Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(30): 5458-5467, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37414560

ABSTRACT

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic µ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.


Subject(s)
Cannabinoids , Endocannabinoids , Rats , Male , Female , Animals , Endocannabinoids/metabolism , Receptors, Cannabinoid , Monoacylglycerol Lipases/pharmacology , Signal Transduction/physiology , Rats, Sprague-Dawley , Pain/metabolism , Cannabinoids/pharmacology , gamma-Aminobutyric Acid/metabolism , Inflammation/drug therapy , Receptor, Cannabinoid, CB1
2.
J Pharm Sci ; 112(9): 2581-2590, 2023 09.
Article in English | MEDLINE | ID: mdl-37220829

ABSTRACT

Triple negative breast cancer (TNBC) is among the most aggressive and deadly cancer subtypes. Intra-tumoral hypoxia is associated with aggressiveness and drug resistance in TNBC. One of the underlying mechanisms of hypoxia-induced drug resistance is the elevated expression of efflux transporters such as breast cancer resistant protein (ABCG2). In the present study, we investigated the possibility of ameliorating ABCG2-mediated drug resistance in hypoxic TNBC cells by monoacylglycerol lipase (MAGL) inhibition and the consequent downregulation of ABCG2 expression. The effect of MAGL inhibition on ABCG2 expression, function, and efficacy of regorafenib, an ABCG2 substrate was investigated in cobalt dichloride (CoCl2) induced pseudohypoxic TNBC (MDA-MB-231) cells, using quantitative targeted absolute proteomics, qRT-PCR, anti-cancer drug accumulation in the cells, cell invasiveness and resazurin-based cell viability assays. Our results showed that hypoxia-induced ABCG2 expression led to low regorafenib intracellular concentrations, reduced the anti-invasiveness efficacy, and elevated half maximal inhibitory concentration (IC50) of regorafenib in vitro MDA-MB-231 cells. MAGL inhibitor, JJKK048, reduced ABCG2 expression, increased regorafenib cell accumulation, which led to higher regorafenib efficacy. In conclusion, hypoxia-induced regorafenib resistance due to ABCG2 over-expression in TNBC cells can be ameliorated by MAGL inhibition.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/pharmacology , Cell Line, Tumor , Hypoxia , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism
3.
Mol Med Rep ; 27(6)2023 06.
Article in English | MEDLINE | ID: mdl-37144506

ABSTRACT

Pain is the hallmark symptom of osteoarthritis (OA), and current analgesic treatments may be insufficient or have potentially adverse effects. The inhibition of Monoacylglycerol lipase (MAGL) produces anti­inflammatory and anti­nociceptive effects. However, the potential mechanism of MAGL in OA pain remains unclear. In the present study, the synovial tissues were removed from OA patients and mice. Immunohistochemical staining and western blotting were used to detect the expression of MAGL. M1 and M2 polarization markers were detected by flow cytometry and western blotting, and the mitophagy levels were detected by the immunofluorescence staining of mitochondrial autophagosomes with lysosomes and western blotting. The OA mice were intraperitoneally injected with MJN110 to inhibit MAGL once a day for a week. Mechanical and thermal pain thresholds were detected by electronic Von Frey and hot plate methods on days 0, 3, 7, 10, 14, 17, 21, and 28. The accumulation of MAGL in the synovial tissues of OA patients and mice promoted the polarization of macrophages towards an M1 phenotype. Pharmacological inhibition and siRNA knockdown of MAGL promoted polarization of M1 macrophages towards an M2 phenotype. MAGL inhibition increased the mechanical and thermal pain thresholds of OA mice and enhanced the mitophagy levels of M1 macrophages. In conclusion, in the present study, it was shown that MAGL regulated synovial macrophage polarization by inhibiting mitophagy in OA.


Subject(s)
Monoacylglycerol Lipases , Osteoarthritis , Mice , Animals , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/pharmacology , Mitophagy , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Macrophages/metabolism , Pain/drug therapy , Pain/metabolism
4.
Neurochem Res ; 47(9): 2602-2616, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34383250

ABSTRACT

Mutations in alpha/beta-hydrolase domain containing (ABHD) 12 gene, which encodes lysophosphatidylserine (LysoPS) lipase, cause the neurodegenerative disease PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa, Cataract). Since ABHD12 is expressed by microglia in the central nervous system and is localized to the endoplasmic reticulum, accumulation of intracellular LysoPS by ABHD12 mutations is assumed to be one of the pathological mechanisms associated with microglial activation in PHARC. However, the role of microglia in the PHARC brain and the relationship between microglial function and cellular LysoPS content remains unclear. Therefore, we explored the influence of cellular LysoPS content in microglial inflammatory responses. We evaluated the effects of inhibitors of cellular LysoPS metabolism, KC01 and DO-264, on inflammatory responses using a lipopolysaccharide (LPS)-stimulated mouse microglial cell line, BV-2 and primary microglia. Treatment of DO-264, an inhibitor of cellular LysoPS degradation, enhanced LPS-induced phagocytosis concomitant with the increase in cellular LysoPS content in BV-2 cells. On the other hand, treatment with KC01, an agent had been developed as an inhibitor of LysoPS synthase, reduced phagocytosis without affecting cellular LysoPS content. Such effects of both inhibitors on phagocytosis were also confirmed using primary microglia. KC01 treatment decreased nitric oxide (NO) production, accompanied by a reduction in inducible NO synthase expression in BV-2 microglia. KC01 also suppressed LPS-induced generation of intracellular reactive oxygen species and cytokines such as interleukin-6. Our results suggest that increase in cellular LysoPS levels can exacerbate microglial inflammatory responses. Treatment to prevent the increase in cellular LysoPS in microglia may have therapeutic potential for PHARC.


Subject(s)
Lipopolysaccharides , Neurodegenerative Diseases , Animals , Ataxia , Cataract , Lipopolysaccharides/toxicity , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Mice , Microglia/metabolism , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/pharmacology , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Polyneuropathies , Retinitis Pigmentosa
5.
J Neurosci ; 41(32): 6946-6953, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34230105

ABSTRACT

Motivational deficits characterized by an unwillingness to overcome effortful costs are a common feature of neuropsychiatric and neurologic disorders that are insufficiently understood and treated. Dopamine (DA) signaling in the nucleus accumbens (NAc) facilitates goal-seeking, but how NAc DA release encodes motivationally salient stimuli to influence effortful investment is not clear. Using fast-scan cyclic voltammetry in male and female mice, we find that NAc DA release diametrically responds to cues signaling increasing cost of reward, while DA release to the reward itself is unaffected by its cost. Because endocannabinoid (eCB) signaling facilitates goal seeking and NAc DA release, we further investigated whether repeated augmentation of the eCB 2-arachidonoylglycerol with a low dose of a monoacylglycerol lipase (MAGL) inhibitor facilitates motivation and DA signaling without the development of tolerance. We find that chronic MAGL treatment stably facilitates goal seeking and DA encoding of prior reward cost, providing critical insight into the neurobiological mechanisms of a viable treatment for motivational deficits.SIGNIFICANCE STATEMENT Decades of work has established a fundamental role for dopamine neurotransmission in motivated behavior and cue-reward learning, but how dopaminergic encoding of cues associates with motivated action has remained unclear. Specifically, how dopamine neurons signal future and prior reward cost, and whether this can be modified to influence motivational set points is not known. The current study provides important insight into how dopamine neurons encode motivationally relevant stimuli to influence goal-directed action and supports cannabinoid-based therapies for treatment of motivational disorders.


Subject(s)
Dopaminergic Neurons/physiology , Endocannabinoids/metabolism , Motivation/physiology , Nucleus Accumbens/physiology , Reward , Animals , Cues , Dopamine , Dopaminergic Neurons/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/pharmacology , Motivation/drug effects , Nucleus Accumbens/drug effects
6.
J Mol Neurosci ; 59(4): 493-503, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27129498

ABSTRACT

Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from some proinflammatory stimuli. However, the neuroprotective mechanism of 2-AG is complex and has not been fully understood. A-type K(+) channels critically regulate neuronal excitability and have been demonstrated to be associated with some nervous system diseases. The aim of this study was to explore whether A-type K(+) channels were involved in neurotoxicity of lipopolysaccharides (LPS) and the neuroprotective mechanism of 2-AG in CN neurons. Whole cell patch clamp recording was used to investigate the influence of LPS on the function of A-type K(+) channels and its modulation by 2-AG in primary cultured rat CN neurons. Our findings showed that in cultured CN neurons, LPS significantly decreased the A-type potassium currents (I A) in a voltage-insensitive way. The further data demonstrated that an elevation of 2-AG levels by directly applying exogenous 2-AG or inhibiting monoacylglycerol lipase (MAGL) to prevent 2-AG hydrolysis was capable of suppressing the LPS-induced inhibition of IA and the action of 2-AG is mediated through CB1 receptor-dependant way. The study provides a better understanding of inflammation-related neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.


Subject(s)
Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Caudate Nucleus/metabolism , Endocannabinoids/pharmacology , Glycerides/pharmacology , Neurons/metabolism , Potassium Channels, Voltage-Gated/metabolism , Receptor, Cannabinoid, CB1/metabolism , Action Potentials , Animals , Caudate Nucleus/cytology , Caudate Nucleus/drug effects , Cells, Cultured , Lipopolysaccharides/pharmacology , Monoacylglycerol Lipases/pharmacology , Neurons/drug effects , Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists
7.
Br J Pharmacol ; 155(6): 913-24, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18695638

ABSTRACT

BACKGROUND AND PURPOSE: There are limited options for the treatment of neuropathic pain. Endocannabinoids, such as anandamide and 2-arachidonoyl glycerol (2-AG), are promising pain modulators and there is recent evidence of interactions between anandamide and 2-AG biosynthesis and metabolism. It has been clearly demonstrated that 2-AG degradation is mainly catalysed not only by monoacylglycerol lipase (MGL) but also by a fatty acid amide hydrolase (FAAH). Inhibitors specifically targeting these two enzymes have also been described: URB602 and URB597, respectively. However, the anti-nociceptive effects of the combination of peripherally injected 2-AG, URB602 and URB597 in a neuropathic pain model have not yet been determined. This was performed in the presence or absence of cannabinoid CB(1) (AM251) and CB(2) (AM630) receptor antagonists. EXPERIMENTAL APPROACH: Mechanical allodynia and thermal hyperalgesia were evaluated in 213 male Wistar rats allocated to 32 different groups. Drugs were injected subcutaneously in the dorsal surface of the hind paw (50 muL) 15 min before pain tests. KEY RESULTS: 2-AG, URB602 and URB597 significantly decreased mechanical allodynia and thermal hyperalgesia with ED50 of 1.6+/-1.5 and 127+/-83 mug for 2-AG and URB602, respectively. These effects were mediated locally and were mostly inhibited by the two cannabinoid antagonists. CONCLUSIONS AND IMPLICATIONS: The combination of the three compounds did not produce any greater anti-allodynic or anti-hyperalgesic effects, suggesting that FAAH inhibition could reduce or limit the anti-nociceptive effects of 2-AG. Peripheral administration of endocannabinoids or MGL/FAAH inhibitors is a promising analgesic approach requiring further investigation.


Subject(s)
Amidohydrolases/pharmacology , Arachidonic Acids/pharmacology , Glycerides/pharmacology , Monoacylglycerol Lipases/pharmacology , Pain/drug therapy , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/administration & dosage , Drug Combinations , Glycerides/administration & dosage , Injections, Subcutaneous , Male , Models, Neurological , Monoacylglycerol Lipases/antagonists & inhibitors , Pain Measurement , Rats , Rats, Wistar
8.
J Biol Chem ; 279(8): 6595-605, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14660630

ABSTRACT

Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells.


Subject(s)
Ascites/metabolism , Lysophospholipids/metabolism , Pancreatic Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Adult , Animals , Blotting, Northern , Cell Adhesion , Cell Division , Cell Line, Tumor , Cell Movement , Chromatography, Thin Layer , Dose-Response Relationship, Drug , Epidermal Growth Factor/metabolism , Female , Humans , Isoxazoles/pharmacology , Lipids , Male , Mice , Mice, Inbred BALB C , Middle Aged , Monoacylglycerol Lipases/pharmacology , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Pertussis Toxin/pharmacology , Propionates/pharmacology , RNA, Messenger/metabolism , Receptors, Lysophosphatidic Acid , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...