Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.621
Filter
1.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717629

ABSTRACT

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Subject(s)
Escherichia coli , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , Isopropyl Thiogalactoside/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Culture Media
2.
Recent Pat Biotechnol ; 18(1): 71-83, 2024.
Article in English | MEDLINE | ID: mdl-37016518

ABSTRACT

INTRODUCTION: Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV RT) is a common enzyme used to convert RNA sequences into cDNA. However, it still has its shortcomings, especially in terms of processivity and thermostability. According to a previous patent, the fusion of polymerase enzyme to an archaeal DNA-binding protein has been proven to enhance its performance. Furthermore, recent studies have also stated that the fusion of a polymerase enzyme to an archaeal DNA-binding protein is predicted to improve its thermostability and processivity. AIM: As an early stage of enzyme development, this study aimed to design, express, and purify enzymatically active MMLV RT fused with archaeal DNA-binding protein. METHODS: RT fusion proteins were designed and evaluated using in silico methods. The RT fusion enzyme was then expressed in Escherichia coli BL21(DE3) and purified. Its reverse transcriptional activity was proved using reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: This study showed that MMLV RT fusion with Sis7a protein at its C-terminal end using commercial linker (GGVDMI) produced the best in silico evaluation results. The RT fusion was successfully expressed and purified. It was also known that the optimal condition for expression of the RT fusion was using 0.5 mM IPTG with post-induction incubation at room temperature (± 26°C) for 16 hours. In addition, the activity assay proved that the RT fusion has the reverse transcriptional activity. CONCLUSION: This study shows that the designed MMLV RT Sis7a fusion can be expressed and purified, is enzymatically active, and has the potential to be developed as an improved RT enzyme. Further study is still needed to prove its thermostability and processivity, and further characterize, and plan production scale-up of the MMLV RT Sis7a fusion for commercial use.


Subject(s)
Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Animals , Mice , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/metabolism , Carrier Proteins , DNA, Archaeal , Patents as Topic , DNA-Binding Proteins/metabolism
3.
Adv Exp Med Biol ; 1415: 109-114, 2023.
Article in English | MEDLINE | ID: mdl-37440022

ABSTRACT

Prime editing (PE) is a novel, double-strand break (DSB)-independent gene editing technology that represents an exciting avenue for the treatment of inherited retinal diseases (IRDs). Given the extensive and heterogenous nature of the 280 genes associated with IRDs, genome editing has presented countless complications. However, recent advances in genome editing technologies have identified PE to have tremendous potential, with the capability to ameliorate small deletions and insertions in addition to all twelve possible transition and transversion mutations. The current PE system is based on the fusion of the Streptococcus pyogenes Cas9 (SpCas9) nickase H840A mutant and an optimized Moloney murine leukemia virus (MMLV) reverse-transcriptase (RT) in conjunction with a PE guide RNA (pegRNA). In this study, we developed a prime editor based on the avian myeloblastosis virus (AMV)-RT and showed its applicability for the installation of the PRPH2 c.828+1G>A mutation in HEK293 cells.


Subject(s)
Avian Myeloblastosis Virus , RNA-Directed DNA Polymerase , Humans , Animals , Mice , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Avian Myeloblastosis Virus/genetics , Avian Myeloblastosis Virus/metabolism , HEK293 Cells , Gene Editing , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/metabolism , CRISPR-Cas Systems
4.
Nat Biotechnol ; 41(3): 337-343, 2023 03.
Article in English | MEDLINE | ID: mdl-36163548

ABSTRACT

The CRISPR prime editor PE2 consists of a Streptococcus pyogenes Cas9 nickase (nSpCas9) fused at its C-terminus to a Moloney murine leukemia virus reverse transcriptase (MMLV-RT). Here we show that separated nSpCas9 and MMLV-RT proteins function as efficiently as intact PE2 in human cells. We use this Split-PE system to rapidly identify and engineer more compact prime editor architectures that also broaden the types of RTs used for prime editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Streptococcus pyogenes , Animals , Humans , Mice , CRISPR-Cas Systems/genetics , Gene Editing/methods , Moloney murine leukemia virus/genetics , RNA-Directed DNA Polymerase/genetics , Streptococcus pyogenes/genetics , Deoxyribonuclease I/genetics
5.
Protein J ; 41(4-5): 515-526, 2022 10.
Article in English | MEDLINE | ID: mdl-35933571

ABSTRACT

Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is the most frequently used enzyme in molecular biology for cDNA synthesis. To date, reverse transcription coupled with Polymerase Chain Reaction, known as RT-PCR, has been popular as an excellent approach for the detection of SARS-CoV-2 during the COVID-19 pandemic. In this study, we aimed to improve the enzymatic production and performance of MMLV-RT by optimizing both codon and culture conditions in E. coli expression system. By applying the optimized codon and culture conditions, the enzyme was successfully overexpressed and increased at high level based on the result of SDS-PAGE and Western blotting. The total amount of MMLV-RT has improved 85-fold from 0.002 g L-1 to 0.175 g L-1 of culture. One-step purification by nickel affinity chromatography has been performed to generate the purified enzyme for further analysis of qualitative and quantitative RT activity. Overall, our investigation provides useful strategies to enhance the recombinant enzyme of MMLV-RT in both production and performance. More importantly, the enzyme has shown promising activity to be used for RT-PCR assay.


Subject(s)
Moloney murine leukemia virus , Codon/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
6.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215961

ABSTRACT

A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer-template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min-1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3'-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.


Subject(s)
DNA, Viral/biosynthesis , DNA-Directed DNA Polymerase/metabolism , Vaccinia virus/enzymology , Viral Proteins/metabolism , Avian Myeloblastosis Virus/genetics , Avian Myeloblastosis Virus/metabolism , Base Sequence , DNA-Directed DNA Polymerase/genetics , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/metabolism , Protein Binding , SELEX Aptamer Technique , Vaccinia virus/genetics , Viral Proteins/genetics , Virus Replication
7.
EMBO J ; 40(16): e106540, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34121210

ABSTRACT

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Subject(s)
Alarmins/genetics , Calgranulin B/genetics , HIV-1/physiology , Langerhans Cells/virology , Moloney murine leukemia virus/physiology , Retroviridae Infections/prevention & control , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Line , Cricetulus , HIV-1/genetics , Host-Pathogen Interactions , Humans , Langerhans Cells/immunology , Leukemia, Experimental/prevention & control , Mice , Moloney murine leukemia virus/genetics , Reverse Transcription , Transforming Growth Factor beta/immunology , Tumor Virus Infections/prevention & control , Virus Replication
8.
J Virol ; 95(15): e0049521, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011543

ABSTRACT

During retrovirus infection, a histone-free DNA copy of the viral RNA genome is synthesized and rapidly loaded with nucleosomes de novo upon nuclear entry. The potential role of viral accessory proteins in histone loading onto retroviral DNAs has not been extensively investigated. The p12 protein of Moloney murine leukemia virus (MMLV) is a virion protein that is critical for tethering the incoming viral DNA to host chromatin in the early stages of infection. Infection by virions containing a mutant p12 (PM14) defective in chromatin tethering results in the formation of viral DNAs that do not accumulate in the nucleus. In this report, we show that viral DNAs of these mutants are not loaded with histones. Moreover, the DNA genomes delivered by mutant p12 show prolonged association with viral structural proteins nucleocapsid (NC) and capsid (CA). The histone-poor viral DNA genomes do not become associated with the host RNA polymerase II machinery. These findings provide insights into fundamental aspects of retroviral biology, indicating that tethering to host chromatin by p12 and retention in the nucleus are required to allow loading of histones onto the viral DNA. IMPORTANCE Incoming retroviral DNAs are rapidly loaded with nucleosomal histones upon entry into the nucleus and before integration into the host genome. The entry of murine leukemia virus DNA into the nucleus occurs only upon dissolution of the nuclear membrane in mitosis, and retention in the nucleus requires the action of a viral protein, p12, which tethers the DNA to host chromatin. Data presented here show that the tethering activity of p12 is required for the loading of histones onto the viral DNA. p12 mutants lacking tethering activity fail to acquire histones, retain capsid and nucleocapsid proteins, and are poorly transcribed. The work defines a new requirement for a viral protein to allow chromatinization of viral DNA.


Subject(s)
Capsid Proteins/metabolism , Gene Products, gag/genetics , Histones/metabolism , Moloney murine leukemia virus/growth & development , Moloney murine leukemia virus/metabolism , Capsid/metabolism , Cell Line, Tumor , Chromatin/metabolism , DNA, Viral/metabolism , Genome, Viral/genetics , HEK293 Cells , HeLa Cells , Humans , Moloney murine leukemia virus/genetics , Virus Assembly/genetics
9.
Nat Biotechnol ; 39(10): 1292-1299, 2021 10.
Article in English | MEDLINE | ID: mdl-33859403

ABSTRACT

Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.


Subject(s)
Gene Editing/methods , Genome, Plant/genetics , CRISPR-Cas Systems , Moloney murine leukemia virus/genetics , Mutation , Oryza/genetics , RNA, Guide, Kinetoplastida/genetics , RNA-Directed DNA Polymerase/genetics , Reverse Transcription/genetics , Whole Genome Sequencing
10.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-33825883

ABSTRACT

Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.


Subject(s)
Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Animals , Disulfides , Mice , Moloney murine leukemia virus/genetics , Mutagenesis, Site-Directed , RNA-Directed DNA Polymerase/genetics , Ribonuclease H/genetics
11.
Biotechnol Prog ; 37(4): e3159, 2021 07.
Article in English | MEDLINE | ID: mdl-33913259

ABSTRACT

Chinese hamster ovary (CHO) cells are frequently used for recombinant protein production (RPP) as a host. While the RPP has been proven successful, there is still a compelling need for further improvement. Cyclo olefin polymer (COP) is a plastic material widely utilized due to its properties including its low protein absorption. We applied this as a raw material for RPP cell culture to see if the COP is suitable. A recombinant CHO cell line expressing the human erythropoietin (hEPO) gene under the control of the Moloney murine leukemia virus-long terminal repeat (MMLV-LTR) was established. When the cells were cultured in a dish made from COP, the cells attached to the bottom, and then started to float and form spheroids. RNASeq data analysis suggested the epithelial-mesenchymal transition (EMT) was triggered with receptor tyrosine kinase activation shortly after cultivation. It coincided with the hEPO transcription increase. After the cell floating, though EMT marker gene expression subsided, a hEPO expression increase sustained. When fibronectin was applied to COP dish surface, the cell floating was suppressed and hEPO expression decreased. We then treated cells with MßCD, a drug that destroys the lipid raft, eliminating molecules in the raft. This facilitated cell floating and spheroid formation coincided with hEPO expression enhancement. These results suggest interactions between a cell and COP surface might trigger the EMT and the subsequent event, both of which activated the MMLV-LTR promoter. Thus, employing COP for culturing cells, a potent RPP system could be established with its advantage for efficient protein purification.


Subject(s)
Epithelial-Mesenchymal Transition , Moloney murine leukemia virus , Alkenes , Animals , CHO Cells , Cricetinae , Cricetulus , Epithelial-Mesenchymal Transition/genetics , Gene Expression , Humans , Mice , Moloney murine leukemia virus/genetics , Polymers , Terminal Repeat Sequences
12.
Virus Res ; 295: 198305, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33482242

ABSTRACT

In this study, we showed that a codon optimized version of the spike (S) protein of SARS-CoV-2 can migrate to the cell membrane. However, efficient production of Moloney murine leukemia (MLV) infectious viral particles was only achieved with stable expression of a shorter S version in C-terminal (ΔS) in MLV Gag-pol expressing cells. As compared to transient transfections, this platform generated viruses with a 1000-fold higher titer. ΔS was 15-times more efficiently incorporated into VLPs as compared to S, and that was not due to steric interference between the cytoplasmic tail and the MLV capsid, as similar differences were also observed with extracellular vesicles. The amount of ΔS incorporated into VLPs released from producer cells was high and estimated at 1.25 µg/mL S2 equivalent (S is comprised of S1 and S2). The resulting VLPs could potentially be used alone or as a boost of other immunization strategies for COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/biosynthesis , Virion/genetics , Cell Line , Humans , Moloney murine leukemia virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Virion/immunology
13.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32641479

ABSTRACT

Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions.IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.


Subject(s)
Cytidine Deaminase/genetics , Gene Expression Regulation, Viral , Gene Products, gag/genetics , Leukemia, Experimental/genetics , Moloney murine leukemia virus/genetics , Retroviridae Infections/genetics , Tumor Virus Infections/genetics , Alternative Splicing , Animals , Capsid/metabolism , Cytidine Deaminase/deficiency , Gene Products, gag/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Leukemia, Experimental/metabolism , Leukemia, Experimental/virology , Mice , Mice, Knockout , Moloney murine leukemia virus/metabolism , Moloney murine leukemia virus/pathogenicity , NIH 3T3 Cells , Retroviridae Infections/metabolism , Retroviridae Infections/virology , Signal Transduction , Tumor Virus Infections/metabolism , Tumor Virus Infections/virology , Virion/genetics , Virion/metabolism , Virion/pathogenicity , Virus Replication
14.
Stem Cells Dev ; 28(19): 1299-1309, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31389301

ABSTRACT

Domestic cats suffer from a range of inherited genetic diseases, many of which display similarities with equivalent human conditions. Developing cellular models for these inherited diseases would enable drug discovery, benefiting feline health and welfare as well as enhancing the potential of cats as relevant animal models for translation to human medicine. Advances in our understanding of these diseases at the cellular level have come from the use of induced pluripotent stem cells (iPSCs). iPSCs can differentiate into virtually any cell type and can be derived from adult somatic cells, therefore overcoming the ethical implications of destroying embryos to obtain embryonic stem cells. No studies, however, report the generation of iPSCs from domestic cats [feline iPSCs (fiPSCs)]. Feline adipose-derived fibroblasts were infected with amphotropic retrovirus containing the coding sequences for human Oct4, Sox2, Klf4, cMyc, and Nanog. Isolated iPSC clones were expanded on inactivated mouse embryonic fibroblasts in the presence of feline leukemia inhibitory factor (fLIF). Retroviral delivery of human pluripotent genes gave rise to putative fiPSC colonies within 5-7 days. These iPS-like cells required fetal bovine serum and fLIF for maintenance. Colonies were domed with refractile edges, similar to mouse iPSCs. Immunocytochemistry demonstrated positive staining for stem cell markers: alkaline phosphatase, Oct4, Sox2, Nanog, and SSEA1. Cells were negative for SSEA4. Expression of endogenous feline Nanog was confirmed by quantitative polymerase chain reaction. The cells were able to differentiate in vitro into cells representative of the three germ layers. These results confirm the first generation of induced pluripotent stem cells from domestic cats. These cells will provide valuable models to study genetic diseases and explore novel therapeutic strategies.


Subject(s)
Cell Differentiation/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , Moloney murine leukemia virus/genetics , Transfection/methods , Adipose Tissue/cytology , Adipose Tissue/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Biomarkers/metabolism , Cats , Feeder Cells , Fibroblasts/cytology , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Lewis X Antigen/genetics , Lewis X Antigen/metabolism , Moloney murine leukemia virus/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
15.
Asian J Androl ; 21(3): 224-232, 2019.
Article in English | MEDLINE | ID: mdl-29862993

ABSTRACT

B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial-mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.


Subject(s)
Lymphoma, B-Cell/genetics , Moloney murine leukemia virus/genetics , Mutagenesis, Insertional/genetics , Polycomb Repressive Complex 1/genetics , Prostatic Neoplasms/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Male , Mice
16.
Nucleic Acids Res ; 47(3): 1195-1210, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30445610

ABSTRACT

The Moloney murine leukemia virus (MLV) is a prototype gammaretrovirus requiring nuclear disassembly before DNA integration. In the nucleus, integration site selection towards promoter/enhancer elements is mediated by the host factor bromo- and extraterminal domain (BET) proteins (bromodomain (Brd) proteins 2, 3 and 4). MLV-based retroviral vectors are used in gene therapy trials. In some trials leukemia occurred through integration of the MLV vector in close proximity to cellular oncogenes. BET-mediated integration is poorly understood and the nature of integrase oligomers heavily debated. Here, we created wild-type infectious MLV vectors natively incorporating fluorescent labeled IN and performed single-molecule intensity and Förster resonance energy transfer experiments. The nuclear localization of the MLV pre-integration complex neither altered the IN content, nor its quaternary structure. Instead, BET-mediated interaction of the MLV intasome with chromatin in the post-mitotic nucleus reshaped its quaternary structure.


Subject(s)
Integrases/chemistry , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , Virus Integration , Cell Cycle , Cell Nucleus/virology , Cytoplasm/virology , Genetic Vectors , HEK293 Cells , HeLa Cells , Humans , Mitosis , Protein Structure, Quaternary , Proteins/antagonists & inhibitors , Proteins/metabolism
17.
Asian Journal of Andrology ; (6): 224-232, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009617

ABSTRACT

B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial-mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.


Subject(s)
Animals , Humans , Male , Mice , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Moloney murine leukemia virus/genetics , Mutagenesis, Insertional/genetics , Polycomb Repressive Complex 1/genetics , Prostatic Neoplasms/genetics
18.
Nucleic Acids Res ; 46(21): e129, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30107543

ABSTRACT

Rapid amplification of cDNA ends (RACE) is a prevalent technique used to obtain the 5' ends of transcripts. Several different 5' RACE methods have been developed, and one particularly simple and efficient approach called CapFinder relies on the 5' cap-dependent template-switching that occurs in eukaryotes. However, most prokaryotic transcripts lack a 5' cap structure. Here, we report a procedure to capture primary transcripts based on capping the 5' triphosphorylated RNA in prokaryotes. Primary transcripts were first treated with vaccinia capping enzyme to add a 5' cap structure. First-strand cDNA was then synthesized using Moloney murine leukaemia virus reverse transcriptase. Finally, a template-switching oligonucleotide with a tail containing three ribonucleic acid guanines was hybridized to the cDNA 3' poly(C) and further used as template for reverse transcriptase. It is oligonucleotide sequence independent and is more sensitive compared to RLM-RACE. This approach specifically identified the transcription start sites of ompA, sodB and shiA in Escherichia coli and of ompA, rne and rppH in Brucella melitensis. Furthermore, we also successfully identified the transcription start sites of small noncoding genes ryhB and micC in E. coli and bsnc135 and bsnc149 in B. melitensis. Our findings suggest that Capping-RACE is a simple, accurate, and sensitive 5' RACE method for use in prokaryotes.


Subject(s)
Brucella melitensis/genetics , Escherichia coli/genetics , Nucleic Acid Amplification Techniques/methods , RNA Caps/genetics , Transcription Initiation Site , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , Poly C/genetics , Prokaryotic Cells/physiology , RNA-Directed DNA Polymerase/genetics , Reproducibility of Results , Superoxide Dismutase/genetics
19.
DNA Res ; 25(5): 477-487, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29897438

ABSTRACT

In this study, we investigated CIS reaction (clamping-mediated incorporation of single-stranded DNA with concomitant DNA syntheses) of Moloney murine leukaemia virus reverse transcriptase (MMLV-RT), and established a set of conditions with which single-stranded DNA is ligated to a G-tailed model substrate DNA at efficiencies close to 100%. Prior to the CIS reaction, a target blunt-end DNA was 3' G-tailed by MMLV-RT in the presence of a tailing enhancer, deoxycytidine. In the CIS reaction, the G-tail reacted with a single-stranded DNA carrying a stretch of Cs on its 3' end (termed as GAO for guide adaptor oligonucleotide), and MMLV-RT performed DNA polymerization, starting from the 3' overhang, using the GAO as a template. We could append a given nucleotide sequence of as long as 72 nucleotides, which would be sufficient for various NGS-sequencing platforms. The high efficiency and the unique features of this MMLV-RT activity that enables the labelling of each DNA molecule with a unique degenerate sequence as a molecular identifier has many potential uses in biotechnology.


Subject(s)
DNA Replication , DNA, Single-Stranded/genetics , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , RNA-Directed DNA Polymerase/metabolism , Base Sequence , DNA, Single-Stranded/metabolism , Sequence Analysis, DNA , Substrate Specificity
20.
Genome Res ; 28(6): 846-858, 2018 06.
Article in English | MEDLINE | ID: mdl-29728365

ABSTRACT

In mouse embryonic stem cells (mESCs), the expression of provirus and endogenous retroelements is epigenetically repressed. Although many cellular factors involved in retroelement silencing have been identified, the complete molecular mechanism remains elusive. In this study, we performed a genome-wide CRISPR screen to advance our understanding of retroelement silencing in mESCs. The Moloney murine leukemia virus (MLV)-based retroviral vector MSCV-GFP, which is repressed by the SETDB1/TRIM28 pathway in mESCs, was used as a reporter provirus, and we identified more than 80 genes involved in this process. In particular, ATF7IP and the BAF complex components are linked with the repression of most of the SETDB1 targets. We characterized two factors, MORC2A and RESF1, of which RESF1 is a novel molecule in retroelement silencing. Although both factors are recruited to repress provirus, their roles in repression are different. MORC2A appears to function dependent on repressive epigenetic modifications, while RESF1 regulates repressive epigenetic modifications associated with SETDB1. Our genome-wide CRISPR screen cataloged genes which function at different levels in silencing of SETDB1-target retroelements and provides a useful resource for further molecular studies.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Repressor Proteins/genetics , Retroelements/genetics , Transcription Factors/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Silencing , Mice , Moloney murine leukemia virus/genetics , Mouse Embryonic Stem Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...