Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Neurology ; 101(3): e238-e252, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37268435

ABSTRACT

BACKGROUND AND OBJECTIVES: Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS: After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS: Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION: Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS: gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy.


Subject(s)
Mitochondrial Myopathies , Quality of Life , Humans , Female , Middle Aged , Male , Merozoite Surface Protein 1/therapeutic use , Mitochondrial Myopathies/drug therapy , Fatigue , Double-Blind Method , Treatment Outcome
2.
Trials ; 23(1): 789, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36127727

ABSTRACT

BACKGROUND: Mitochondrial disease is a heterogenous group of rare, complex neurometabolic disorders. Despite their individual rarity, collectively mitochondrial diseases represent the most common cause of inherited metabolic disorders in the UK; they affect 1 in every 4300 individuals, up to 15,000 adults (and a similar number of children) in the UK. Mitochondrial disease manifests multisystem and isolated organ involvement, commonly affecting those tissues with high energy demands, such as skeletal muscle. Myopathy manifesting as fatigue, muscle weakness and exercise intolerance is common and debilitating in patients with mitochondrial disease. Currently, there are no effective licensed treatments and consequently, there is an urgent clinical need to find an effective drug therapy. AIM: To investigate the efficacy of 12-week treatment with acipimox on the adenosine triphosphate (ATP) content of skeletal muscle in patients with mitochondrial disease and myopathy. METHODS: AIMM is a single-centre, double blind, placebo-controlled, adaptive designed trial, evaluating the efficacy of 12 weeks' administration of acipimox on skeletal muscle ATP content in patients with mitochondrial myopathy. Eligible patients will receive the trial investigational medicinal product (IMP), either acipimox or matched placebo. Participants will also be prescribed low dose aspirin as a non-investigational medical product (nIMP) in order to protect the blinding of the treatment assignment. Eighty to 120 participants will be recruited as required, with an interim analysis for sample size re-estimation and futility assessment being undertaken once the primary outcome for 50 participants has been obtained. Randomisation will be on a 1:1 basis, stratified by Fatigue Impact Scale (FIS) (dichotomised as < 40, ≥ 40). Participants will take part in the trial for up to 20 weeks, from screening visits through to follow-up at 16 weeks post randomisation. The primary outcome of change in ATP content in skeletal muscle and secondary outcomes relating to quality of life, perceived fatigue, disease burden, limb function, balance and walking, skeletal muscle analysis and symptom-limited cardiopulmonary fitness (optional) will be assessed between baseline and 12 weeks. DISCUSSION: The AIMM trial will investigate the effect of acipimox on modulating muscle ATP content and whether it can be repurposed as a new treatment for mitochondrial disease with myopathy. TRIAL REGISTRATION: EudraCT2018-002721-29 . Registered on 24 December 2018, ISRCTN 12895613. Registered on 03 January 2019, https://www.isrctn.com/search?q=aimm.


Subject(s)
Mitochondrial Myopathies , Muscular Diseases , Adult , Child , Humans , Adenosine Triphosphate , Aspirin/therapeutic use , Fatigue , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/drug therapy , Pyrazines , Quality of Life , Randomized Controlled Trials as Topic
3.
BMC Infect Dis ; 22(1): 188, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209862

ABSTRACT

BACKGROUND: Mitochondrial myopathy caused by the long-term use of nucleos(t)ide analogue in patients with chronic hepatitis B (CHB) is mostly characterized by myasthenia and myalgia. Cases with respiratory failure as the prominent manifestation and multisystem symptoms have not been reported. CASE REPORT: We report a case of mitochondrial myopathy associated with the long-term use of entecavir for CHB. The patient was a 54-year-old male who was treated with entecavir for 9 years. During the treatment, hepatitis B virus (HBV) DNA was negative and liver function was normal. However, generalized fatigue, poor appetite, dysosmia and other discomforts gradually presented starting at the 5th year of treatment, and respiratory failure was the prominent manifestation in the later stage of disease progression. The diagnosis was based on histopathology examination. The dysosmia, hypoxemia and digestive tract symptoms were gradually improved after withdrawal of entecavir. DISCUSSION: Mitochondrial myopathy is a rare side effect of entecavir and can be diagnosed by muscle biopsy. Although the incidence is extremely low, but the severe cases can lead to respiratory failure. We should receive adequate attention in clinical practice.


Subject(s)
Hepatitis B, Chronic , Mitochondrial Myopathies , Respiratory Insufficiency , Antiviral Agents/adverse effects , Guanine/analogs & derivatives , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Humans , Male , Middle Aged , Mitochondrial Myopathies/chemically induced , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/drug therapy , Respiratory Insufficiency/drug therapy , Treatment Outcome
4.
J Inherit Metab Dis ; 44(5): 1186-1198, 2021 09.
Article in English | MEDLINE | ID: mdl-33934389

ABSTRACT

Mitochondrial myopathies (MM) are caused by mutations that typically affect genes involved in oxidative phosphorylation. Main symptoms are exercise intolerance and fatigue. Currently, there is no specific treatment for MM. Resveratrol (RSV) is a nutritional supplement that in preclinical studies has been shown to stimulate mitochondrial function. We hypothesized that RSV could improve exercise capacity in patients with MM. The study design was randomized, double-blind, cross-over and placebo-controlled. Eleven patients with genetically verified MM were randomized to receive either 1000 mg/day RSV or placebo (P) for 8 weeks followed by a 4-week washout and then the opposite treatment. Primary outcomes were changes in heart rate (HR) during submaximal cycling exercise and peak oxygen utilization (VO2 max) during maximal exercise. Secondary outcomes included reduction in perceived exertion, changes in lactate concentrations, self-rated function (SF-36) and fatigue scores (FSS), activities of electron transport chain complexes I and IV in mononuclear cells and mitochondrial biomarkers in muscle tissue among others. There were no significant differences in primary and secondary outcomes between treatments. Mean HR changes were -0.3 ± 4.3 (RSV) vs 1.8 ± 5.0 bpm (P), P = .241. Mean VO2 max changes were 0.7 ± 1.4 (RSV) vs -0.2 ± 2.3 mL/min/kg (P), P = .203. The study provides evidence that 1000 mg RSV daily is ineffective in improving exercise capacity in adults with MM. These findings indicate that previous in vitro studies suggesting a therapeutic potential for RSV in MM, do not translate into clinically meaningful effects in vivo.


Subject(s)
Mitochondrial Myopathies/drug therapy , Resveratrol/therapeutic use , Adult , Aged , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Resveratrol/pharmacology
5.
BMJ Case Rep ; 14(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431453

ABSTRACT

Mitochondrial diseases are rare, often go undiagnosed and can lead to devastating cascades of multisystem organ dysfunction. This report of a young woman with hearing loss and gestational diabetes illustrates a novel presentation of a cardiomyopathy caused by a previously described mutation in a mitochondrial gene, MT-TL1. She initially had biventricular heart dysfunction and ventricular arrhythmia that ultimately recovered with beta blockade and time. She continues to participate in sport without decline. It is important to keep mitochondrial diseases in the differential diagnosis and understand the testing and management strategies in order to provide the best patient care.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Cardiomyopathies/diagnosis , Mitochondrial Myopathies/diagnosis , RNA, Transfer, Leu/genetics , Tachycardia, Ventricular/genetics , Adult , Cardiomyopathies/complications , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Coronary Angiography , DNA Mutational Analysis , Diagnosis, Differential , Echocardiography , Female , Genetic Testing , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Magnetic Resonance Imaging , Martial Arts/physiology , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/drug therapy , Mitochondrial Myopathies/genetics , Mutation , Tachycardia, Ventricular/diagnosis , Treatment Outcome , Troponin/blood
6.
BMJ Open Respir Res ; 7(1)2020 11.
Article in English | MEDLINE | ID: mdl-33246973

ABSTRACT

BACKGROUND: Recessive mutations in the thymidine kinase 2 (TK2) gene cause a rare mitochondrial myopathy, frequently with severe respiratory involvement. Deoxynucleoside therapy is currently under investigation. RESEARCH QUESTION: What is the impact of nucleosides in respiratory function in patients with TK2-deficient myopathy? STUDY DESIGN AND METHODS: Retrospective observational study of patients treated with deoxycytidine and deoxythymidine. Evaluations were performed every 3 to 4 months after treatment during approximately 30 months. Forced vital capacity (FVC), maximuminspiratory and expiratory pressures (MIP/MEP), sniff nasal inspiratory pressure (SNIP), cough peak flow (CPF), arterial blood gas and nocturnal pulse oximeter (SpO2) were collected. RESULTS: We studied six patients, five of which were women, with a median age at onset of symptoms was 35.8 (range 5 to 60) years old. Patients presented a restrictive ventilatory pattern (median FVC of 50 (26 to 71)%) and severe neuromuscular respiratory weakness (MIP 38 (12 to 47)% and SNIP 14 (8 to 19) cmH2O). Four patients required ventilatory support before starting the treatment. FVC improved by 6%, proportion of sleep time with SpO2 <90% diminished from 14% to 0%, CPF increased by 23%, MEP increased by 73%, production and management of bronchial secretions improved and respiratory infections diminished. INTERPRETATION: Early detection of respiratory involvement requires an active search, even in asymptomatic patients. The nucleosides therapy may improve respiratory function, and stabilise the loss of respiratory capacity.


Subject(s)
Deoxycytidine , Mitochondrial Myopathies , Respiratory Muscles , Thymidine , Adolescent , Adult , Child , Child, Preschool , Deoxycytidine/therapeutic use , Female , Humans , Middle Aged , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/drug therapy , Mitochondrial Myopathies/genetics , Thymidine/therapeutic use , Thymidine Kinase/genetics , Vital Capacity , Young Adult
7.
J Clin Lipidol ; 14(5): 646-648, 2020.
Article in English | MEDLINE | ID: mdl-32800583

ABSTRACT

A 48-year-old man presented to our lipid clinic with statin intolerance and elevated serum creatine kinase levels, being affected by mitochondrial myopathy because of heteroplasmic mitochondrial DNA missense mutation in MTCO1 gene (m.7671T>A). He had just been treated with a coronary artery bypass 4 years before because of acute coronary syndrome, and he had consistently high levels of both low-density lipoprotein cholesterol and triglycerides. Dyslipidemia was successfully treated using 75 mg of alirocumab subcutaneously every 2 weeks, 10 mg of ezetimibe daily, 2 g of marine omega-3 fatty acids daily, and 145 mg of micronized fenofibrate every 2 days. Although muscle weakness persisted, myalgia did not reoccur and serum creatine kinase levels remained almost stable over the time.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Hyperlipidemias/drug therapy , Mitochondrial Myopathies/drug therapy , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Male , Middle Aged , Mitochondrial Myopathies/metabolism , Mitochondrial Myopathies/pathology , Mutation, Missense , Prognosis
8.
Cell Metab ; 31(6): 1041-1043, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492387

ABSTRACT

In this issue of Cell Metabolism, Pirinen et al. (2020) show that disruption in NAD+ homeostasis is a key component of the pathogenesis of mitochondrial myopathy in humans that can be targeted by the administration of the NAD+ precursor niacin, identifying NAD+ boosting as a potential treatment for this devastating disease.


Subject(s)
Mitochondrial Myopathies , Niacin , Adult , Homeostasis , Humans , Mitochondrial Myopathies/drug therapy , Muscles , NAD
9.
EMBO Mol Med ; 12(3): e11589, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32107855

ABSTRACT

Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.


Subject(s)
Bezafibrate/pharmacology , Mitochondria/metabolism , Mitochondrial Myopathies/drug therapy , Humans , Mitochondrial Myopathies/metabolism , Organelle Biogenesis
10.
J Cachexia Sarcopenia Muscle ; 11(4): 909-918, 2020 08.
Article in English | MEDLINE | ID: mdl-32096613

ABSTRACT

BACKGROUND: This study aims to evaluate the effect of subcutaneous (SC) elamipretide dosing on exercise performance using the 6 min walk test (6MWT), patient-reported outcomes measuring fatigue, functional assessments, and safety to guide the development of the Phase 3 trial. METHODS: MMPOWER-2 was a randomized, double-blind, placebo-controlled, crossover trial that enrolled participants (N = 30) with genetically confirmed primary mitochondrial myopathy. Participants were randomly assigned (1:1) to 40 mg/day SC elamipretide for 4 weeks followed by placebo SC for 4 weeks, separated by a 4-week washout period, or the opposite sequence. The primary endpoint was the distance walked on the 6MWT. RESULTS: The distance walked on the 6MWT by the elamipretide-treated participants was 398.3 (±134.16) meters compared with 378.5 (±125.10) meters in the placebo-treated group, a difference of 19.8 m (95% confidence interval, -2.8, 42.5; P = 0.0833). The results of the Primary Mitochondrial Myopathy Symptom Assessment Total Fatigue and Total Fatigue During Activities scores showed that participants treated with elamipretide reported less fatigue and muscle complaints compared with placebo (P = 0.0006 and P = 0.0018, respectively). Additionally, the Neuro-QoL Fatigue Short Form and Patient Global Assessment showed reductions in symptoms (P = 0.0115 and P = 0.0421, respectively). In this 4-week treatment period, no statistically significant change was observed in the Physician Global Assessment (P = 0.0636), the Triple Timed Up and Go (P = 0.8423) test, and wrist/hip accelerometry (P = 0.9345 and P = 0.7326, respectively). Injection site reactions were the most commonly reported adverse events with elamipretide (80%), the majority of which were mild. No serious adverse events or deaths were reported. CONCLUSIONS: Participants who received a short-course treatment of daily SC elamipretide for 4 weeks experienced a clinically meaningful change in the 6MWT, which did not achieve statistical significance as the primary endpoint of the study. Secondary endpoints were suggestive of an elamipretide treatment effect compared with placebo. Nominal statistically significant and clinically meaningful improvements were seen in patient-reported outcomes. The results of this trial provided an efficacy signal and data to support the initiation of MMPOWER-3, a 6-month long, Phase 3 treatment trial in patients with primary mitochondrial myopathy.


Subject(s)
Mitochondrial Myopathies/drug therapy , Oligopeptides/therapeutic use , Adolescent , Adult , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Oligopeptides/pharmacology , Young Adult
11.
Neurology ; 94(7): e687-e698, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31896620

ABSTRACT

OBJECTIVE: To investigate the safety and efficacy of escalating doses of the semi-synthetic triterpenoid omaveloxolone in patients with mitochondrial myopathy. METHODS: In cohorts of 8-13, 53 participants were randomized double-blind to 12 weeks of treatment with omaveloxolone 5, 10, 20, 40, 80, or 160 mg, or placebo. Outcome measures were change in peak cycling exercise workload (primary), in 6-minute walk test (6MWT) distance (secondary), and in submaximal exercise heart rate and plasma lactate (exploratory). RESULTS: No differences in peak workload or 6MWT were observed at week 12 with omaveloxolone treatment vs placebo for all omaveloxolone dose groups. In contrast, omaveloxolone 160 mg reduced heart rate at week 12 by 12.0 ± 4.6 bpm (SE) during submaximal exercise vs placebo, p = 0.01, and by 8.7 ± 3.5 bpm (SE) vs baseline, p = 0.02. Similarly, blood lactate was 1.4 ± 0.7 mM (SE) lower vs placebo, p = 0.04, and 1.6 ± 0.5 mM (SE) lower vs baseline at week 12, p = 0.003, with omaveloxolone 160 mg treatment. Adverse events were generally mild and infrequent. CONCLUSIONS: Omaveloxolone 160 mg was well-tolerated, and did not lead to change in the primary outcome measure, but improved exploratory endpoints lowering heart rate and lactate production during submaximal exercise, consistent with improved mitochondrial function and submaximal exercise tolerance. Therefore, omaveloxolone potentially benefits patients with mitochondrial myopathy, which encourages further investigations of omaveloxolone in this patient group. CLINICALTRIALSGOV IDENTIFIER: NCT02255422. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, for patients with mitochondrial myopathy, omaveloxolone compared to placebo did not significantly change peak exercise workload.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Mitochondrial Myopathies/drug therapy , Triterpenes/therapeutic use , Adult , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , Dose-Response Relationship, Drug , Double-Blind Method , Exercise , Exercise Test , Female , Heart Rate/drug effects , Humans , Lactic Acid/blood , Male , Middle Aged , Mitochondrial Myopathies/physiopathology , NF-E2-Related Factor 2/metabolism , Treatment Outcome , Triterpenes/adverse effects
12.
Curr Opin Neurol ; 32(5): 715-721, 2019 10.
Article in English | MEDLINE | ID: mdl-31408013

ABSTRACT

PURPOSE OF REVIEW: Although mitochondrial diseases impose a significant functional limitation in the lives of patients, treatment of these conditions has been limited to dietary supplements, exercise, and physical therapy. In the past few years, however, translational medicine has identified potential therapies for these patients. RECENT FINDINGS: For patients with primary mitochondrial myopathies, preliminary phase I and II multicenter clinical trials of elamipretide indicate safety and suggest improvement in 6-min walk test (6MWT) performance and fatigue scales. In addition, for thymidine kinase 2-deficient (TK2d) myopathy, compassionate-use oral administration of pyrimidine deoxynucleosides have shown preliminary evidence of safety and efficacy in survival of early onset patients and motor functions relative to historical TK2d controls. SUMMARY: The prospects of effective therapies that improve the quality of life for patients with mitochondrial myopathy underscore the necessity for definitive diagnoses natural history studies for better understanding of the diseases.


Subject(s)
Mitochondrial Myopathies/drug therapy , Oligopeptides/therapeutic use , Quality of Life , Clinical Trials as Topic , Exercise/physiology , Fatigue/physiopathology , Humans , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/physiopathology
14.
Pharmacol Res ; 138: 37-42, 2018 12.
Article in English | MEDLINE | ID: mdl-30267763

ABSTRACT

Mitochondrial myopathy (MM) is characterised by muscle weakness, exercise intolerance and various histopathological changes. Recently, a subset of MM has also been associated with aberrant activation of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle. This aberrant mTORC1 activation promotes increased de novo nucleotide synthesis, which contributes to abnormal expansion and imbalance of skeletal muscle deoxyribonucleoside triphosphates (dNTP) pools. However, the exact mechanism via which mTORC1-stimulated de novo nucleotide biosynthesis ultimately disturbs muscle dNTP pools remains unclear. In this article, it is proposed that mTORC1-stimulated de novo nucleotide synthesis in skeletal muscle cells with respiratory chain dysfunction promotes an asymmetric increase of purine nucleotides, probably due to NAD+ deficiency. This in turn could disrupt purine nucleotide-dependent allosteric feedback regulatory mechanisms, ultimately leading to dNTP pools aberration. Pharmacological down-modulation of aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) activity is also proposed as a potential therapeutic strategy in MM exhibiting mTORC1-driven abnormal metabolic reprogramming, including aberrant dNTPs pools.


Subject(s)
Mitochondrial Myopathies/metabolism , Purine Nucleotides/metabolism , Animals , Humans , Hydroxymethyl and Formyl Transferases/antagonists & inhibitors , Hydroxymethyl and Formyl Transferases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondrial Myopathies/drug therapy , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Nucleotide Deaminases/antagonists & inhibitors , Nucleotide Deaminases/metabolism
15.
Neurology ; 90(14): e1212-e1221, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29500292

ABSTRACT

OBJECTIVE: To assess the safety and efficacy of elamipretide, an aromatic-cationic tetrapeptide that readily penetrates cell membranes and transiently localizes to the inner mitochondrial membrane where it associates with cardiolipin, in adults with primary mitochondrial myopathy (PMM). METHODS: A Study Investigating the Safety, Tolerability, and Efficacy of MTP-131 for the Treatment of Mitochondrial Myopathy (MMPOWER) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial of elamipretide in 36 participants with genetically confirmed PMM. Participants were randomized to intravenous elamipretide (0.01, 0.1, and 0.25 mg/kg/h or placebo for 2 hours in a dose-escalating sequence). The primary efficacy measure was the change in distance walked in the 6-minute walk test (6MWT) after 5 days of treatment. Other efficacy measures included changes in cardiopulmonary exercise testing parameters, in participant-reported symptoms, and in serum and urinary biomarkers. Safety, tolerability, and pharmacokinetics were also measured. RESULTS: Participants who received the highest dose of elamipretide walked a mean of 64.5 m farther at day 5 compared to a change of 20.4 m in the placebo group (p = 0.053). In addition, there was a dose-dependent increase in distance walked on the 6MWT with elamipretide treatment (p = 0.014). In a model that adjusted for additional covariates possibly affecting response, the adjusted change for the highest dose of elamipretide was 51.2 vs 3.0 m in the placebo group (p = 0.0297). No significant differences were observed in other efficacy and safety endpoints. CONCLUSIONS: Elamipretide increased exercise performance after 5 days of treatment in patients with PMM without increased safety concerns. These findings, as well as additional functional and patient-reported measures, remain to be tested in larger trials with longer treatment periods to detect other potential therapeutic benefits in individuals affected by this condition. CLASSIFICATION OF EVIDENCE: This trial provides Class I evidence that for patients with PMM, elamipretide improved the distance walked on the 6MWT.


Subject(s)
Mitochondrial Myopathies/drug therapy , Neuromuscular Agents/administration & dosage , Oligopeptides/administration & dosage , Administration, Intravenous , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Male , Neuromuscular Agents/adverse effects , Oligopeptides/adverse effects , Treatment Outcome , Walk Test
17.
J Inherit Metab Dis ; 40(6): 831-843, 2017 11.
Article in English | MEDLINE | ID: mdl-28871440

ABSTRACT

BACKGROUND: Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. METHODS: A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. RESULTS: Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. CONCLUSIONS: C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT01379625.


Subject(s)
Caprylates/therapeutic use , Cardiomyopathies/drug therapy , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Myopathies/drug therapy , Mitochondrial Trifunctional Protein/deficiency , Nervous System Diseases/drug therapy , Rhabdomyolysis/drug therapy , Triglycerides/therapeutic use , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Adolescent , Adult , Cardiomyopathies/metabolism , Carnitine/metabolism , Child , Dietary Fats/metabolism , Double-Blind Method , Exercise/physiology , Female , Humans , Lipid Metabolism, Inborn Errors/metabolism , Male , Middle Aged , Mitochondrial Myopathies/metabolism , Mitochondrial Trifunctional Protein/metabolism , Nervous System Diseases/metabolism , Oxidation-Reduction , Rhabdomyolysis/metabolism , Young Adult
18.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R689-R701, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28179228

ABSTRACT

Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min-1·kg body wt-1, maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt-1·day-1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.


Subject(s)
Exercise , Mitochondria, Muscle/metabolism , Mitochondrial Myopathies/drug therapy , Mitochondrial Myopathies/physiopathology , Nitrates/administration & dosage , Oxygen Consumption/drug effects , Administration, Oral , Adult , Aged , Exercise Tolerance/drug effects , Female , Humans , Male , Middle Aged , Mitochondria, Muscle/drug effects , Muscle Strength/drug effects , Psychomotor Performance/drug effects , Treatment Outcome , Young Adult
19.
Eur J Neurol ; 24(4): 587-593, 2017 04.
Article in English | MEDLINE | ID: mdl-28181352

ABSTRACT

BACKGROUND AND PURPOSE: Most mitochondrial disorders with onset in early childhood are progressive and involve multiple organs. The m.3250T>C mutation in MTTL1 has previously been described in a few individuals with a possibly riboflavin-responsive myopathy and an association with sudden infant death syndrome was suspected. We describe a large family with this mutation and evaluate the effect of riboflavin treatment. METHODS: Medical data were collected with the help of a standardized data collection form. Sanger sequencing was used to screen for variants in mitochondrial DNA and the proportion of the mutation was analyzed in different tissues. Biochemical and muscle morphological investigations of muscle tissue were performed in two individuals. The effect of riboflavin treatment was evaluated in two individuals. RESULTS: Thirteen family members experienced exercise intolerance with fatigue and weakness. Inheritance was maternal with 100% penetrance. The course was either static or showed improvement over time. There was no evidence of other organ involvement except for a possible mild transient cardiac enlargement in one child. Muscle investigations showed isolated complex I deficiency and mitochondrial proliferation. The level of m.3250T>C was apparently 100%, i.e. homoplasmic, in all examined tissues. Riboflavin treatment showed no effect in any treated family member and there have been no cases of sudden infant death in this family. CONCLUSIONS: This study illustrates the importance of considering mitochondrial disorders in the work-up of individuals with exercise intolerance and provides a better understanding of the phenotype associated with the m.3250T>C mutation in MTTL1.


Subject(s)
DNA, Mitochondrial/genetics , Exercise Tolerance/genetics , Mitochondrial Myopathies/genetics , Mutation , RNA, Transfer/genetics , Adult , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mitochondria/genetics , Mitochondrial Myopathies/drug therapy , Pedigree , Phenotype , Riboflavin/therapeutic use , Vitamin B Complex/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...