCLUSION: Our study constitutes a basis to harmonize and establish optimum experimental conditions for respirometric studies of permeabilized human skeletal muscle fibers to improve reproducibility.


Subject(s)
Cell Respiration , Mitochondria, Muscle , Muscle Fibers, Skeletal , Oxygen Consumption , Humans , Muscle Fibers, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Male , Oxygen/metabolism , Adult , Heterocyclic Compounds, 4 or More Rings/pharmacology , Healthy Volunteers
6.
Sci Adv ; 10(34): eado8549, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167644

ABSTRACT

Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.


Subject(s)
Cell Respiration , Mice, Knockout , Muscle Contraction , Muscle, Skeletal , Pulmonary Emphysema , Succinate Dehydrogenase , Animals , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/genetics , Pulmonary Emphysema/pathology , Pulmonary Emphysema/etiology , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/genetics , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Electron Transport Complex II/metabolism , Electron Transport Complex II/genetics , Disease Models, Animal , Mice, Transgenic , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Oxygen Consumption
7.
Mitochondrion ; 78: 101945, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39134108

ABSTRACT

Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.


Subject(s)
Muscular Diseases , Humans , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/pathology , Mitochondrial Myopathies/metabolism
8.
Physiol Res ; 73(3): 369-379, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39027954

ABSTRACT

The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.


Subject(s)
Adaptation, Physiological , Diabetes Mellitus, Experimental , Mitochondria, Muscle , Physical Conditioning, Animal , Running , Animals , Diabetes Mellitus, Experimental/metabolism , Adaptation, Physiological/physiology , Mice , Male , Physical Conditioning, Animal/physiology , Mitochondria, Muscle/metabolism , Running/physiology , Muscle, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Physical Endurance/physiology , Streptozocin , Blood Glucose/metabolism
9.
J Exp Biol ; 227(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38989552

ABSTRACT

Diving animals must sustain high muscle activity with finite oxygen (O2) to forage underwater. Studies have shown that some diving mammals exhibit changes in the metabolic phenotype of locomotory muscles compared with non-divers, but the pervasiveness of such changes across diving animals is unclear, particularly among diving birds. Here, we examined whether changes in muscle phenotype and mitochondrial abundance are associated with dive capacity across 17 species of ducks from three distinct evolutionary clades (tribes) in the subfamily Anatinae: the longest diving sea ducks, the mid-tier diving pochards and the non-diving dabblers. In the gastrocnemius (the primary swimming and diving muscle), mitochondrial volume density in both oxidative and glycolytic fiber types was 70% and 30% higher in sea ducks compared with dabblers, respectively. These differences were associated with preferential proliferation of the subsarcolemmal subfraction, the mitochondria adjacent to the cell membrane and nearest to capillaries, relative to the intermyofibrillar subfraction. Capillary density and capillary-to-fiber ratio were positively correlated with mitochondrial volume density, with no variation in the density of oxidative fiber types across tribes. In the pectoralis, sea ducks had greater abundance of oxidative fiber types than dabblers, whereas pochards were intermediate between the two. These data suggest that skeletal muscles of sea ducks have a heightened capacity for aerobic metabolism and an enhanced ability to utilize O2 stores in the blood and muscle while diving.


Subject(s)
Diving , Ducks , Muscle, Skeletal , Phenotype , Animals , Ducks/physiology , Diving/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism
10.
J Diabetes Complications ; 38(8): 108798, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991492

ABSTRACT

AIMS: Type 1 diabetes has been associated with mitochondrial dysfunction. However, the mechanism of this dysfunction in adults remains unclear. METHODS: A secondary analysis was conducted using data from several clinical trials measuring in-vivo and ex-vivo mitochondrial function in adults with type 1 diabetes (n = 34, age 38.8 ± 14.6 years) and similarly aged controls (n = 59, age 44.6 ± 13.9 years). In-vivo mitochondrial function was assessed before, during, and after isometric exercise with 31phosphorous magnetic resonance spectroscopy. High resolution respirometry of vastus lateralis muscle tissue was used to assess ex-vivo measures. RESULTS: In-vivo data showed higher rates of anaerobic glycolysis (p = 0.013), and a lower maximal mitochondrial oxidative capacity (p = 0.012) and mitochondrial efficiency (p = 0.024) in adults with type 1 diabetes. After adjustment for age and percent body fat maximal mitochondrial capacity (p = 0.014) continued to be lower and anaerobic glycolysis higher (p = 0.040) in adults with type 1 diabetes. Ex-vivo data did not demonstrate significant differences between the two groups. CONCLUSIONS: The in-vivo analysis demonstrates that adults with type 1 diabetes have mitochondrial dysfunction. This builds on previous research showing in-vivo mitochondrial dysfunction in youths with type 1 diabetes and suggests that defects in substrate or oxygen delivery may play a role in in-vivo dysfunction.


Subject(s)
Diabetes Mellitus, Type 1 , Mitochondria, Muscle , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/physiopathology , Adult , Male , Female , Middle Aged , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Glycolysis/physiology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/physiopathology , Mitochondrial Diseases/complications , Case-Control Studies , Magnetic Resonance Spectroscopy , Young Adult , Exercise/physiology
11.
Arch Biochem Biophys ; 758: 110083, 2024 08.
Article in English | MEDLINE | ID: mdl-38969196

ABSTRACT

Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.


Subject(s)
Fibromyalgia , Muscle, Skeletal , Oxidative Stress , Rats, Sprague-Dawley , Fibromyalgia/metabolism , Fibromyalgia/chemically induced , Fibromyalgia/pathology , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Rats , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Male , Mitochondria/metabolism , Mitochondria/drug effects , Antioxidants/metabolism
12.
Am J Physiol Cell Physiol ; 327(3): C684-C697, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39010842

ABSTRACT

Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Lipid Droplets , Mice, Inbred C57BL , Muscle, Skeletal , Animals , Cachexia/metabolism , Cachexia/pathology , Cachexia/etiology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/complications , Lipid Droplets/metabolism , Lipid Droplets/pathology , Mice , Lipid Metabolism , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondria, Muscle/ultrastructure , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/ultrastructure
13.
Methods Mol Biol ; 2816: 77-85, 2024.
Article in English | MEDLINE | ID: mdl-38977590

ABSTRACT

Skeletal muscle is one of the largest tissues in human body. Besides enabling voluntary movements and maintaining body's metabolic homeostasis, skeletal muscle is also a target of many pathological conditions. Mitochondria occupy 10-15% volume of a muscle myofiber and regulate many cellular processes, which often determine the fate of the cell. Isolation of mitochondria from skeletal muscle provides opportunities for various multi-omics studies with a focus on mitochondria in biomedical research field. Here we describe a protocol to efficiently isolate mitochondria with high quality and purity from skeletal muscle of mice using Nycodenz density gradient ultracentrifugation.


Subject(s)
Cell Fractionation , Centrifugation, Density Gradient , Mitochondria, Muscle , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Cell Fractionation/methods , Centrifugation, Density Gradient/methods
14.
Am J Physiol Cell Physiol ; 327(3): C619-C633, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981606

ABSTRACT

Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.


Subject(s)
Citric Acid Cycle , Fatty Acids , Lactic Acid , Mice, Inbred C57BL , Muscle, Skeletal , Obesity , Oxidation-Reduction , Animals , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Citric Acid Cycle/drug effects , Lactic Acid/metabolism , Obesity/metabolism , Mice , Male , Energy Metabolism , Diet, High-Fat/adverse effects , Mitochondria, Muscle/metabolism , Mice, Obese , Physical Conditioning, Animal , Cell Respiration , Mitochondria/metabolism
15.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063031

ABSTRACT

Excessive calorie intake leads to mitochondrial overload and triggers metabolic inflexibility and insulin resistance. In this study, we examined how attenuated p38α activity affects glucose and fat metabolism in the skeletal muscles of mice on a high-fat diet (HFD). Mice exhibiting diminished p38α activity (referred to as p38αAF) gained more weight and displayed elevated serum insulin levels, as well as a compromised response in the insulin tolerance test, compared to the control mice. Additionally, their skeletal muscle tissue manifested impaired insulin signaling, leading to resistance in insulin-mediated glucose uptake. Examination of muscle metabolites in p38αAF mice revealed lower levels of glycolytic intermediates and decreased levels of acyl-carnitine metabolites, suggesting reduced glycolysis and ß-oxidation compared to the controls. Additionally, muscles of p38αAF mice exhibited severe abnormalities in their mitochondria. Analysis of myotubes derived from p38αAF mice revealed reduced mitochondrial respiratory capacity relative to the myotubes of the control mice. Furthermore, these myotubes showed decreased expression of Acetyl CoA Carboxylase 2 (ACC2), leading to increased fatty acid oxidation and diminished inhibitory phosphorylation of pyruvate dehydrogenase (PDH), which resulted in elevated mitochondrial pyruvate oxidation. The expected consequence of reduced mitochondrial respiratory function and uncontrolled nutrient oxidation observed in p38αAF myotubes mitochondrial overload and metabolic inflexibility. This scenario explains the increased likelihood of insulin resistance development in the muscles of p38αAF mice compared to the control mice on a high-fat diet. In summary, within skeletal muscles, p38α assumes a crucial role in orchestrating the mitochondrial adaptation to caloric surplus by promoting mitochondrial biogenesis and regulating the selective oxidation of nutrients, thereby preventing mitochondrial overload, metabolic inflexibility, and insulin resistance.


Subject(s)
Diet, High-Fat , Insulin Resistance , Mitogen-Activated Protein Kinase 14 , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/metabolism , Diet, High-Fat/adverse effects , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Male , Mitochondria/metabolism , Insulin/metabolism , Insulin/blood , Oxidation-Reduction , Adaptation, Physiological , Glucose/metabolism , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism
16.
Curr Nutr Rep ; 13(3): 500-515, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976215

ABSTRACT

PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.


Subject(s)
Caloric Restriction , Mitochondria, Muscle , Muscle, Skeletal , Obesity , Resveratrol , Humans , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Resveratrol/pharmacology , Animals , Adaptation, Physiological , Fatty Acids, Omega-3 , Diet , Energy Metabolism , Mitochondria/metabolism
17.
Acta Physiol (Oxf) ; 240(9): e14208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39077881

ABSTRACT

AIM: Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency. METHODS: We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export. RESULTS: [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 µmoles/L fiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 µmoles/L fiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium. CONCLUSIONS: The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.


Subject(s)
Calcium , Cytosol , Mice, Knockout , Parvalbumins , Animals , Parvalbumins/metabolism , Cytosol/metabolism , Calcium/metabolism , Mice , Muscle Fibers, Fast-Twitch/metabolism , Mitochondria, Muscle/metabolism , Mice, Inbred C57BL , Sarcoplasmic Reticulum/metabolism , Mitochondria/metabolism , Male , Muscle Contraction/physiology , Muscle, Skeletal/metabolism
18.
Acta Physiol (Oxf) ; 240(9): e14203, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023008

ABSTRACT

AIM: The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM). METHODS: Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy. RESULTS: Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM. CONCLUSION: The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.


Subject(s)
Mitophagy , Muscle, Skeletal , Humans , Mitophagy/physiology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Adult , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Resistance Training , Young Adult , Membrane Proteins/metabolism
19.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946587

ABSTRACT

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Subject(s)
Cachexia , Muscle Fibers, Skeletal , Oxidative Stress , Sirtuin 1 , Animals , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Cachexia/prevention & control , Sirtuin 1/metabolism , Sirtuin 1/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Mice , Oxidative Stress/drug effects , Mice, Inbred C57BL , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/complications , Male , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/pathology , Cell Line , Niacin/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism
20.
Poult Sci ; 103(9): 104034, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003798

ABSTRACT

Heat stress induces mitochondrial dysfunction, thereby impeding skeletal muscle development and significantly impacting the economic efficiency of poultry production. This study aimed to investigate the effects of embryo thermal manipulation (TM, 41.5°C, 65% RH, 3 h/d during 16-18th embryonic age) on the mitochondrial function of the pectoralis major (PM) in broiler chickens exposed to thermoneutral (24 ± 1°C, 60% RH) or cyclic heat stress (35 ± 1°C, 60% RH, 12 h/d) from day 22 to 28, and to explore potential mechanisms involving transient receptor potential V2 (TRPV2). Additionally, in vitro experiments were conducted to assess the regulatory effects of TRPV2 pharmacological activation and inhibition on mitochondrial function in primary myotubes. The results revealed that TM had no discernible effect on the body weight and feed intake of broiler chickens under heat stress conditions (P > 0.05). However, it did delay the increase in rectal temperature and accelerate the decrease in serum T3 levels (P < 0.05). Furthermore, TM promoted the development of PM muscle fibers, significantly increasing myofiber diameter and cross-sectional area (P < 0.05). Under heat stress conditions, TM significantly upregulated the expression of mitochondrial electron transport chain (ETC) genes and TRPV2 in broiler PM muscle (P < 0.05), with a clear positive correlation observed between the two (P < 0.05). In vitro, pharmacological activation of TRPV2 not only increased its own expression but also enhanced mitochondrial ETC genes expression and oxidative phosphorylation function by upregulating intracellular calcium ion levels (P < 0.05). Conversely, TRPV2 inhibition had the opposite effect. Overall, this study underscores the potential of prenatal thermal manipulation in regulating postnatal broiler skeletal muscle development and mitochondrial function through the modulation of TRPV2 expression.


Subject(s)
Chickens , Heat-Shock Response , TRPV Cation Channels , Animals , Chickens/physiology , Chick Embryo , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Heat-Shock Response/physiology , Mitochondria/metabolism , Mitochondria/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Avian Proteins/metabolism , Avian Proteins/genetics , Hot Temperature , Mitochondria, Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL