Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Neotrop Entomol ; 53(4): 987-996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918340

ABSTRACT

Mosquitoes (Diptera: Culicidae) pose a significant threat to public health worldwide, especially in tropical and subtropical regions, where they act as primary vectors in transmission of infectious agents. In Peru, 182 culicid species have been identified and several species of the genus Culex are known to transmit arboviruses. However, knowledge of mosquito diversity and distribution remains limited, with many studies focusing on specific regions only. Here, we describe a new morphological variation of Cx. (Culex) coronator Dyar and Knab, 1906, and report the presence of Culex (Carrollia) bonnei Dyar, 1921 in the central region of Peru, Huanuco. Specimens were obtained through larvae collections and identified through morphologic characterization, including dissection of male genitalia, and molecular analyses. In total, 17 mosquitoes were analyzed, and the genitalia of the male specimens allowed the identification of Cx. coronator and Cx. bonnei. Partial sequences of the CoxI gene corresponding to these two species were obtained (N = 10). Phylogenetic analysis revealed that the sequences of Cx. coronator grouped in a monophyletic clade with sequences ascribed to other species corresponding to the subgenus Carrollia, while Cx. bonnei specimens formed a monophyletic clade with homologous sequences from GenBank. This study underscores the importance of continued efforts to study the diversity and distribution of mosquitoes in Peru, including their potential role as vectors of human pathogens, to underpin effective disease control and prevention strategies, highlighting the importance of a complemented morphological and molecular analysis.


Subject(s)
Culex , Animals , Peru , Culex/anatomy & histology , Culex/classification , Male , Larva/anatomy & histology , Larva/classification , Genitalia, Male/anatomy & histology , Phylogeny , Female , Mosquito Vectors/anatomy & histology
2.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
3.
PLoS One ; 19(5): e0298412, 2024.
Article in English | MEDLINE | ID: mdl-38781219

ABSTRACT

The equine South African pointy vector mosquito, Aedes caballus, poses a significant threat to human health due to its capacity for transmitting arboviruses. Despite favorable climate for its existence in southeast Iran, previous records of this species in the area have indicated very low abundance. This comprehensive field and laboratory study aimed to assess its current adult population status in this region, utilizing a combination of ecological, morphological and molecular techniques. Four distinct types of traps were strategically placed in three fixed and two variable mosquito sampling sites in the southern strip of Sistan and Baluchistan Province. Subsequently, DNA was extracted from trapped mosquitoes and subjected to PCR amplification using the molecular markers COI, ITS2, and ANT. In total, 1734 adult Ae. caballus specimens were collected from rural areas, with the majority being captured by CO2-baited bednet traps. A notable increase in the abundance of this species was observed following rainfall in February. The genetic analysis revealed multiple haplotypes based on COI and ITS2 sequences, with COI gene divergence at 0.89%, and ITS2 sequence divergence at 1.6%. This suggests that previous challenges in morphological identification may have led to misidentifications, with many adults previously classified as Ae. vexans potentially being Ae. caballus. The findings of this study hold significant implications for public health authorities, providing valuable insights for integrated and targeted vector control and disease management efforts.


Subject(s)
Aedes , Mosquito Vectors , Animals , Iran , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Aedes/genetics , Aedes/classification , Aedes/anatomy & histology , Horses/genetics , Phylogeny , Haplotypes , Female , Electron Transport Complex IV/genetics
4.
Acta Trop ; 256: 107276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821146

ABSTRACT

Culex gelidus (Diptera: Culicidae), an important vector of the Japanese encephalitis virus (JEV), contributes to human viral encephalitis in many Asian countries, including Thailand. This study represents the first investigation of the demographic patterns of Cx. gelidus populations in Thailand using cytochrome c oxidase subunit I (COI) gene analysis and wing geometric morphometrics (GM). Mosquitoes were collected from 10 provinces across six regions of Thailand in 2022. Analysis of the COI sequences (n = 182) indicated high haplotype diversity (0.882) and low nucleotide diversity (0.006), with 72 haplotypes identified. The haplotype network demonstrated no profound splits among the geographic populations. Neutral tests, including Tajima's D and Fu's Fs, displayed negative values, with a significant result observed for Fu's Fs (-33.048, p < 0.05). The mismatch distribution analysis indicated that the population does not statistically deviate from a model of sudden population expansion (SSD = 0.010, p > 0.05; Rg = 0.022, p > 0.05). The estimations suggest that the Cx. gelidus population in Thailand began its expansion approximately between 459,243 and 707,011 years ago. The Mantel test showed no significant relationship between genetic and geographic distances (r = 0.048, p > 0.05). Significant phenotypic differences (based on wing shape) were observed among most populations. Additionally, in this study, we found no significant relationships between phenotypic and genetic distances (r = 0.250, p > 0.05). Understanding the genetic and morphological dynamics of Cx. gelidus is vital for developing targeted surveillance and vector control measures. This knowledge will also help to predict how future environmental changes might affect these populations, thereby informing long-term vector management strategies.


Subject(s)
Culex , Electron Transport Complex IV , Mosquito Vectors , Wings, Animal , Animals , Thailand , Culex/genetics , Culex/virology , Culex/anatomy & histology , Electron Transport Complex IV/genetics , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Mosquito Vectors/virology , Wings, Animal/anatomy & histology , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Female , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/genetics , Male , Phylogeny
5.
Vector Borne Zoonotic Dis ; 24(4): 237-244, 2024 04.
Article in English | MEDLINE | ID: mdl-38306182

ABSTRACT

Background: Haemagogus janthinomys is a primary sylvan vector of yellow fever virus and the emerging Mayaro virus. However, despite its medical importance, there is a dearth of data on the molecular taxonomy of this mosquito species. Methods: In this study, DNA barcoding analysis was performed on 64 adult female mosquitoes from Trinidad morphologically identified as Hg. janthinomys. The mitochondrial cytochrome c oxidase I (COI) gene and ribosomal DNA internal transcribed spacer 2 (ITS2) region of the mosquitoes were PCR amplified and sequenced, and molecular phylogenies inferred. Results: The BLASTN analysis showed that only 20% (n = 13/66) of COI sequences had high similarity (>99% identity) to Hg. janthinomys and the remaining sequences had low similarity (<90% identity) to reference GenBank sequences. Phylogenetic analysis of COI sequences revealed the presence of four strongly supported groups, with one distinct clade that did not align with any reference sequences. Corresponding ITS2 sequences for samples in this distinct COI group clustered into three clades. Conclusions: These molecular findings suggest the existence of a putative new Haemagogus mosquito species and underscore the need for further, more in-depth investigations into the taxonomy and classification of the Haemagogus genus.


Subject(s)
Culicidae , Animals , Female , DNA Barcoding, Taxonomic/veterinary , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Phylogeny , Trinidad and Tobago
6.
Acta Trop ; 248: 107028, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37730192

ABSTRACT

Accurate classification and identification of mosquitoes are essential for the prevention and control of mosquito-borne diseases. In this study, adult mosquitoes were collected from 15 cities across 14 provinces in China. They were identified morphologically with the dominant species determined. Furthermore, representative samples were identified at the molecular level based on rDNA 28S D5. In total, 880 adult mosquitoes were collected belonging to Culex (266), Aedes (473), Armigeres (13), and Anopheles (5). Aedes albopictus and "C. pipiens subgroup" were the dominant species. A total of 140 sequences of 28S D5 region (68 for "C. pipiens subgroup", 51 for Ae. albopictus, 18 for Ar. subalbatus, and three for An. sinensis) ranging from 148 to 161 bp were obtained, with 100 % success of amplification and sequencing. Molecular identification were consistent with morphological classification. Sequence analysis showed that "C. pipiens subgroup" was identified into three clades: the traditional C. pipiens subgroup (Clade I), the newly discovered C. cf. perexiguus (Clade II), and C. new sp. (Clade III). Clade I contained the most abundant haplotypes (16) widely distributed without geographical differences. Clade II included six haplotypes that were aggregately distributed south of the Yangtze River. Only three sequences in Clade III showed two haplotypes with no geographical differences. Further morphological comparisons demonstrated differences in body color, beaks, and abdomens among the three clades. In conclusion, the rDNA 28S D5 region could effectively distinguish Culex, Aedes, Armigeres, and Anopheles species at the lower category level, demonstrating its potential as a mini-DNA barcode for mosquito identification.


Subject(s)
Aedes , Anopheles , Culex , Animals , DNA, Ribosomal/genetics , Culex/genetics , Anopheles/genetics , Aedes/genetics , China , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology
7.
J Vector Borne Dis ; 60(1): 88-93, 2023.
Article in English | MEDLINE | ID: mdl-37026224

ABSTRACT

BACKGROUND & OBJECTIVES: Every year more than one billion people are infected and about one million people die from vector-borne diseases; of which mosquito-borne diseases remain as the world's most severe insect-borne diseases with excessive rates of morbidity and mortality. This study aimed to examine the mosquito vectors and the possible diseases transmitted by them in the Mananthavady Taluk of Wayanad, Kerala. METHODS: The area selected for the present study was Mananthavady Taluk of Wayanad district, Kerala, during 2019-2021. The collected specimen were subjected for morphological identification using taxonomic keys and were confirmed by DNA barcoding. Molecular phylogeny assessment was done for the collected species of vector mosquitoes. RESULTS: A total of 17 mosquito species belonging to 5 genera, Anopheles, Aedes, Culex, Mansonia and Armigereswere identified. The mitochondrial COI gene sequences generated for molecular identification of these species were submitted to NCBI GenBank. INTERPRETATION & CONCLUSION: Overall, this study extends our understanding of the molecular evolution of mosquito vectors of medical and veterinary concern, which could aid in developing biotechnological approaches used in Culicidae control programs.


Subject(s)
Aedes , Anopheles , Culex , Culicidae , Animals , Humans , Mosquito Vectors/anatomy & histology , Phylogeny , Culicidae/genetics , Anopheles/genetics , Aedes/genetics , India
8.
Infect Genet Evol ; 97: 105193, 2022 01.
Article in English | MEDLINE | ID: mdl-34933127

ABSTRACT

BACKGROUND: Aedes scapularis is a neotropical mosquito that is competent to vector viruses and filariae. It is reputed to be highly morphologically and genetically polymorphic, facts that have raised questions about whether it is a single taxonomic entity. In the last five decades, authors have posed the hypothesis that it could actually be a species complex under incipient speciation. Due to its epidemiological importance, its taxonomic status should be determined with confidence. AIM AND METHOD: Our objective was to investigate more deeply the polymorphism of Ae. scapularis to detect any evidence of incipient speciation of cryptic species. We then compared populational samples from the Southeastern, Northern and Northeastern regions of Brazil. The biological markers used in the comparison were: the complete mitochondrial DNA, the isolated mitochondrial gene cytochrome oxidase subunit I (COI) and wing geometry. RESULTS AND DISCUSSION: As expected, high morphological/genetic polymorphism was observed in all Ae. scapularis populations, however it was not indicative of segregation or incipient speciation. There was no correlation between wing shape and the geographical origin of the populations analysed. A congruent observation resulted from the analysis of the COI gene, which revealed a high number of haplotypes (51) and no clusterization of populational samples according to the original biomes. In the phylogenetic analysis of the 13 mitochondrial protein-coding genes, the Ae. scapularis clade clustered with maximum support (100% bootstrap support and posterior probability of 1). No significant internal structure was observed in the Ae. scapularis clade, which was nearly a polytomy. Taken together, our results indicate that this species is not a species complex. CONCLUSION: We conclude that there was no indication, in the analysed regions, of the occurrence of more than one taxon in the species Ae. scapularis, despite it being highly polymorphic. By ruling out the former species complex hypothesis, our phylogenetic results reinforce that Ae. scapularis is a single taxonomic unit and should be monitored with standardized surveillance and control methods.


Subject(s)
Aedes/anatomy & histology , Aedes/genetics , Mosquito Vectors/anatomy & histology , Mosquito Vectors/genetics , Animals , Arbovirus Infections/transmission , Female , Filariasis/transmission
9.
Am J Trop Med Hyg ; 106(2): 582-584, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749310

ABSTRACT

Transovarial transmission (TOT) of dengue virus (DENV) in Aedes spp. is an important mechanism for DENV maintenance in nature and may be important in initiating outbreaks. The objective of this study was to explore the occurrence of TOT in wild Aedes albopictus populations in Cuba. Mosquito larvae were collected in Cotorro municipality, Havana, Cuba, and identified to species. Fifteen pools of Ae. albopictus each containing 30 larvae were processed for DENV detection by using conventional reverse transcription polymerase chain reaction (RT-PCR) and nested PCR. Four out of 15 pools processed were positive for DENV-3, but no other DENV serotype was detected. This is the first time TOT of DENV detected in Cuban field populations of Ae. albopictus, and this suggests that this species may be an important vector of DENV in Cuba.


Subject(s)
Aedes/virology , Dengue Virus/genetics , Mosquito Vectors/virology , Ovary/virology , Aedes/anatomy & histology , Animals , Cuba , Dengue/transmission , Dengue/virology , Dengue Virus/classification , Dengue Virus/physiology , Female , Larva/virology , Mosquito Vectors/anatomy & histology , Serogroup
10.
PLoS One ; 16(11): e0260333, 2021.
Article in English | MEDLINE | ID: mdl-34843516

ABSTRACT

Mosquitoes are hematophagous insects that transmit parasites and pathogens with devastating effects on humans, particularly in subtropical regions. Different mosquito species display various behaviors, breeding sites, and geographic distribution; however, they can be difficult to distinguish in the field due to morphological similarities between species and damage caused during trapping and transportation. Vector control methods for controlling mosquito-borne disease epidemics require an understanding of which vector species are present in the area as well as the epidemiological patterns of disease transmission. Although molecular techniques can accurately distinguish between mosquito species, they are costly and laborious, making them unsuitable for extensive use in the field. Thus, alternative techniques are required. Geometric morphometrics (GM) is a rapid and inexpensive technique that can be used to analyze the size, shape, and shape variation of individuals based on a range of traits. Here, we used GM to analyze the wings of 1,040 female mosquitoes from 12 different species in Thailand. The right wing of each specimen was removed, imaged microscopically, and digitized using 17 landmarks. Wing shape variation among genera and species was analyzed using canonical variate analysis (CVA), while discriminant function analysis was used to cross-validate classification reliability based on Mahalanobis distances. Phenetic relationships were constructed to illustrate the discrimination patterns for genera and species. CVA of the morphological variation among Aedes, Anopheles, Armigeres, Culex, and Mansonia mosquito genera revealed five clusters. In particular, we demonstrated a high percentage of correctly-distinguished samples among Aedes (97.48%), Armigeres (96.15%), Culex (90.07%), and Mansonia (91.67%), but not Anopheles (64.54%). Together, these findings suggest that wing landmark-based GM analysis is an efficient method for identifying mosquito species, particularly among the Aedes, Armigeres, Culex, and Mansonia genera.


Subject(s)
Culicidae/anatomy & histology , Mosquito Vectors/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Culicidae/classification , Female , Image Processing, Computer-Assisted , Mosquito Vectors/classification , Software , Thailand
11.
PLoS Comput Biol ; 17(11): e1009102, 2021 11.
Article in English | MEDLINE | ID: mdl-34807904

ABSTRACT

Mosquitoes vector harmful pathogens that infect millions of people every year, and developing approaches to effectively control mosquitoes is a topic of great interest. However, the success of many control measures is highly dependent upon ecological, physiological, and life history traits of mosquito species. The behavior of mosquitoes and their potential to vector pathogens can also be impacted by these traits. One trait of interest is mosquito body mass, which depends upon many factors associated with the environment in which juvenile mosquitoes develop. Our experiments examined the impact of larval density on the body mass of Aedes aegypti mosquitoes, which are important vectors of dengue, Zika, yellow fever, and other pathogens. To investigate the interactions between the larval environment and mosquito body mass, we built a discrete time mathematical model that incorporates body mass, larval density, and food availability and fit the model to our experimental data. We considered three categories of model complexity informed by data, and selected the best model within each category using Akaike's Information Criterion. We found that the larval environment is an important determinant of the body mass of mosquitoes upon emergence. Furthermore, we found that larval density has greater impact on body mass of adults at emergence than on development time, and that inclusion of density dependence in the survival of female aquatic stages in models is important. We discuss the implications of our results for the control of Aedes mosquitoes and on their potential to spread disease.


Subject(s)
Aedes/growth & development , Models, Biological , Aedes/anatomy & histology , Aedes/virology , Animals , Body Size , Computational Biology , Environment , Female , Food , Larva/growth & development , Mathematical Concepts , Mosquito Vectors/anatomy & histology , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Time Factors
12.
Parasit Vectors ; 14(1): 534, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34649599

ABSTRACT

BACKGROUND: Aedes koreicus is a mosquito species characterized by marked anthropophilic behavior, and a potential vector of nematodes and viruses. It is native to East Asia, but its presence has recently been reported in many regions of Europe. In Italy, these mosquitoes had been detected in the northeast since 2011 and are now spreading towards the southwest of the country. METHODS: In 2020, during a surveillance program for invasive mosquito species in the district of Bergamo (Lombardy Region, Italy), about 6000 mosquito larvae were collected. Emerged adults were assigned to mosquito species according to morphological analyses, followed by amplification and sequencing of genetic markers (COI, ND4, ITS2 and D2). RESULTS: According to the morphological and genetic data, about 50 individuals belonged to the species Ae. koreicus. CONCLUSION: We report the presence of Ae. koreicus in the district of Bergamo, which confirms the spread of this species in the north of Italy and raises concerns about its possible role as a vector of diseases in the Alpine area.


Subject(s)
Aedes/physiology , Introduced Species , Mosquito Vectors/physiology , Aedes/anatomy & histology , Aedes/classification , Aedes/genetics , Animal Distribution , Animals , Female , Italy , Larva/physiology , Male , Mosquito Vectors/anatomy & histology , Mosquito Vectors/classification , Mosquito Vectors/genetics
13.
Infect Genet Evol ; 95: 105034, 2021 11.
Article in English | MEDLINE | ID: mdl-34384936

ABSTRACT

Geometric morphometrics allows researchers to use the specific software to quantify and to visualize morphological differences between taxa from insect wings. Our objective was to assess wing geometry to distinguish four Anopheles sibling species of the Maculipennis complex, An. maculipennis s. s., An. daciae sp. inq., An. atroparvus and An. melanoon, found in Northern Italy. We combined the geometric morphometric approach with different machine learning alghorithms: support vector machine (SVM), random forest (RF), artificial neural network (ANN) and an ensemble model (EN). Centroid size was smaller in An. atroparvus than in An. maculipennis s. s. and An. daciae sp. inq. Principal component analysis (PCA) explained only 33% of the total variance and appeared not very useful to discriminate among species, and in particular between An. maculipennis s. s. and An. daciae sp. inq. The performance of four different machine learning alghorithms using procrustes coordinates of wing shape as predictors was evaluated. All models showed ROC-AUC and PRC-AUC values that were higher than the random classifier but the SVM algorithm maximized the most metrics on the test set. The SVM algorithm with radial basis function allowed the correct classification of 83% of An. maculipennis s. s. and 79% of An. daciae sp. inq. ROC-AUC analysis showed that three landmarks, 11, 16 and 15, were the most important procrustes coordinates in mean wing shape comparison between An. maculipennis s. s. and An. daciae sp. inq. The pattern in the three-dimensional space of the most important procrustes coordinates showed a clearer differentiation between the two species than the PCA. Our study demonstrated that machine learning algorithms could be a useful tool combined with the wing geometric morphometric approach.


Subject(s)
Anopheles/classification , Entomology/instrumentation , Machine Learning , Mosquito Vectors/classification , Animals , Anopheles/anatomy & histology , Female , Male , Mosquito Vectors/anatomy & histology
14.
Sci Rep ; 11(1): 13656, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211009

ABSTRACT

With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.


Subject(s)
Culicidae/classification , Neural Networks, Computer , Algorithms , Animals , Culicidae/anatomy & histology , Databases, Factual , Image Processing, Computer-Assisted/methods , Mosquito Vectors/anatomy & histology , Mosquito Vectors/classification
15.
Sci Rep ; 11(1): 9908, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972645

ABSTRACT

Classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.


Subject(s)
Aedes/classification , Deep Learning , Entomology/methods , Image Interpretation, Computer-Assisted/methods , Mosquito Vectors/classification , Adult , Aedes/anatomy & histology , Aedes/virology , Animals , Datasets as Topic , Dengue/prevention & control , Dengue/transmission , Dengue/virology , Entomology/statistics & numerical data , Female , Humans , Image Interpretation, Computer-Assisted/statistics & numerical data , Insecticide Resistance , Male , Middle Aged , Mosquito Control/methods , Mosquito Vectors/anatomy & histology , Mosquito Vectors/virology , Video Recording
16.
Malar J ; 20(1): 132, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663534

ABSTRACT

BACKGROUND: In spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans. Plasmodium falciparum is the dominant malaria parasite in sub-Saharan Africa. However, Plasmodium vivax is becoming widely spread throughout Africa. The overuse of vector control methods has resulted in a remarkable change in the behaviour of mosquito that feeds on human as well as on vector composition. The aim of this study was to identify Anopheles mosquito species in vivax malaria endemic regions and to investigate their role in P. vivax circumsporozoite protein (Pvcsp) allele diversity. METHODS: Mosquito samples were collected from Central Sudan (Rural Khartoum and Sennar) and Eastern Sudan (New Halfa, Kassala state) using pyrethrum spray catch (PSC) and CDC light traps. Mosquitoes were identified using appropriate morphological identification keys and Anopheles gambiae complex were confirmed to species level using molecular analysis. A subset of blood-fed anopheline mosquitoes were dissected to determine the presence of natural infection of malaria parasites. In addition, the rest of the samples were investigated for the presence of Pvcsp gene using nested-PCR. RESULTS: A total of 1037 adult anopheline mosquitoes were collected from New Halfa (N = 467), Rural Khartoum (N = 132), and Sennar (N = 438). Morphological and molecular identification of the collected mosquitoes revealed the presence of Anopheles arabiensis (94.2%), Anopheles funestus (0.5%), and Anopheles pharoensis (5.4%). None of the dissected mosquitoes (N = 108) showed to be infected with malaria parasite. Overall P. vivax infectivity rate was 6.1% (63/1037) by Pvcsp nested PCR. Co-dominance of An. arabiensis and An. pharoensis is reported in Sennar state both being infected with P. vivax. CONCLUSION: This study reported P. vivax infection among wild-caught anopheline mosquitoes in Central and Eastern Sudan. While An. arabiensis is the most abundant vector observed in all study areas, An. funestus was recorded for the first time in New Halfa, Eastern Sudan. The documented Anopheles species are implicated in Pvcsp allele diversity. Large-scale surveys are needed to identify the incriminated vectors of P. vivax malaria and determine their contribution in disease transmission dynamics.


Subject(s)
Anopheles/classification , Malaria, Vivax/transmission , Mosquito Vectors/classification , Plasmodium vivax/physiology , Animals , Anopheles/anatomy & histology , Anopheles/genetics , Female , Mosquito Vectors/anatomy & histology , Mosquito Vectors/genetics , Sudan
17.
Sci Rep ; 11(1): 6081, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727688

ABSTRACT

Although there are many studies on the control of mosquito vectors of the yellow fever virus (YFV) in tropical forests, there are still few ecological studies regarding abiotic factors effect on these mosquitoes. Here we characterize these effects on oviposition behavior, abundance, and diversity of mosquito vectors of YFV. The study was conducted in Córrego da Luz Municipal Park, in Casimiro de Abreu, Rio de Janeiro state, Brazil, from July 2018 to December 2019. Ovitraps were placed at ground level and 3 m high. The data were tested for normality using the Shapiro-Wilk test, followed by an independent sample analysis, the Mann-Whitney test. The Shannon Diversity Index was used to evaluate the abundance of mosquitos' eggs collected at both ground level and 3 m high. We highlight the presence of Haemagogus janthinomys and Hg. leucocelaenus, primary YFV vectors in forest areas. The abundance of Hg. leucocelaenus (63%), Hg. janthinomys (75%), and Aedes terrens (58%) was higher at the height of 3 m, while Ae. albopictus (52%) was higher at ground level. Aedes albopictus was positively correlated with temperature. Culicidae monitoring is essential for assessing the YFV transmission cycle in Atlantic forest fragments.


Subject(s)
Culicidae/physiology , Mosquito Vectors/physiology , Oviposition , Seasons , Aedes/anatomy & histology , Aedes/physiology , Aedes/virology , Animals , Brazil/epidemiology , Culicidae/anatomy & histology , Culicidae/virology , Female , Mosquito Vectors/anatomy & histology , Mosquito Vectors/virology , Yellow Fever/epidemiology , Yellow Fever/transmission , Yellow fever virus/metabolism
18.
Infect Genet Evol ; 90: 104764, 2021 06.
Article in English | MEDLINE | ID: mdl-33581329

ABSTRACT

BACKGROUND: Japanese encephalitis is a severe disease of acute encephalitis, with children and the elderly primarily affected, and with mortality rates reaching over 25%. The virus is transmitted mainly by species of the Culex (Culex) vishnui subgroup, primarily the widely spread Cx. tritaeniorhynchus Giles. The latter is known as a highly migratory mosquito which moves with airflow over large distances. We explored the geometric variation of the wing venation among distant areas of its geographic distribution. Our working hypothesis was that shape variation across geography could reveal known past and present migratory routes. MATERIALS METHODS: We compared the wing venation geometry of 236 female Culex tritaeniorhynchus from different locations in the Madagascan (La Reunion), Oriental (Thailand, Vietnam) and Paleartic (Japan) regions. To ascertain the taxonomic signal of the wing venation we also used two species as relative outgroups, Cx. whitmorei and Cx. brevipalpis. RESULTS: In spite of an increasing morphometric variation as expected with larger geographic dispersion, our Cx. tritaeniorhynchus samples were clustered as a single species when considered relative to other Culex species. The relationships between geographic sites of Cx. tritaeniorhynchus globally conformed with an isolation by distance model. The shape homogeneity of our Palearctic samples (Japan) contrasted with some heterogeneity observed in the Oriental region (Thailand, Vietnam), and could be related to the different regimes of wind trajectories in these regions. CONCLUSION: The average shape variation of Culex tritaeniorhynchus disclosed a separation between Madagascan, Oriental and Palearctic regions in accordance with geography. The wing venation not only could reflect geography, it also contained a clear taxonomic signal separating three Culex species. Within Cx. tritaeniorhynchus, a contrasting pattern of shape variation between the Palearctic and the Oriental regions is tentatively explained by the influence of wind trajectories.


Subject(s)
Animal Distribution , Culex/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Encephalitis Virus, Japanese/physiology , Female , Japan , Mosquito Vectors/anatomy & histology , Reunion , Thailand , Vietnam
19.
Sci Rep ; 11(1): 4718, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633197

ABSTRACT

Global monitoring of disease vectors is undoubtedly becoming an urgent need as the human population rises and becomes increasingly mobile, international commercial exchanges increase, and climate change expands the habitats of many vector species. Traditional surveillance of mosquitoes, vectors of many diseases, relies on catches, which requires regular manual inspection and reporting, and dedicated personnel, making large-scale monitoring difficult and expensive. New approaches are solving the problem of scalability by relying on smartphones and the Internet to enable novel community-based and digital observatories, where people can upload pictures of mosquitoes whenever they encounter them. An example is the Mosquito Alert citizen science system, which includes a dedicated mobile phone app through which geotagged images are collected. This system provides a viable option for monitoring the spread of various mosquito species across the globe, although it is partly limited by the quality of the citizen scientists' photos. To make the system useful for public health agencies, and to give feedback to the volunteering citizens, the submitted images are inspected and labeled by entomology experts. Although citizen-based data collection can greatly broaden disease-vector monitoring scales, manual inspection of each image is not an easily scalable option in the long run, and the system could be improved through automation. Based on Mosquito Alert's curated database of expert-validated mosquito photos, we trained a deep learning model to find tiger mosquitoes (Aedes albopictus), a species that is responsible for spreading chikungunya, dengue, and Zika among other diseases. The highly accurate 0.96 area under the receiver operating characteristic curve score promises not only a helpful pre-selector for the expert validation process but also an automated classifier giving quick feedback to the app participants, which may help to keep them motivated. In the paper, we also explored the possibilities of using the model to improve future data collection quality as a feedback loop.


Subject(s)
Citizen Science/methods , Culicidae , Deep Learning , Mosquito Vectors , Animal Distribution , Animals , Culicidae/anatomy & histology , Culicidae/classification , Humans , Mobile Applications , Mosquito Control , Mosquito Vectors/anatomy & histology , Mosquito Vectors/classification , Smartphone
20.
J Insect Sci ; 20(6)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147340

ABSTRACT

Mosquitoes (Diptera: Culicidae) in the Culex pipiens complex play a key role in the transmission and therefore epidemiology of a number of human and animal pathogens globally. These mosquitoes, and sympatric species of the genus Culex Linnaeus that are not within the Cx. pipiens complex, are often considered 'impossible' to distinguish by morphology in the adult female stage. In the United States, this is particularly true for Culex pipiens s.l. and Culex restuans Theobald, both of which are competent vectors of West Nile virus, but likely play different roles in the transmission cycle. Therefore, we undertook an in-depth morphological evaluation of matched larval exuviae and adult specimens that revealed five useful morphological characters that are informative to distinguish Cx. pipiens s.l. from Cx. restuans in the adult stage. Herein, we provide a comprehensive review of the literature on these species of interest, and four additional, morphologically similar, Culex species, and a proposed key to adult female specimens.


Subject(s)
Culex/anatomy & histology , Mosquito Vectors/anatomy & histology , Animals , Culex/classification , Culex/growth & development , Female , Illinois , Larva/anatomy & histology , Larva/classification , Larva/growth & development , Minnesota , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Species Specificity , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...