Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749176

ABSTRACT

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Subject(s)
Apolipoproteins E , Blood-Brain Barrier , Mice, Transgenic , Oligonucleotides, Antisense , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/pharmacokinetics , Humans , Apolipoproteins E/metabolism , Mice , Morpholinos/administration & dosage , Morpholinos/pharmacokinetics , Morpholinos/pharmacology , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Muscular Atrophy, Spinal/drug therapy , Drug Delivery Systems/methods , Fibroblasts/metabolism , Fibroblasts/drug effects , Brain/metabolism , Brain/drug effects , Peptides/administration & dosage , Peptides/pharmacology , Peptides/chemistry , Peptides/pharmacokinetics , Cell-Penetrating Peptides/chemistry
2.
J Neuromuscul Dis ; 9(1): 39-52, 2022.
Article in English | MEDLINE | ID: mdl-34420980

ABSTRACT

BACKGROUND: Studies 4658-201/202 (201/202) evaluated treatment effects of eteplirsen over 4 years in patients with Duchenne muscular dystrophy and confirmed exon-51 amenable genetic mutations. Chart review Study 4658-405 (405) further followed these patients while receiving eteplirsen during usual clinical care. OBJECTIVE: To compare long-term clinical outcomes of eteplirsen-treated patients from Studies 201/202/405 with those of external controls. METHODS: Median total follow-up time was approximately 6 years of eteplirsen treatment. Outcomes included loss of ambulation (LOA) and percent-predicted forced vital capacity (FVC%p). Time to LOA was compared between eteplirsen-treated patients and standard of care (SOC) external controls and was measured from eteplirsen initiation in 201/202 or, in the SOC group, from the first study visit. Comparisons were conducted using univariate Kaplan-Meier analyses and log-rank tests, and multivariate Cox proportional hazards models with regression adjustment for baseline characteristics. Annual change in FVC%p was compared between eteplirsen-treated patients and natural history study patients using linear mixed models with repeated measures. RESULTS: Data were included from all 12 patients in Studies 201/202 and the 10 patients with available data from 405. Median age at LOA was 15.16 years. Eteplirsen-treated patients experienced a statistically significant longer median time to LOA by 2.09 years (5.09 vs. 3.00 years, p < 0.01) and significantly attenuated rates of pulmonary decline vs. natural history patients (FVC%p change: -3.3 vs. -6.0 percentage points annually, p < 0.0001). CONCLUSIONS: Study 405 highlights the functional benefits of eteplirsen on ambulatory and pulmonary function outcomes up to 7 years of follow-up in comparison to external controls.


Subject(s)
Disease Progression , Mobility Limitation , Morpholinos/pharmacology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Outcome Assessment, Health Care , Registries , Adolescent , Child , Humans , Male , Morpholinos/administration & dosage , Prospective Studies , Retrospective Studies , Time Factors , Vital Capacity , Walk Test
3.
Biochem Biophys Res Commun ; 587: 92-98, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34872004

ABSTRACT

Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/genetics , RNA, Messenger/genetics , RNA, Transfer/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Amino Acyl-tRNA Synthetases/classification , Amino Acyl-tRNA Synthetases/metabolism , Animals , Brain/growth & development , Brain/metabolism , Embryo, Nonmammalian , Gene Expression Profiling , Gene Ontology , Humans , Intestines/growth & development , Intestines/metabolism , Liver/growth & development , Liver/metabolism , Molecular Sequence Annotation , Morpholinos/administration & dosage , Morpholinos/genetics , Morpholinos/metabolism , Muscles/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/classification , Zebrafish Proteins/metabolism
4.
J Neuromuscul Dis ; 8(s2): S369-S381, 2021.
Article in English | MEDLINE | ID: mdl-34569970

ABSTRACT

BACKGROUND: Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is currently used in clinical development to treat Duchenne muscular dystrophy (DMD), with four exon-skipping drugs achieving regulatory approval. Exon skipping elicits a truncated, but semi-functional dystrophin protein, similar to the truncated dystrophin expressed in patients with Becker Muscular dystrophy (BMD) where the disease phenotype is less severe than DMD. Despite promising results in both dystrophic animal models and DMD boys, restoration of dystrophin by exon skipping is highly variable, leading to contradictory functional outcomes in clinical trials. OBJECTIVE: To develop optimal PMO dosing protocols that result in increased dystrophin and improved outcome measures in preclinical models of DMD. METHODS: Tested effectiveness of multiple chronic, high dose PMO regimens using biochemical, histological, molecular, and imaging techniques in mdx mice. RESULTS: A chronic, monthly regimen of high dose PMO increased dystrophin rescue in mdx mice and improved specific force in the extensor digitorum longus (EDL) muscle. However, monthly high dose PMO administration still results in variable dystrophin expression localized throughout various muscles. CONCLUSIONS: High dose monthly PMO administration restores dystrophin expression and increases muscle force; however, the variability of dystrophin expression at both the inter-and intramuscular level remains. Additional strategies to optimize PMO uptake including increased dosing frequencies or combination treatments with other yet-to-be-defined therapies may be necessary to achieve uniform dystrophin restoration and increases in muscle function.


Subject(s)
Dystrophin/drug effects , Morpholinos/administration & dosage , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Animals , Disease Models, Animal , Exons , Genetic Therapy , Male , Mice , Mice, Inbred mdx
5.
Nucleic Acids Res ; 49(11): 6100-6113, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34107015

ABSTRACT

Pulmonary diseases offer many targets for oligonucleotide therapeutics. However, effective delivery of oligonucleotides to the lung is challenging. For example, splicing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect a significant cohort of Cystic Fibrosis (CF) patients. These individuals could potentially benefit from treatment with splice switching oligonucleotides (SSOs) that can modulate splicing of CFTR and restore its activity. However, previous studies in cell culture used oligonucleotide transfection methods that cannot be safely translated in vivo. In this report, we demonstrate effective correction of a splicing mutation in the lung of a mouse model using SSOs. Moreover, we also demonstrate effective correction of a CFTR splicing mutation in a pre-clinical CF patient-derived cell model. We utilized a highly effective delivery strategy for oligonucleotides by combining peptide-morpholino (PPMO) SSOs with small molecules termed OECs. PPMOs distribute broadly into the lung and other tissues while OECs potentiate the effects of oligonucleotides by releasing them from endosomal entrapment. The combined PPMO plus OEC approach proved to be effective both in CF patient cells and in vivo in the mouse lung and thus may offer a path to the development of novel therapeutics for splicing mutations in CF and other lung diseases.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Lung/metabolism , Morpholinos/administration & dosage , RNA Splicing , Animals , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mice , Mutation , Peptides , Respiratory Mucosa/metabolism , Transfection
6.
Methods Mol Biol ; 2218: 49-60, 2021.
Article in English | MEDLINE | ID: mdl-33606222

ABSTRACT

The regulation of reproduction in zebrafish, the prime model of fish research, is not fully understood. An efficient tool to gain a better understanding of this complicated process is utilization of severely sex-biased families or groups. Here, we describe a method for partial depletion of primordial germ cells (PGCs) that leads to eventual masculinization of zebrafish. The technique is based on injecting early embryos with diluted morpholino oligonucleotides that temporarily interfere with the production of Dead end (Dnd), an RNA-binding protein essential for PGC survival. In addition, we also propose the use of eviscerated trunk, as a suitable alternative for examining gonadal expression in juvenile zebrafish.


Subject(s)
Embryo, Nonmammalian/drug effects , Germ Cells/drug effects , Morpholinos/administration & dosage , Oligonucleotides/administration & dosage , Animals , Embryo, Nonmammalian/metabolism , Female , Germ Cells/metabolism , Gonads/drug effects , Gonads/metabolism , Injections , Male , RNA-Binding Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
7.
Sci Rep ; 11(1): 1604, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452345

ABSTRACT

Myostatin is a negative regulator of muscle mass and its inhibition represents a promising strategy for the treatment of muscle disorders and type 2 diabetes. However, there is currently no clinically effective myostatin inhibitor, and therefore novel methods are required. We evaluated the use of antisense phosphorodiamidate morpholino oligomers (PMO) to reduce myostatin expression in skeletal muscle and measured their effects on muscle mass and glucose uptake. C57/Bl6 mice received intramuscular or intravenous injections of anti-myostatin PMOs. Repeated intramuscular administration lead to a reduction in myostatin transcript levels (~ 20-40%), and an increase in muscle mass in chow and high-fat diet (HFD)-fed mice, but insulin-stimulated glucose uptake was reduced in PMO-treated muscles of HFD-fed mice. Five weekly intravenous administrations of 100 nmol PMO did not reduce myostatin expression, and therefore had no significant physiological effects. Unexpectedly, exon skipping levels were higher after intramuscular administration of PMO in HFD- than chow-fed mice. These results suggest that a modest PMO-induced reduction in myostatin transcript levels is sufficient to induce an increase in muscle mass, but that a greater degree of inhibition may be required to improve muscle glucose uptake.


Subject(s)
Insulin Resistance , Morpholinos/administration & dosage , Myostatin/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Exons , Glucose/metabolism , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Morpholinos/metabolism , Muscle, Skeletal/metabolism , Myostatin/antagonists & inhibitors , Myostatin/genetics
8.
Bull Exp Biol Med ; 170(1): 58-63, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33237527

ABSTRACT

Mutations in pank2 gene encoding pantothenate kinase 2 determine a pantothenate kinase-associated neurodegeneration, a rare disorder characterized by iron deposition in the globus pallidus. To extend our previous work, we performed microinjections of a new pank2-specific morpholino to zebrafish embryos and thoroughly analyzed vasculature development. Vessels development was severely perturbed in the head, trunk, and tail, where blood accumulation was remarkable and associated with dilation of the posterior cardinal vein. This phenotype was specific as confirmed by p53 expression analysis and injection of the same morpholino in pank2-mutant embryos. We can conclude that pank2 gene is involved in vasculature development in zebrafish embryos. The comprehension of the underlining mechanisms could be of relevance for understanding of pantothenate kinase-associated neurodegeneration.


Subject(s)
Blood Vessels/metabolism , Coenzyme A/pharmacology , Globus Pallidus/metabolism , Pantothenate Kinase-Associated Neurodegeneration/prevention & control , Phosphotransferases (Alcohol Group Acceptor)/genetics , Animals , Blood Vessels/growth & development , Blood Vessels/pathology , Disease Models, Animal , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Globus Pallidus/blood supply , Globus Pallidus/drug effects , Globus Pallidus/pathology , Head/blood supply , Head/growth & development , Humans , Morpholinos/administration & dosage , Morpholinos/genetics , Morpholinos/metabolism , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Tail/blood supply , Tail/growth & development , Tail/metabolism , Torso/blood supply , Torso/growth & development , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish
9.
Bioconjug Chem ; 31(10): 2367-2382, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32986398

ABSTRACT

A nontoxic delivery vehicle is essential for the therapeutic applications of antisense phosphorodiamidate morpholino oligonucleotides (PMOs). Though guanidinium-rich or arginine-rich cellular transporter conjugated Vivo-PMO or PPMO has been developed for in vivo application, however, either their toxicity or stability has become an issue. Previously, we reported nonpeptidic internal guanidinium transporter (IGT) mediated delivery of PMO for gene silencing and got encouraging results. In this paper, we report the synthesis of IGT using a Hg-free method for scale up and N-terminal modification of IGT with a suitable hydrophobic or lipophilic group to improve the cell permeability, endosomal escape, and mitochondrial localization and to reduce toxicity in the MTT assay. For the delivery of PMO, IGT-PMO conjugate was synthesized to target NANOG in cells, a transcription factor required for cancer stem cell proliferation and embryonic development and is involved in many cancers. Our data shows IGT-PMO-facilitated NANOG inhibition, and thereby the prevention of EpCAM-N-Cadherin-Vimentin axis mediated epithelial to mesenchymal transition (EMT) in MCF-7 cells. Moreover, unlike taxol, NANOG inhibition influences the expression of stemness factor c-Myc, Hh-Gli signaling proteins, other cancer related factors, and their respective phenotypes in cancer cells. To the best of our knowledge, this is the first report to illustrate that the IGT-PMO-mediated NANOG inhibition increases the therapeutic potential of taxol and induces G0-G1 arrest in cancer cells to prevent cancer progression. However, it warrants further investigation in other cancer cells and preclinical platforms.


Subject(s)
Antineoplastic Agents/administration & dosage , Morpholinos/administration & dosage , Nanog Homeobox Protein/antagonists & inhibitors , Paclitaxel/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Carriers/chemistry , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , MCF-7 Cells , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Morpholinos/pharmacokinetics , Morpholinos/pharmacology , Nanog Homeobox Protein/genetics , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology
10.
J Med Chem ; 63(15): 8471-8484, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32677436

ABSTRACT

Despite recent advances, targeted delivery of therapeutic oligonucleotide to extra-hepatic tissues continues to be a challenging endeavor and efficient ligand-receptor systems need to be identified. To determine the feasibility of using neurotensin to improve the productive uptake of antisense oligonucleotides (ASO), we synthesized neurotensin-ASO conjugates and evaluated their cellular uptake and activity in cells and in mice. We performed a comprehensive structure-activity relationship study of the conjugates and determined the influence of ASO charge, ASO length, peptide charge, linker chemistry and ligand identity on receptor binding and internalization. We identified a modified neurotensin peptide capable of improving the cellular uptake and activity of gapmer ASOs in sortilin expressing cells (sixfold) and in spinal cord in mice (twofold). Neurotensin conjugation also improved the potency of morpholino ASO designed to correct splicing of survival motor neuron pre-mRNA in the cortex and striatum after intracerebroventricular injection. Neurotensin-mediated targeted delivery represents a possible approach for enhancing the potency of ASOs with diverse nucleic acid modifications.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Neurotensin/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacokinetics , Animals , HEK293 Cells , Humans , Mice, Inbred C57BL , Morpholinos/administration & dosage , Morpholinos/chemistry , Morpholinos/pharmacokinetics , Oligonucleotides, Antisense/chemistry
11.
Mol Ther ; 28(5): 1339-1358, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32209436

ABSTRACT

The need to distribute therapy evenly systemically throughout the large muscle volume within the body makes Duchenne muscular dystrophy (DMD) therapy a challenge. Cell and exon-skipping therapies are promising but have limited effects, and thus enhancing their therapeutic potency is of paramount importance to increase the accessibility of these therapies to DMD patients. In this study, we demonstrate that co-administered glycine improves phosphorodiamidate morpholino oligomer (PMO) potency in mdx mice with marked functional improvement and an up to 50-fold increase of dystrophin in abdominal muscles compared to PMO in saline. Glycine boosts satellite cell proliferation and muscle regeneration by increasing activation of mammalian target of rapamycin complex 1 (mTORC1) and replenishing the one-carbon unit pool. The expanded regenerating myofiber population then results in increased PMO uptake. Glycine also augments the transplantation efficiency of exogenous satellite cells and primary myoblasts in mdx mice. Our data provide evidence that glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in mdx mice, and thus it has therapeutic utility for cell therapy and drug delivery in muscle-wasting diseases.


Subject(s)
Cell Proliferation/drug effects , Cell Transplantation/methods , Glycine Agents/administration & dosage , Glycine/administration & dosage , Morpholinos/administration & dosage , Muscular Dystrophy, Duchenne/drug therapy , Myoblasts/transplantation , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/transplantation , Animals , Disease Models, Animal , Drug Synergism , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/physiology , Regeneration/drug effects , Signal Transduction/drug effects , Treatment Outcome
12.
Article in English | MEDLINE | ID: mdl-32061751

ABSTRACT

Carboxyl ester lipase (Cel), is a lipolytic enzyme secreted by the pancreas, which hydrolyzes various species of lipids in the gut. Cel is also secreted by mammary gland during lactation and exists in breast milk. It facilitates dietary fat digestion and absorption, thus contributing to normal infant development. This study aimed to examine whether the Cel in zebrafish embryos has a similar role of maternal lipid utilization as in human infants, and how Cel contributes to the utilization of yolk lipids in zebrafish. The cel1 and cel2 genes were expressed ubiquitously in the blastodisc and yolk syncytial layer before 24 hpf, and in the exocrine pancreas after 72 hpf. The cel1 and cel2 morphants exhibited developmental retardation and yolk sac retention. The total cholesterol, cholesterol ester, free cholesterol, and triglyceride were reduced in the morphants' body while accumulated in the yolk (except triglyceride). The FFA content of whole embryos was much lower in morphants than in standard controls. Moreover, the delayed development in cel (cel1/cel2) double morphants was partially rescued by FFA and cholesterol supplementation. Delayed and weakened cholesterol ester transport to the brain and eyes was observed in cel morphants. Correspondingly, shrunken midbrain tectum, microphthalmia, pigmentation-delayed eyes as well as down-regulated Shh target genes were observed in the CNS of double morphants. Interestingly, cholesterol injections reversed these CNS alterations. Our findings suggested that cel genes participate in the lipid releasing from yolk sac to developing body, thereby contributing to the normal growth rate and CNS development in zebrafish.


Subject(s)
Carboxylesterase/metabolism , Gene Expression Regulation, Developmental , Growth Disorders/genetics , Yolk Sac/enzymology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified , Carboxylesterase/genetics , Central Nervous System/embryology , Cholesterol/metabolism , Cholesterol Esters/metabolism , Disease Models, Animal , Embryo, Nonmammalian , Embryonic Development , Gene Knockdown Techniques , Growth Disorders/embryology , Growth Disorders/enzymology , Hedgehog Proteins/metabolism , Humans , Lipid Metabolism , Morpholinos/administration & dosage , Morpholinos/genetics , Pancreas, Exocrine/embryology , Pancreas, Exocrine/enzymology , Triglycerides/metabolism , Yolk Sac/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
13.
Hepatology ; 72(5): 1786-1799, 2020 11.
Article in English | MEDLINE | ID: mdl-32060934

ABSTRACT

BACKGROUND AND AIMS: During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. APPROACH AND RESULTS: Exposure of zebrafish embryos to 17ß-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor (ESR) signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear ESR activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b-/- mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages, or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, whereas loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSIONS: Our studies identify E2, esr2b, and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.


Subject(s)
Biliary Tract/embryology , Estradiol/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Developmental , Liver/embryology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Biliary Tract/cytology , Biliary Tract/metabolism , Cell Differentiation/genetics , Cell Line , Embryo, Nonmammalian , Estradiol/administration & dosage , Estrogen Receptor beta/genetics , Female , Gene Knockdown Techniques , Hepatocytes/physiology , Liver/cytology , Liver/metabolism , Male , Models, Animal , Morpholinos/administration & dosage , Morpholinos/genetics , Signal Transduction/genetics , Stem Cells/physiology , Zebrafish , Zebrafish Proteins/genetics
14.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165662, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31917327

ABSTRACT

Pompe disease (PD) is an autosomal recessive muscular disorder caused by deficiency of the glycogen hydrolytic enzyme acid α-glucosidase (GAA). The enzyme replacement therapy, currently the only available therapy for PD patients, is efficacious in improving cardiomyopathy in the infantile form, but not equally effective in the late onset cases with involvement of skeletal muscle. Correction of the skeletal muscle phenotype has indeed been challenging, probably due to concomitant dysfunctional autophagy. The increasing attention to the pathogenic mechanisms of PD and the search of new therapeutic strategies prompted us to generate and characterize a novel transient PD model, using zebrafish. Our model presented increased glycogen content, markedly altered motor behavior and increased lysosome content, in addition to altered expression of the autophagy-related transcripts and proteins Beclin1, p62 and Lc3b. Furthermore, the model was used to assess the beneficial effects of 3-bromopyruvic acid (3-BrPA). Treatment with 3-BrPA induced amelioration of the model phenotypes regarding glycogen storage, motility behavior and autophagy-related transcripts and proteins. Our zebrafish PD model recapitulates most of the defects observed in human patients, proving to be a powerful translational model. Moreover, 3-BrPA unveiled to be a promising compound for treatment of conditions with glycogen accumulation.


Subject(s)
Glycogen Storage Disease Type II/drug therapy , Glycogen/metabolism , Hexokinase/antagonists & inhibitors , Pyruvates/pharmacology , Animals , Animals, Genetically Modified , Autophagy/drug effects , Drug Evaluation, Preclinical , Gene Knockdown Techniques , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Glycolysis/drug effects , Hexokinase/metabolism , Humans , Lysosomes , Microscopy, Electron , Morpholinos/administration & dosage , Morpholinos/genetics , Motor Activity/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Pyruvates/therapeutic use , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
15.
Methods Mol Biol ; 2047: 25-43, 2020.
Article in English | MEDLINE | ID: mdl-31552647

ABSTRACT

The cnidarian sea anemone Nematostella vectensis has grown in popularity as a model system to complement the ongoing work in traditional bilaterian model species (e.g. Drosophila, C. elegans, vertebrate). The driving force behind developing cnidarian model systems is the potential of this group of animals to impact EvoDevo studies aimed at better determining the origin and evolution of bilaterian traits, such as centralized nervous systems. However, it is becoming apparent that cnidarians have the potential to impact our understanding of regenerative neurogenesis and systems neuroscience. Next-generation sequencing and the development of reverse genetic approaches led to functional genetics becoming routine in the Nematostella system. As a result, researchers are beginning to understand how cnidarian nerve nets are related to the bilaterian nervous systems. This chapter describes the methods for morpholino and mRNA injections to knockdown or overexpress genes of interest, respectively. Carrying out these techniques in Nematostella requires obtaining and preparing embryos for microinjection, designing and generating effective morpholino and mRNA molecules with controls for injection, and optimizing injection conditions.


Subject(s)
Reverse Genetics/methods , Sea Anemones/embryology , Animals , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Microinjections , Morpholinos/administration & dosage , Morpholinos/pharmacology , Neurogenesis , RNA, Messenger/administration & dosage , RNA, Messenger/pharmacology , Sea Anemones/genetics
16.
Methods Mol Biol ; 2047: 377-395, 2020.
Article in English | MEDLINE | ID: mdl-31552666

ABSTRACT

Antisense morpholino oligonucleotides (MOs) have become a valuable method to knockdown protein levels, to block with mRNA splicing and to interfere with miRNA function. MOs are widely used to alter gene expression in development of Xenopus and Zebrafish, where they are typically injected into the fertilized egg or blastomeres. Here we present methods to use electroporation to target delivery of MOs to the central nervous system of Xenopus laevis or Xenopus tropicalis tadpoles. Briefly, MO electroporation is accomplished by injecting MO solution into the brain ventricle and driving the MOs into cells of the brain with current passing between 2 platinum plate electrodes, positioned on either side of the target brain area. The method is relatively straightforward and uses standard equipment found in many neuroscience labs. A major advantage of electroporation is that it allows spatial and temporal control of MO delivery and therefore knockdown. Co-electroporation of MOs with cell type-specific fluorescent protein expression plasmids allows morphological analysis of cellular phenotypes. Furthermore, co-electroporation of MOs with rescuing plasmids allows assessment of specificity of the knockdown and phenotypic outcome. By combining MO-mediated manipulations with sophisticated assays of neuronal function, such as electrophysiological recording, behavioral assays, or in vivo time-lapse imaging of neuronal development, the functions of specific proteins and miRNAs within the developing nervous system can be elucidated. These methods can be adapted to apply antisense morpholinos to study protein and RNA function in a variety of complex tissues.


Subject(s)
Morpholinos/administration & dosage , Oligonucleotides, Antisense/administration & dosage , Xenopus/growth & development , Animals , Brain/growth & development , Electrophysiological Phenomena , Electroporation/instrumentation , Gene Knockdown Techniques , Morpholinos/pharmacology , Phenotype , Time-Lapse Imaging , Xenopus/genetics
17.
Biochemistry ; 58(38): 3980-3989, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31450889

ABSTRACT

Phosphorodiamidate morpholino oligonucleotides (PMOs) make up a promising class of therapeutics for genetic disease. PMOs designed for "exon skipping" must be internalized into cells, reach the nucleus, and act on pre-mRNA to mediate their effects. One tactic for improving PMO delivery and exon skipping is to covalently conjugate PMOs to cell-penetrating peptides (CPPs). Here, we report the synthesis of PMOs conjugated to CPP chimeras, constructed by combining multiple CPPs into one sequence. The chimeric CPPs synergistically improve PMO activity up to 70-fold compared to that of the PMO alone and beyond the expected effects of each component peptide. By investigating the design space of CPP chimeras, we demonstrate that all components must be covalently attached, that the order of the two sequences matters, and that peptide identity can tune activity. We identified one chimera (pVEC-Bpep) to investigate in more detail and found that it engages mechanisms of endocytosis different from those of its parent peptides. We also examined the extent to which the beneficial effect comes from improved cellular uptake as opposed to the downstream steps required for exon skipping. Given the complexity of intracellular delivery, we anticipate this work will lead researchers to consider combining molecules with different physicochemical properties to aid in the delivery of biologic cargoes.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Drug Carriers/pharmacology , Morpholinos/administration & dosage , Oligonucleotides, Antisense/administration & dosage , Recombinant Fusion Proteins/pharmacology , Cell Membrane Permeability/drug effects , Cell-Penetrating Peptides/genetics , Drug Synergism , Exons/genetics , Genetic Therapy/methods , HeLa Cells , Humans , Intravital Microscopy , Microscopy, Confocal , Proof of Concept Study , Recombinant Fusion Proteins/genetics
18.
Malar J ; 18(1): 294, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31462239

ABSTRACT

BACKGROUND: Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). METHODS: To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. RESULTS: Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. CONCLUSIONS: Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Insecticides , Morpholinos/administration & dosage , Pyrethrins , RNA, Antisense/genetics , ATP Binding Cassette Transporter, Subfamily G/genetics , Animals , Biological Assay , Larva/genetics , Malaria/prevention & control , Morpholinos/genetics , Mosquito Control , Mosquito Vectors , RNA Interference , RNA, Small Interfering
19.
Methods Enzymol ; 624: 69-88, 2019.
Article in English | MEDLINE | ID: mdl-31370936

ABSTRACT

Caged morpholino oligonucleotides (cMOs) are useful research tools in developmental biology because they allow spatiotemporal control of gene expression in whole organisms. While cMOs are usually triggered by light of a single wavelength, the introduction of spectrally distinct chromophores can enable combinatorial regulation of multiple genes. This chapter describes the general principles and methods of wavelength-selective cMO design and synthesis from commercially available reagents. Synthetic protocols for the linkers and the two-step cMO assembly are described in detail, as well as the microinjection and photoactivation techniques. Following these protocols, spectrally separated cyclic cMOs for multiple genes of interest can be prepared, enabling their inhibition in zebrafish embryos and other animal models.


Subject(s)
Gene Silencing , Morpholinos/genetics , Oligonucleotides, Antisense/genetics , Zebrafish/genetics , Animals , Chemistry Techniques, Synthetic/methods , Light , Microinjections , Morpholinos/administration & dosage , Morpholinos/chemical synthesis , Morpholinos/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/chemical synthesis , Oligonucleotides, Antisense/chemistry , Photochemical Processes , Zebrafish/embryology
20.
Cell Death Dis ; 10(8): 582, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31378782

ABSTRACT

Mutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.


Subject(s)
Heart Defects, Congenital/metabolism , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Wnt Proteins/pharmacology , Wnt-5a Protein/pharmacology , Zebrafish/embryology , Animals , Cell Differentiation/genetics , Cell Line , Disease Models, Animal , Female , Heart Defects, Congenital/prevention & control , Male , Mice , Mice, Knockout , Morpholinos/administration & dosage , Morpholinos/pharmacology , Recombinant Proteins/pharmacology , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...