Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.376
Filter
1.
Pestic Biochem Physiol ; 201: 105889, 2024 May.
Article in English | MEDLINE | ID: mdl-38685220

ABSTRACT

Amprolium (AMP) is an organic compound used as a poultry anticoccidiostat. The aim of this work is to repurpose AMP to control the land snail, Eobania vermiculata in the laboratory and in the field. When snails treated with ½ LC50 of AMP, the levels of alkaline phosphatase (ALP), total lipids (TL), urea, creatinine, malondialdehyde (MDA), catalase (CAT), and nitric oxide (NO) were significantly increased, whereas the levels of acetylcholinesterase (AChE), total protein (TP), and glutathione (GSH) decreased. It also induced histopathological and ultrastructural changes in the digestive gland, hermaphrodite gland, kidney, mucus gland, and cerebral ganglion. Furthermore, scanning electron micrographs revealed various damages in the tegumental structures of the mantle-foot region of E. vermiculata snails. The field application demonstrated that the AMP spray caused reduced percentages in snail population of 75 and 84% after 7 and 14 days of treatment. In conclusion, because AMP disrupts the biology and physiology of the land snail, E. vermiculata, it can be used as an effective molluscicide.


Subject(s)
Molluscacides , Snails , Animals , Molluscacides/pharmacology , Snails/drug effects , Acetylcholinesterase/metabolism , Malondialdehyde/metabolism , Drug Repositioning , Nitric Oxide/metabolism , Catalase/metabolism , Alkaline Phosphatase/metabolism , Glutathione/metabolism
2.
Pestic Biochem Physiol ; 201: 105855, 2024 May.
Article in English | MEDLINE | ID: mdl-38685235

ABSTRACT

Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17ß Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.


Subject(s)
Biomphalaria , Larva , Schistosoma mansoni , Animals , Biomphalaria/drug effects , Schistosoma mansoni/drug effects , Larva/drug effects , Molluscacides/pharmacology
3.
J Helminthol ; 98: e25, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509855

ABSTRACT

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Subject(s)
Biomphalaria , Cucurbita , Molluscacides , Schistosomiasis , Animals , Schistosoma mansoni , Snails , Cercaria , Molluscacides/pharmacology , Plant Oils/pharmacology
4.
Exp Parasitol ; 259: 108717, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340780

ABSTRACT

Schistosomiasis is a neglected disease transmitted through contaminated water in populations with low basic sanitation. The World Health Organization recommends controlling the intermediate host snails of the Biomphalaria genus with the molluscicide niclosamide. This work aims to evaluate the biocidal potential of the nanoemulsion prepared with the essential oil of Ocotea indecora leaves for the control of the mollusk Biomphalaria glabrata, intermediate host of the Schistosoma mansoni, the etiologic agent of schistosomiasis.


Subject(s)
Biomphalaria , Molluscacides , Ocotea , Oils, Volatile , Schistosomiasis , Animals , Oils, Volatile/pharmacology , Schistosomiasis/prevention & control , Molluscacides/pharmacology , Schistosoma mansoni
5.
Sci Total Environ ; 922: 171165, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38395171

ABSTRACT

Despite the wide distribution and persistence of microplastics (MPs), their interactive effects with molluscicides are unknown. Schistosomiasis, a neglected tropical disease, affects 236.6 million people worldwide. Niclosamide (NCL) is the only molluscicide recommended by the World Health Organization (WHO) and it is used to control the population of Schistosoma spp.'s intermediate host. Thus, this study aimed to evaluate of the interaction between polyethylene (PE) MPs and NCL, and their associated toxicity in the freshwater snail Biomphalaria glabrata (Say 1818). Weathered PE MPs were characterized and theoretical analysis of NCL-MP adsorption nature was made using quantum mechanical calculations. The toxicity of NCL isolated (0.0265 to 0.0809 mg L-1) and under interaction with PE MPs (3400 µg L-1) in B. glabrata embryos and newly hatched snails was analyzed. In silico analysis confirmed the adsorption mechanisms of NCL into PE MPs. PE MPs decreased the NCL toxicity to both B. glabrata developmental stages, increasing their survival and NCL lethal concentrations, indicating concerns regarding NCL use as molluscicide in aquatic environments polluted by MPs. In conclusion, MPs may change the efficiency of chemicals used in snail control programs.


Subject(s)
Molluscacides , Niclosamide , Animals , Humans , Niclosamide/toxicity , Microplastics , Plastics/toxicity , Snails , Molluscacides/toxicity
6.
Pestic Biochem Physiol ; 198: 105716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225073

ABSTRACT

Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.


Subject(s)
Acetaldehyde/analogs & derivatives , Borates , Molluscacides , Snails , Animals , Calcium Compounds/metabolism , Calcium Compounds/pharmacology , Molluscacides/pharmacology , Flowers
7.
Biol Trace Elem Res ; 202(5): 2327-2337, 2024 May.
Article in English | MEDLINE | ID: mdl-37648936

ABSTRACT

Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.


Subject(s)
Annona , Biomphalaria , Molluscacides , Nanoparticles , Animals , Copper/pharmacology , Seeds , Molluscacides/toxicity , Plant Extracts/pharmacology , Feeding Behavior , Oxides
8.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(5): 451-457, 2023 Dec 04.
Article in Chinese | MEDLINE | ID: mdl-38148533

ABSTRACT

OBJECTIVE: To establish a snail control approach for spraying chemicals with drones against Oncomelania hupensis in complex snail habitats in hilly regions, and to evaluate its molluscicidal effect. METHODS: The protocol for evaluating the activity of spraying chemical molluscicides with drones against O. hupensis snails was formulated based on expert consultation and literature review. In August 2022, a pretest was conducted in a hillside field environment (12 000 m2) north of Dafengji Village, Dacang Township, Weishan County, Yunnan Province, which was assigned into four groups, of no less than 3 000 m2 in each group. In Group A, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2, and in Group B, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with drones at a dose of 40 g/m2, while in Group C, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2, and in Group D, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with knapsack sprayers at a dose of 40 g/m2. Then, each group was equally divided into six sections according to land area, with Section 1 for baseline surveys and sections 2 to 6 for snail surveys after chemical treatment. Snail surveys were conducted prior to chemical treatment and 1, 3, 5, 7 days post-treatment, and the mortality and corrected mortality of snails, density of living snails and costs of molluscicidal treatment were calculated in each group. RESULTS: The mortality and corrected mortality of snails were 69.49%, 69.09%, 53.57% and 83.48%, and 68.58%, 68.17%, 52.19% and 82.99% in groups A, B, C and D 14 days post-treatment, and the density of living snails reduced by 58.40%, 63.94%, 68.91% and 83.25% 14 days post-treatment relative to pre-treatment in four groups, respectively. The median concentrations of chemical molluscicides were 37.08, 35.42, 42.50 g/m2 and 56.25 g/m2 in groups A, B, C and D, and the gross costs of chemical treatment were 0.93, 1.50, 0.46 Yuan per m2 and 1.03 Yuan per m2 in groups A, B, C and D, respectively. CONCLUSIONS: The molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against O. hupensis snails is superior to manual chemical treatment without environmental cleaning, and chemical treatment with drones and manual chemical treatment show comparable molluscicidal effects following environmental cleaning in hilly regions. The cost of chemical treatment with drones is slightly higher than manual chemical treatment regardless of environmental cleaning. Spraying 5% niclosamide ethanolamine salt granules with drones is recommended in complex settings with difficulty in environmental cleaning to improve the molluscicidal activity and efficiency against O. hupensis snails.


Subject(s)
Molluscacides , Niclosamide , Niclosamide/pharmacology , Ethanolamine/pharmacology , Unmanned Aerial Devices , China , Molluscacides/pharmacology , Ethanolamines
9.
Parasit Vectors ; 16(1): 419, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968661

ABSTRACT

BACKGROUND: Poverty contributes to the transmission of schistosomiasis via multiple pathways, with the insufficiency of appropriate interventions being a crucial factor. The aim of this article is to provide more economical and feasible intervention measures for endemic areas with varying levels of poverty. METHODS: We collected and analyzed the prevalence patterns along with the cost of control measures in 11 counties over the last 20 years in China. Seven machine learning models, including XGBoost, support vector machine, generalized linear model, regression tree, random forest, gradient boosting machine and neural network, were used for developing model and calculate marginal benefits. RESULTS: The XGBoost model had the highest prediction accuracy with an R2 of 0.7308. Results showed that risk surveillance, snail control with molluscicides and treatment were the most effective interventions in controlling schistosomiasis prevalence. The best combination of interventions was interlacing seven interventions, including risk surveillance, treatment, toilet construction, health education, snail control with molluscicides, cattle slaughter and animal chemotherapy. The marginal benefit of risk surveillance is the most effective intervention among nine interventions, which was influenced by the prevalence of schistosomiasis and cost. CONCLUSIONS: In the elimination phase of the national schistosomiasis program, emphasizing risk surveillance holds significant importance in terms of cost-saving.


Subject(s)
Molluscacides , Schistosomiasis , Animals , Cattle , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Schistosomiasis/drug therapy , Molluscacides/pharmacology , China/epidemiology , Snails , Prevalence
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 394-397, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37926476

ABSTRACT

OBJECTIVE: To evaluate the molluscicidal activity of surfactin against Oncomelania hupensis, so as to provide the experimental basis for use of Bacillus for killing O. hupensis. METHODS: O. hupensis snails were collected from schistosomiasisendemic foci of Wuhu City on September 2022, and Schistosoma japonicum-infected snails were removed. Then, 60 snails were immersed in surfactin at concentrations of 2, 1, 0.5, 0.25, 0.125 mg/mL and 0.062 5 mg/mL for 24, 48, 72 hours at 26 °C, while ultrapure water-treated snails served as controls. The median lethal concentration (LC50) of surfactin against O. hupensis snails was estimated. O. hupensis snails were immersed in surfactin at a concentration of 24 h LC50 and ultrapure water, and then stained with propidium iodide (PI). The PI uptake in haemocyte was observed in O. hupensis snails using fluorescence microscopy. RESULTS: The mortality of O. hupensis was 5.0% following immersion in surfactin at a concentration of 0.062 5 mg/mL for 24 h, and the mortality was 100.0% following immersion in surfactin at a concentration of 2 mg/mL for 72 h, while no snail mortality was observed in the control group. There were significant differences in the mortality of O. hupensis in each surfactin treatment groups at 24 (χ2 = 180.150, P < 0.05), 48 h (χ2 = 176.786, P < 0.05) and 72 h (χ2 = 216.487, P < 0.05), respectively. The average mortality rates of O. hupensis were 38.9% (140/360), 62.2% (224/360) and 83.3% (300/360) 24, 48 h and 72 h post-immersion in surfactin, respectively (χ2 = 150.264, P < 0.05), and the 24, 48 h and 72 h LC50 values of surfactin were 0.591, 0.191 mg/mL and 0.054 mg/mL against O. hupensis snails. Fluorescence microscopy showed more numbers of haemocytes with PI uptake in 0.5 mg/mL surfactintreated O. hupensis snails than in ultrapure water-treated snails for 24 h, and there was a significant difference in the proportion of PI uptake in haemocytes between surfactin-and ultrapure water-treated snails (χ2 = 6.690, P < 0.05). CONCLUSIONS: Surfactin is active against O. hupensis snails, which may be associated with the alteration in the integrity of haemocyte membrane.


Subject(s)
Molluscacides , Schistosoma japonicum , Animals , Molluscacides/pharmacology , Snails , Lethal Dose 50 , Water
11.
Article in English | MEDLINE | ID: mdl-37597712

ABSTRACT

Terrestrial snails are a significant issue in agricultural production worldwide. The use of nitrogen - phosphorus - potassium (NPK) based fertilizers played an important role in meeting the food demand throughout the world, so its effectiveness against land snails needs to be investigated. This study was conducted to evaluate toxic lethal effect of New-Fort®, an inorganic NPK based fertilizer, in the field for 3, 7 and 10 days and in the laboratory for 24, 48 and 72 h against Theba pisana snails. Also, the impact of its sub-lethal doses (1/10, 1/5, 1/4 and 1/2 of 48 h-LD50) on biochemical parameters were determined under laboratory conditions. The results showed that the snails percent reduction in the field were 21.4, 61.0 and 80.0 % after 10 days' application of quarter, half and one field rate and the values of LD50 in the laboratory were 4.94, 4.56 and 4.24 mg/g b.w at 24, 48 and 72 h, respectively. New-Fort® sub-lethal doses caused a significant inhibition in catalase, γ-glutamyl transferase and acetylcholinesterase activities. It also elicited a significant elevation in glutathione S-transferase activity post exposure to 1/10 and 1/5 of LD50, whereas an opposite effect was occurred after exposure to 1/4 and 1/2 of LD50. Lipid peroxidation level was reduced in snails treated with 1/10 and 1/5 of LD50, whereas it increased in 1/4 and 1/2 of LD50- treated snails. Moreover, a significant inhibition in alkaline phosphatase activity at all tested doses, with the exception of 1/2 of LD50 was observed. An increase in alanine aminotransferase and aspartate aminotransferase activities were occurred after all tested doses exposure. Our findings highlighted on how biochemical changes can be exploited to better understand the mechanisms underlying New-Fort® fertilizer toxicity against the land snail, T. pisana, as well as how to benefit from NPK fertilizers application in snail control.


Subject(s)
Fertilizers , Molluscacides , Animals , Fertilizers/toxicity , Acetylcholinesterase , Lethal Dose 50 , Agriculture , Molluscacides/toxicity , Snails
12.
Molecules ; 28(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630195

ABSTRACT

Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk control using molluscicidal agents. This work evaluates the effects of a nanoemulsion containing essential oil from Myrciaria floribunda leaves as a molluscicidal and cercaricidal agent against Biomphalaria glabrata mollusks and Schistosoma mansoni cercariae. The Myrciaria floribunda essential oil from leaves showed nerolidol, ß-selinene, 1,8 cineol, and zonarene as major constituents. The formulation study suggested the F3 formulation as the most promising nanoemulsion with polysorbate 20 and sorbitan monooleate 80 (4:1) with 5% (w/w) essential oil as it showed a smaller droplet size of approximately 100 nm with a PDI lower than 0.3 and prominent bluish reflection. Furthermore, this nanoemulsion showed stability after 200 days under refrigeration. The Myrciaria floribunda nanoemulsion showed LC50 values of 48.11 µg/mL, 29.66 µg/mL, and 47.02 µg/mL in Biomphalaria glabrata embryos, juveniles, and adult mollusks, respectively, after 48 h and 83.88 µg/mL for Schistosoma mansoni cercariae after 2 h. In addition, a survival of 80% was observed in Danio rerio, and the in silico toxicity assay showed lower overall human toxicity potential to the major compounds in the essential oil compared to the reference molluscicide niclosamide. These results suggest that the nanoemulsion of Myrciaria floribunda leaves may be a promising alternative for schistosomiasis control.


Subject(s)
Molluscacides , Myrtaceae , Oils, Volatile , Adult , Humans , Oils, Volatile/pharmacology , Molluscacides/pharmacology , Eucalyptol , Niclosamide , Food
13.
Sci Rep ; 13(1): 11597, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463929

ABSTRACT

Botanical molluscicides for controlling the invasive snail Pomacea canaliculata have attracted worldwide attention because of their cost and environmental friendliness. Aqueous extracts from discarded tobacco leaf (Nicotiana tobacum) were evaluated for molluscicidal activity against different-sized P. canaliculata under laboratory conditions. The results showed that over 90% of the snails died in 1 g/L tobacco extract within 4 days, and the survival of P. canaliculata was inversely proportional to the snail size, tobacco extract concentration and length of exposure time. Adult males were more susceptible to tobacco extract than females. The snails had few chances to feed or mate in 0.5 g/L tobacco extract, and reproduction was greatly limited in 0.2 g/L. The growth of juvenile snails was inhibited in 0.2 g/L tobacco extract, but adults were unaffected. The antioxidant capacity of P. canaliculata in response to tobacco extract can be size- and sex-dependent, and the activities of superoxide dismutase, catalase, and acetylcholinesterase and the contents of glutathione and malondialdehyde were increased in adult males. These results suggest that discarded tobacco leaves can be useful as a molluscicide for controlling the invasive snail P. canaliculata based on its effects on survival, behaviour, food intake, growth performance and antioxidant capacity.


Subject(s)
Molluscacides , Nicotiana , Animals , Acetylcholinesterase , Antioxidants/pharmacology , Snails , Molluscacides/pharmacology
14.
Environ Sci Pollut Res Int ; 30(32): 78641-78652, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37273057

ABSTRACT

Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17ß-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.


Subject(s)
Molluscacides , Saponins , Animals , Bulinus , Saponins/pharmacology , Ecosystem , Snails , Molluscacides/toxicity , Oxidative Stress
15.
Braz J Biol ; 83: e266526, 2023.
Article in English | MEDLINE | ID: mdl-37283371

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by parasitic worms of several species of the genus Schistosoma. Transmission occurs by parasitic larvae that stay in freshwater snails of the genus Biomphalaria. Thus, the search for new products that are biodegradable has increased the interest in products of plant origin. The aim of this article is to review the isolated substances from natural products that showed molluscicidal activity against the species Biomphalaria glabrata in order to reevaluate the most promising prototypes and update the progress of research to obtain a new molluscicide. We perform searches using scientific databases, such as Scientific Electronic Library Online (SciELO), Google schoolar, PUBMED, Web of Science and Latin American and Caribbean Literature on Health Sciences (LILACS). From 2000 to 2022, using the keywords "isolated substances", "molluscicidal activity" and "Biomphalaria glabrata". In the present study, it was possible to observe 19 promising molluscicidal molecules with a lethal concentration below 20 µg/mL. Of these promising isolates, only 5 isolates had the CL90 calculated and within the value recommended by WHO: Benzoic acid, 2',4',6'-Trihydroxydihydrochalcone, Divaricatic acid, Piplartine and 2-hydroxy-1,4-naphthoquinone (Lapachol). We conclude that beyond a few results in the area, the researches don't follow the methodological pattern (exposure time and measure units, toxicity test), in this way, as they don't follow a pattern on the result's exposure (LC), not following, in sum, the recommended by WHO.


Subject(s)
Biological Products , Biomphalaria , Molluscacides , Animals , Biomphalaria/parasitology , Biological Products/pharmacology , Snails , Molluscacides/toxicity
16.
Pestic Biochem Physiol ; 192: 105424, 2023 May.
Article in English | MEDLINE | ID: mdl-37105626

ABSTRACT

Virtual screening is an efficient way to obtain new drugs, which has become an important method in the field of pesticide research. Protein neural wiskott-Aldrich syndrome isoform X1 (PcnWAS) is a target protein that exists in the haemocytes of Pomacea canaliculata, and in this study, isothermal titration calorimetry (ITC) was used to evaluate the binding ability of protein PcnWAS and pedunsaponin A in vitro. Furthermore, it was set as a receptor, and the design of molluscicidal compounds based on protein PcnWAS was carried out. Results showed that, pedunsaponin A had high binding capacity with protein PcnWAS, and the binding constant (Ka) was 2.98 ± 1.74 × 10-4. A new potential molluscicidal compound thionicotinamide-adenine-dinucleotide (thionicotinamide-DPN) was obtained by virtual screening. In-vivo bioassay indicated that, the LC50 value was 57.7102 mg/L (72 h), and the oxygen consumption rate, ammonia excretion rate, oxygen nitrogen ratio and hemocyanin content of P. canaliculata declined after 60 mg/L thionicotinamide-DPN treated. Furthermore, the treatment of thionicotinamide-DPN also decreased gene expression level of protein PcnWAS. The results of ITC test showed that thionicotinamide-DPN can bind with protein PcnWAS efficiently, which means that it has the same target with pedunsaponin A when interacted with P. canaliculata. All the above results lay a foundation for the development of new molluscicides.


Subject(s)
Molluscacides , Saponins , Triterpenes , Animals , Snails , Molluscacides/pharmacology , Proteins
17.
Pestic Biochem Physiol ; 192: 105407, 2023 May.
Article in English | MEDLINE | ID: mdl-37105634

ABSTRACT

The land snail, Theba pisana is a serious pest that adversely affects various crops in sustainable agriculture. Essential oils and their constituents represent an environmentally sound alternative to synthetic pesticides. Our study aimed to investigate the lethal and sub-lethal toxicity of clove oil and its main component eugenol to understand the mechanisms underlying its toxic action against T. pisana. The GC-MS profile of the clove oil composition was characterized. In the laboratory experiment, LD50 of clove oil and eugenol via the contact testing were determined after 48 and 72 h. Moreover, sub-lethal effects of clove oil or eugenol on the survivors following the exposure of snails to the 25 and 50% of the LD50/48 and 72 h were evaluated through using snail tissues for biochemical measurments. The GC-MS analysis showed that eugenol (64.87%) was the major constituent present in the oil. The results also showed that LD50 values at 48 and 72 h were 2006.5 and 1493.5 µg/g b.w for oil and 239.6 and 195.3 µg/g b.w for eugenol, respectively. Compared to control, the sub-lethal effects of clove oil or eugenol at 48 and 72 h showed a significant increase in reduced glutathione (GSH) levels. Catalase (CAT) and glutathione-S-transferase (GST) activities significantly elevated in oil- or eugenol-treated snails, except at low dose after 48 h. After two exposure times, snails exposed to oil or eugenol at both sub-lethal effects had considerably higher γ-glutamyltransferase (γ-GT) and aspartate aminotransferase (AST) activities. Moreover, markedly augmentation in alkaline phosphatase (ALP) and alanine aminotransferase (ALT) activities at all exposure times, with the exception of snails treated with low dose of eugenol after 48 h was observed. Both clove oil and eugenol at the tested doses caused a significant inhibition in acetylcholinesterase (AChE) activity at two exposure times. Our findings highlight the potential of clove oil and eugenol, as an efficient natural molluscicide alternative to its synthetic counterparts for snail control.


Subject(s)
Molluscacides , Oils, Volatile , Pesticides , Clove Oil/toxicity , Clove Oil/chemistry , Eugenol/toxicity , Acetylcholinesterase , Oils, Volatile/toxicity , Oils, Volatile/chemistry , Pesticides/toxicity , Molluscacides/toxicity
18.
J Invertebr Pathol ; 198: 107920, 2023 06.
Article in English | MEDLINE | ID: mdl-37023891

ABSTRACT

The brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum. Concentrations of 1 - 1000 ppm of 3-octanone were first assessed in laboratory choice assays to determine behavioural response. Repellent activity was found at 1000 ppm whereas attractance was found for the lower concentrations of 1, 10 and 100 ppm. These three concentrations of 3-octanone were carried forward in field evaluations to assess potential for use in "lure and kill" strategies. The highest concentration (100 ppm) was the most attractive to the snails but also the most lethal. Even at the lowest concentration this compound proved toxic effects making 3-octanone an excellent candidate for the development as a snail attractant and molluscicide.


Subject(s)
Molluscacides , Volatile Organic Compounds , Animals , Ketones , Molluscacides/pharmacology , Agriculture
19.
J Appl Toxicol ; 43(12): 1778-1792, 2023 12.
Article in English | MEDLINE | ID: mdl-36987554

ABSTRACT

Some snail species pose a serious threat for human health, economy, and the environment due to their widespread distribution and the transmission of dangerous parasites causing, among others, schistosomiasis and fascioliasis. Scientists from around the world have been studying the effects of plant extracts on snails for many years in order to find an alternative to molluscicides of synthetic origin. The main purpose of this study was to collect the results obtained so far on the effect of plant alkaloids on snails in the context of their molluscicidal properties. This work presents the results of publications on the effect of plant alkaloids on snails, which were published in the years 1974-2021. The Solanaceae, Papaveraceae, and Asteraceae are the plant families most frequently cited for containing alkaloids with molluscicidal activity. The alkaloids identified as molluscicidal belonged to various groups, of which the most numerous were pseudoalkaloids and tyrosine-derived alkaloids. Most of the tested alkaloids were characterized by a high mortality rate among the studied groups of snails. Based on the collected research results, it was found that plant alkaloids can be extremely useful in the fight against problematic species of snails and cause much lower harm to the environment than synthetic molluscicides.


Subject(s)
Alkaloids , Molluscacides , Schistosomiasis , Humans , Plant Extracts/toxicity , Alkaloids/toxicity , Schistosomiasis/prevention & control , Molluscacides/toxicity
20.
Pestic Biochem Physiol ; 191: 105357, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963932

ABSTRACT

Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.


Subject(s)
Biomphalaria , Molluscacides , Saponins , Animals , Biomphalaria/metabolism , Schistosoma mansoni , Larva , Saponins/toxicity , Saponins/metabolism , Snails , Molluscacides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...