Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Adv Appl Microbiol ; 129: 189-229, 2024.
Article in English | MEDLINE | ID: mdl-39389706

ABSTRACT

Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.


Subject(s)
Copper , Fungi , Homeostasis , Copper/metabolism , Fungi/metabolism , Fungi/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/metabolism , Fungal Proteins/genetics , Biological Transport , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Arch Microbiol ; 206(9): 373, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127787

ABSTRACT

Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.


Subject(s)
Fimbriae Proteins , Fimbriae, Bacterial , Gene Expression Regulation, Bacterial , Molecular Chaperones , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Bacterial Adhesion , Operon
3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000017

ABSTRACT

Extreme acidophilic bacteria like Leptospirillum sp. require an efficient enzyme system to counteract strong oxygen stress conditions in their natural habitat. The genome of Leptospirillum sp. CF-1 encodes the thioredoxin-fold protein TFP2, which exhibits a high structural similarity to the thioredoxin domain of E. coli CnoX. CnoX from Escherichia coli is a chaperedoxin that protects protein substrates from oxidative stress conditions using its holdase function and a subsequent transfer to foldase chaperones for refolding. Recombinantly produced and purified Leptospirillum sp. TFP2 possesses both thioredoxin and chaperone holdase activities in vitro. It can be reduced by thioredoxin reductase (TrxR). The tfp2 gene co-locates with genes for the chaperone foldase GroES/EL on the chromosome. The "tfp2 cluster" (ctpA-groES-groEL-hyp-tfp2-recN) was found between 1.9 and 8.8-fold transcriptionally up-regulated in response to 1 mM hydrogen peroxide (H2O2). Leptospirillum sp. tfp2 heterologously expressed in E. coli wild type and cnoX mutant strains lead to an increased tolerance of these E. coli strains to H2O2 and significantly reduced intracellular protein aggregates. Finally, a proteomic analysis of protein aggregates produced in E. coli upon exposition to oxidative stress with 4 mM H2O2, showed that Leptospirillum sp. tfp2 expression caused a significant decrease in the aggregation of 124 proteins belonging to fifteen different metabolic categories. These included several known substrates of DnaK and GroEL/ES. These findings demonstrate that Leptospirillum sp. TFP2 is a chaperedoxin-like protein, acting as a key player in the control of cellular proteostasis under highly oxidative conditions that prevail in extreme acidic environments.


Subject(s)
Bacterial Proteins , Oxidative Stress , Thioredoxins , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Thioredoxins/metabolism , Thioredoxins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Aggregates , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Bacterial
4.
PeerJ ; 12: e17336, 2024.
Article in English | MEDLINE | ID: mdl-38784397

ABSTRACT

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Molecular Chaperones , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/immunology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Virulence Factors/genetics , Virulence Factors/immunology , Male , Middle Aged , Adult
5.
PeerJ ; 12: e17069, 2024.
Article in English | MEDLINE | ID: mdl-38549779

ABSTRACT

In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Bacterial Proteins/genetics , Molecular Chaperones/genetics , Salmonella typhimurium/genetics , Amino Acids/metabolism , DNA/metabolism
6.
Biochimie ; 213: 123-129, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37244380

ABSTRACT

The imbalance in metal homeostasis can be associated with several human diseases, and exposure to increasing concentrations of metals promotes cell stress and toxicity. Therefore, understanding the cytotoxic effect of metal imbalance is important to unravel the biochemical mechanism of homeostasis and the action of potential protective proteins against metal toxicity. Several studies, including gene deletion in yeast, provide evidence indicating the possible indirect involvement of cochaperones from the Hsp40/DNAJA family in metal homeostasis, possibly through modulating the activity of Hsp 70.This work first investigated the effect of zinc and copper on the conformation and function of the human Hsp40 cochaperone DNAJA1, a zinc-binding protein. DNAJA1 was capable to complement the phenotype of a yeast strain deleted of the ydj1 gene, which was more sensitive to the presence of zinc and copper than the wild-type strain. To gain further insight about the role of the DNAJA family in metal binding, the recombinant human DNAJA1 protein was studied. Zinc removal from DNAJA1 affected both its stability and ability to act as a chaperone, i.e., to protect other proteins from aggregation. The reintroduction of zinc restored the native properties of DNAJA1 and, surprisingly, the addition of copper partially restored the native properties.


Subject(s)
Copper , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Zinc/pharmacology , HSP40 Heat-Shock Proteins/chemistry , Molecular Chaperones/genetics , HSP70 Heat-Shock Proteins/metabolism
7.
J Leukoc Biol ; 113(1): 1-10, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36822163

ABSTRACT

Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.


Subject(s)
COVID-19 , Endoplasmic Reticulum Chaperone BiP , Humans , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Leukocytes, Mononuclear/metabolism , COVID-19/metabolism , Molecular Chaperones/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress
8.
Biochimie ; 187: 131-143, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34082040

ABSTRACT

SGTs (small glutamine-rich TPR-containing proteins) are dimeric proteins that belong to the class of co-chaperones characterized by the presence of TPR domains (containing tetratricopeptide repeats). Human (SGTA) and yeast (Sgt2) SGTs are characterized by three distinct domains: an N-terminal dimerization domain, a central TPR-domain important for binding to other proteins (chaperones included) and a C-terminal domain involved in hydrophobic interactions. Both these SGTs are involved in the cellular PQC (protein quality control) system, as they interact with chaperones and have functions that aid stress recovery. However, there are differences between them, such as structural features and binding specificities, that could be better understood if other orthologous proteins were studied. Therefore, we produced and characterized a putative SGT protein, designated AaSGT, from the mosquito Aedes aegypti, which is a vector of several diseases, such as dengue and Zika. The protein was produced as a folded dimer which was stable up to 40 °C and was capable of binding to AaHsp90 and fully protecting a model protein, α-synuclein, from aggregation. The conformation of AaSGT was investigated by biophysical tools and small angle X-ray scattering, which showed that the protein had an elongated conformation and that its C-terminal domain was mainly disordered. The results with a C-terminal deletion mutant supported these observations. Altogether, these results are consistent with those from other functional SGT proteins and add to the understanding of the PQC system in Aedes aegypti, an important aim that may help to develop inhibitory strategies against this vector of neglected diseases.


Subject(s)
Aedes/chemistry , Insect Proteins/chemistry , Molecular Chaperones/chemistry , Protein Multimerization , Aedes/genetics , Aedes/metabolism , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Microb Pathog ; 154: 104857, 2021 May.
Article in English | MEDLINE | ID: mdl-33762200

ABSTRACT

Chaperone-usher (CU) fimbriae are surface organelles particularly prevalent among the Enterobacteriaceae. Mainly associated to their adhesive properties, CU fimbriae play key roles in biofilm formation and host cell interactions. Little is known about the fimbriome composition of the opportunistic human pathogen Serratia marcescens. Here, by using a search based on consensus fimbrial usher protein (FUP) sequences, we identified 421 FUPs across 39 S. marcescens genomes. Further analysis of the FUP-containing loci allowed us to classify them into 20 conserved CU operons, 6 of which form the S. marcescens core CU fimbriome. A new systematic nomenclature is proposed according to FUP sequence phylogeny. We also established an in vivo transcriptional assay comparing CU promoter expression between an environmental and a clinical isolate of S. marcescens, which revealed that promoters from 3 core CU operons (referred as fgov, fpo, and fps) are predominantly expressed in the two strains and might represent key core adhesion appendages contributing to S. marcescens pathogenesis.


Subject(s)
Fimbriae, Bacterial , Serratia marcescens , Fimbriae, Bacterial/genetics , Humans , Molecular Chaperones/genetics , Operon , Phylogeny , Serratia marcescens/genetics
10.
Rev. chil. endocrinol. diabetes ; 14(4): 159-165, 2021. tab, ilus
Article in Spanish | LILACS | ID: biblio-1344801

ABSTRACT

La diabetes Tipo 1 (DT1) es una compleja enfermedad autoinmune con una etiología aún desconocida. La vitamina D ha sido ampliamente estudiada debido a su potencial terapéutico en los potenciales nuevos casos de DT1. Por otra parte, los microARNs (miRs) han sido propuestos como posibles biomarcadores en diversos procesos biológicos como en la apoptosis e inflamación. El objetivo de este estudio fue evaluar el efecto de la suplementación con vitamina D sobre el perfil de expresión del miR-21 y marcadores de apoptosis tales como: BCL2, STAT3, TIPE2 y DAXX, en células mononucleares periféricas provenientes de pacientes con DT1 y sujetos controles. RESULTADOS: El perfil de expresión de miR-21 se encontró disminuido en los pacientes con DT1 en comparación con los controles. La expresión relativa de BCL2 se encontró aumentada en controles al comparar con pacientes DT1 en todas las condiciones experimentales. La expresión relativa de DAXX mostró un perfil de expresión diferencial al comparar pacientes con DT1 versus controles (p=0.006). CONCLUSIÓN: El estímulo con vitamina D parece tener un posible efecto regulador sobre los genes BCL2 y DAXX.


Type 1 diabetes (T1D) is a complex chronic autoimmune disease. Vitamin D has been one of the most studied therapeutic potential outbreaks related to T1D. Specific miRNAs have been proposed as potential biomarkers in several biological processes as apoptosis and inflammation. The aim of this study was to evaluate the effect of vitamin D on the expression profiles of miR-21 and apoptotic markers BCL2, STAT3, TIPE2 and DAXX, in PBMCs from T1D patients and control subjects. RESULTS: miR-21 expression was increased in controls regarding T1D patients. BCL2 was increased in controls compared to T1D patients in all experimental conditions. DAXX showed different expression patterns between T1D patients and controls (p=0.006). CONCLUSION: Vitamin D showed a possible regulation effect on apoptosis markers mainly through the regulation of BCL2 and DAXX


Subject(s)
Humans , Child , Adolescent , Vitamin D/administration & dosage , Apoptosis , Diabetes Mellitus, Type 1/metabolism , Vitamin D/metabolism , Biomarkers , Molecular Chaperones/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Co-Repressor Proteins/drug effects , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Glucose/administration & dosage
11.
Cells ; 9(9)2020 09 22.
Article in English | MEDLINE | ID: mdl-32971884

ABSTRACT

The cell cycle involves a network of proteins that modulate the sequence and timing of proliferation events. Unregulated proliferation is the most fundamental hallmark of cancer; thus, changes in cell cycle control are at the heart of malignant transformation processes. Several cellular processes can interfere with the cell cycle, including autophagy, the catabolic pathway involved in degradation of intracellular constituents in lysosomes. According to the mechanism used to deliver cargo to the lysosome, autophagy can be classified as macroautophagy (MA), microautophagy (MI), or chaperone-mediated autophagy (CMA). Distinct from other autophagy types, CMA substrates are selectively recognized by a cytosolic chaperone, one-by-one, and then addressed for degradation in lysosomes. The function of MA in cell cycle control, and its influence in cancer progression, are already well-established. However, regulation of the cell cycle by CMA, in the context of tumorigenesis, has not been fully addressed. This review aims to present and debate the molecular mechanisms by which CMA can interfere in the cell cycle, in the context of cancer. Thus, cell cycle modulators, such as MYC, hypoxia-inducible factor-1 subunit alpha (HIF-1α), and checkpoint kinase 1 (CHK1), regulated by CMA activity will be discussed. Finally, the review will focus on how CMA dysfunction may impact the cell cycle, and as consequence promote tumorigenesis.


Subject(s)
Carcinogenesis/genetics , Cell Cycle Checkpoints/genetics , Chaperone-Mediated Autophagy/genetics , Gene Expression Regulation, Neoplastic , Molecular Chaperones/genetics , Neoplasms/genetics , Autophagy/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Disease Progression , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysosomes/metabolism , Molecular Chaperones/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
12.
Biomolecules ; 10(7)2020 06 28.
Article in English | MEDLINE | ID: mdl-32605172

ABSTRACT

The purpose of this study was to analyze in vitro the biological effects on human dental pulp stem cells triggered in response to substances leached or dissolved from two experimental cements for dental pulp capping. The experimental materials, based on extracts from Copaifera reticulata Ducke (COP), were compared to calcium hydroxide [Ca(OH)2] and mineral trioxide aggregate (MTA), materials commonly used for direct dental pulp capping in restorative dentistry. For this, human dental pulp stem cells were exposed to COP associated or not with Ca(OH)2 or MTA. Cell cytocompatibility, migration, and differentiation (mineralized nodule formation (Alizarin red assay) and gene expression (RT-qPCR) of OCN, DSPP, and HSP-27 (genes regulated in biomineralization events)) were evaluated. The results showed that the association of COP reduced the cytotoxicity of Ca(OH)2. Upregulations of the OCN, DSPP, and HSP-27 genes were observed in response to the association of COP to MTA, and the DSPP and HSP-27 genes were upregulated in the Ca(OH)2 + COP group. In up to 24 h, cell migration was significantly enhanced in the MTA + COP and Ca(OH)2 + COP groups. In conclusion, the combination of COP with the currently used materials for dental pulp capping [Ca(OH)2 and MTA] improved the cell activities related to pulp repair (i.e., cytocompatibility, differentiation, mineralization, and migration) including a protective effect against the cytotoxicity of Ca(OH)2.


Subject(s)
Aluminum Compounds/pharmacology , Calcium Compounds/pharmacology , Calcium Hydroxide/pharmacology , Dental Pulp/cytology , Oxides/pharmacology , Plant Preparations/pharmacology , Silicates/pharmacology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Dental Pulp/chemistry , Dental Pulp/drug effects , Drug Combinations , Extracellular Matrix Proteins/genetics , Gene Expression Regulation/drug effects , Heat-Shock Proteins/genetics , Humans , Molecular Chaperones/genetics , Osteocalcin/genetics , Phosphoproteins/genetics , Sialoglycoproteins/genetics , Stem Cells/chemistry , Stem Cells/cytology , Stem Cells/drug effects
13.
Free Radic Biol Med ; 156: 99-106, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32502516

ABSTRACT

Large-size subunit catalases (LSCs) have a C-terminal domain that is structurally similar to DJ-1 and Hsp31 proteins, which have well documented molecular chaperone activity. Like chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in different microorganisms. Here we document that the C-terminal domain of LSCs assist other proteins to preserve their active conformation. Heat, urea, or H2O2 denaturation of alcohol dehydrogenase was prevented by LSCs or the C-terminal domain of Catalase-3 (TDC3); in contrast, small-size subunit catalases (SSCs) or LSCs without the C-terminal domain (C3ΔTD or C63) did not have this effect. Similar results were obtained if the alcohol dehydrogenase was previously denatured by heat and then the different catalases or truncated enzymes were added. The TDC3 also protected both the C3ΔTD and the bovine liver catalase from heat denaturation. The chaperone activity of CAT-3 or the TDC3 increased survival of E. coli under different stress conditions whereas the C3ΔTD did not. It is concluded that the C-terminal domain of LSCs has a chaperone activity that is instrumental for cellular resistance to stress conditions, such as oxidative stress that leads to cell differentiation in filamentous fungi.


Subject(s)
Escherichia coli , Hydrogen Peroxide , Animals , Catalase/genetics , Catalase/metabolism , Cattle , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Folding
14.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397263

ABSTRACT

Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.


Subject(s)
Anticarcinogenic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Catechin/analogs & derivatives , Cell Death/drug effects , Cell Proliferation/drug effects , Combined Modality Therapy/methods , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Aminolevulinic Acid/analogs & derivatives , Aminolevulinic Acid/pharmacology , Carcinoma, Squamous Cell/radiotherapy , Catechin/pharmacology , Cell Death/radiation effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Hypoxia/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Ferrochelatase/genetics , Ferrochelatase/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Photosensitizing Agents/metabolism , Protoporphyrins/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/radiotherapy , Stress, Physiological/drug effects , Stress, Physiological/genetics , Stress, Physiological/radiation effects , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Survivin/genetics , Survivin/metabolism , Symporters/genetics , Symporters/metabolism
15.
Sci Rep ; 10(1): 1458, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31996719

ABSTRACT

Importin-α (Impα) is an adaptor protein that binds to cargo proteins (containing Nuclear Localization Sequences - NLSs), for their translocation to the nucleus. The specificities of the Impα/NLS interactions have been studied, since these features could be used as important tools to find potential NLSs in nuclear proteins or even for the development of targets to inhibit nuclear import or to design peptides for drug delivery. Few structural studies have compared different Impα variants from the same organism or Impα of different organisms. Previously, we investigated nuclear transport of transcription factors with Neurospora crassa Impα (NcImpα). Herein, NIT-2 and PAC-3 transcription factors NLSs were studied in complex with Mus musculus Impα (MmImpα). Calorimetric assays demonstrated that the PAC-3 NLS peptide interacts with both Impα proteins with approximately the same affinity. The NIT-2 NLS sequence binds with high affinity to the Impα major binding site from both organisms, but its binding to minor binding sites reveals interesting differences due to the presence of additional interactions of NIT-2-NLS with MmImpα. These findings, together with previous results with Impα from other organisms, indicate that the differential affinity of NLSs to minor binding sites may be also responsible for the selectivity of some cargo proteins recognition and transport.


Subject(s)
Cell Nucleus/metabolism , Mice/physiology , alpha Karyopherins/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Animals , Crystallization , Crystallography, X-Ray , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurospora crassa/physiology , Nuclear Localization Signals/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Transport , Transcription, Genetic , alpha Karyopherins/genetics
16.
FEBS J ; 287(4): 749-762, 2020 02.
Article in English | MEDLINE | ID: mdl-31348612

ABSTRACT

The assembly of the CuA site in Cytochrome c Oxidase (COX) is a critical step for aerobic respiration in COX-dependent organisms. Several gene products have been associated with the assembly of this copper site, the most conserved of them belonging to the Sco family of proteins, which have been shown to perform different roles in different organisms. Plants express two orthologs of Sco proteins: Hcc1 and Hcc2. Hcc1 is known to be essential for plant development and for COX maturation, but its precise function has not been addressed until now. Here, we report the biochemical, structural and functional characterization of Arabidopsis thaliana Hcc1 protein (here renamed Sco1). We solved the crystal structure of the Cu+1 -bound soluble domain of this protein, revealing a tri coordinated environment involving a CxxxCxn H motif. We show that AtSco1 is able to work as a copper metallochaperone, inserting two Cu+1 ions into the CuA site in a model of CoxII. We also show that AtSco1 does not act as a thiol-disulfide oxido-reductase. Overall, this information sheds new light on the biochemistry of Sco proteins, highlighting the diversity of functions among them despite their high structural similarities. DATABASE: PDB entry 6N5U (Crystal structure of Arabidopsis thaliana ScoI with copper bound).


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Copper Transport Proteins/chemistry , Copper/chemistry , Electron Transport Complex IV/chemistry , Mitochondrial Proteins/chemistry , Molecular Chaperones/chemistry , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Cloning, Molecular , Copper/metabolism , Copper Transport Proteins/genetics , Copper Transport Proteins/metabolism , Crystallography, X-Ray , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermus thermophilus/chemistry
17.
NPJ Syst Biol Appl ; 5: 26, 2019.
Article in English | MEDLINE | ID: mdl-31396396

ABSTRACT

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated inflammatory response to pathogens. Bioinformatics and transcriptomics studies contribute to get a better understanding of the pathogenesis of sepsis. These studies revealed differentially expressed genes (DEGs) in sepsis involved in several pathways. Here we investigated the gene expression profiles of blood leukocytes using three microarray datasets of sepsis secondary to pneumonia, focusing on the heme/hemoglobin metabolism pathway. We demonstrate that the heme/hemoglobin metabolism pathway was found to be enriched in these three cohorts with four common genes (ALAS2, AHSP, HBD, and CA1). Several studies show that these four genes are involved in the cytoprotection of non-erythrocyte cells in response to different stress conditions. The upregulation of heme/hemoglobin metabolism in sepsis might be a protective response of white cells to the hostile environment present in septic patients (follow-up samples).


Subject(s)
Heme/metabolism , Hemoglobins/metabolism , Sepsis/genetics , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Gene Ontology , Heme/genetics , Hemoglobin Subunits/genetics , Hemoglobin Subunits/metabolism , Hemoglobins/genetics , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Pneumonia/complications , Pneumonia/genetics , Sepsis/blood , Sepsis/metabolism , Transcriptome/genetics
18.
Chem Res Toxicol ; 32(7): 1441-1448, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31243981

ABSTRACT

The influence of pesticide exposure in alteration of DNA methylation patterns of specific genes is still limited, specifically in natural antisense transcripts (NAT), such as the WRAP53α gene. The aim of this study was to determine the methylation of the WRAP53α gene in mestizo and indigenous populations as well as its relationship with internal (age, sex, and body mass index) and external factors (pesticide exposure and micronutrient intake). A cross-sectional study was conducted including 91 mestizo individuals without occupational exposure to pesticides, 164 mestizo urban sprayers and 189 indigenous persons without occupational exposure to pesticides. Acute pesticide exposure was evaluated by measurement of urinary dialkylphosphate (DAP) concentration by gas chromatograph coupled to a mass spectrometer. Anthropometric characteristics, unhealthy habits, and chronic pesticide exposure were assessed using a structured questionnaire. The frequency of macro- and micronutrient intake was determined using SNUT software. DNA methylation of the WRAP53α gene was determined by pyrosequencing of bisulfite-modified DNA. The mestizo sprayers group had the higher values of %5mC. In addition, this group had the most DAP urinary concentration with respect to the indigenous and reference groups. Bivariate analysis showed an association between %5mC of the WRAP53α gene with micronutrient intake and pesticide exposure in mestizo sprayers, whereas changes in %5mC of the WRAP53α gene was associated with body mass index in the indigenous group. These data suggest that the %5mC of the WRAP53α gene can be influenced by pesticide exposure and ethnicity in the study population, and changes in the WRAP53α gene might cause an important cell process disturbance.


Subject(s)
DNA Methylation/drug effects , DNA/metabolism , Molecular Chaperones/genetics , Organophosphates/toxicity , Pesticides/toxicity , Telomerase/genetics , Adult , Cross-Sectional Studies , DNA/blood , Female , Fumigation/adverse effects , Humans , Male , Mexico , Occupational Exposure/analysis , Organophosphates/urine
19.
J Ind Microbiol Biotechnol ; 46(7): 925-936, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30963327

ABSTRACT

The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe-S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe-S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15-20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe-S clusters dependent proteins.


Subject(s)
Ethanol/metabolism , Homeostasis , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Fermentation , Iron/metabolism , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Superoxides/metabolism
20.
J Leukoc Biol ; 105(5): 999-1013, 2019 05.
Article in English | MEDLINE | ID: mdl-30791148

ABSTRACT

Due to their increasing rates of morbidity and mortality, childhood malignancies are considered a global health priority, with acute lymphoblastic leukemias (ALLs) showing the highest incidence worldwide. Control of malignant clone emergence and the subsequent normal-leukemic hematopoietic cell out-competition require antitumor monitoring mechanisms. Investigation of cancer surveillance innate cells may be critical to understand the mechanisms contributing in either disease progression or relapse, and to promote displacement of leukemic hematopoiesis by the normal counterpart. We report here that NK cell production is less and low hematopoietic progenitor numbers contribute to this defect. By investigating the expression of the activation molecule class I restricted T-cell associated molecule (CRTAM) along the hematopoietic lineage differentiation pathway, we have identified lymphoid precursor populations coexpressing CD34, CD56/CD3/CD19, and CRTAM as the earliest developmental stage where activation may take place in specialized niches that display the ligand nectin-like-2. Of note, bone marrow (BM) from patients with ALL revealed high contents of preactivated CD56high NK cells expressing CRTAM and endowed with an exhaustion-like phenotype and the functional capability of producing IL-10 and TGF-ß in vitro. Our findings suggest, for the first time, that the tumor microenvironment in ALL directly contribute to exhaustion of NK cell functions by the CRTAM/Necl-2 interaction, and that the potential regulatory role of exhausted-like NK cells may favor malignant progression at the expense of anti-tumor responses. Phenotypic and functional identity of this unique suppressor-like NK cell population within the leukemic BM would be of special interest for the pathobiology of ALL and development of targeting strategies.


Subject(s)
Bone Marrow/immunology , Cell Adhesion Molecule-1/genetics , Extracellular Matrix Proteins/genetics , Killer Cells, Natural/immunology , Molecular Chaperones/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Microenvironment/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Bone Marrow/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Adhesion Molecule-1/immunology , Cell Differentiation , Child , Coculture Techniques , Cytotoxicity, Immunologic , Extracellular Matrix Proteins/immunology , Gene Expression Regulation , Humans , Immunologic Surveillance , Immunophenotyping , Interleukin-10/genetics , Interleukin-10/immunology , K562 Cells , Killer Cells, Natural/pathology , Lymphocyte Activation , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Molecular Chaperones/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Primary Cell Culture , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL