Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.701
Filter
1.
Cell Mol Life Sci ; 81(1): 346, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134808

ABSTRACT

In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.


Subject(s)
Cuprizone , Demyelinating Diseases , Myelin Sheath , Oligodendroglia , Remyelination , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Oligodendroglia/metabolism , Demyelinating Diseases/therapy , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Mice , Myelin Sheath/metabolism , Disease Models, Animal , Mice, Transgenic , Motor Cortex/pathology , Motor Cortex/metabolism , Cell Survival , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Multiple Sclerosis/pathology
2.
PLoS Comput Biol ; 20(7): e1012259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968294

ABSTRACT

Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.


Subject(s)
Computational Biology , Down Syndrome , Models, Neurological , Down Syndrome/physiopathology , Down Syndrome/pathology , Animals , Mice , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Neurons/physiology , Neurons/pathology , Interneurons/physiology , Interneurons/pathology , Computer Simulation , Motor Cortex/physiopathology , Motor Cortex/pathology , Disease Models, Animal , Humans , Mice, Transgenic , Nerve Net/physiopathology , Nerve Net/pathology
3.
Ann Clin Transl Neurol ; 11(7): 1691-1702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952134

ABSTRACT

OBJECTIVE: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS: MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS: Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION: Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.


Subject(s)
Diffusion Tensor Imaging , Friedreich Ataxia , White Matter , Humans , Male , Female , Adult , Friedreich Ataxia/pathology , Friedreich Ataxia/diagnostic imaging , Middle Aged , Cross-Sectional Studies , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/pathology , Motor Cortex/pathology , Motor Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Diffusion Magnetic Resonance Imaging
4.
J Integr Neurosci ; 23(7): 132, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39082301

ABSTRACT

BACKGROUND: Non-invasive brain mapping using navigated transcranial magnetic stimulation (nTMS) is a valuable tool prior to resection of malignant brain tumors. With nTMS motor mapping, it is additionally possible to analyze the function of the motor system and to evaluate tumor-induced neuroplasticity. Distinct changes in motor cortex excitability induced by certain malignant brain tumors are a focal point of research. METHODS: A retrospective single-center study was conducted involving patients with malignant brain tumors. Clinical data, resting motor threshold (rMT), and nTMS-based tractography were evaluated. The interhemispheric rMT-ratio (rMTTumor/rMTControl) was calculated for each extremity and considered pathological if it was >110% or <90%. Distances between the corticospinal tract and the tumor (lesion-to-tract-distance - LTD) were measured. RESULTS: 49 patients were evaluated. 16 patients (32.7%) had a preoperative motor deficit. The cohort comprised 22 glioblastomas (44.9%), 5 gliomas of Classification of Tumors of the Central Nervous System (CNS WHO) grade 3 (10.2%), 6 gliomas of CNS WHO grade 2 (12.2%) and 16 cerebral metastases (32.7%). 26 (53.1%) had a pathological rMT-ratio for the upper extremity and 35 (71.4%) for the lower extremity. All patients with tumor-induced motor deficits had pathological interhemispheric rMT-ratios, and presence of tumor-induced motor deficits was associated with infiltration of the tumor to the nTMS-positive cortex (p = 0.04) and shorter LTDs (all p < 0.021). Pathological interhemispheric rMT-ratio for the upper extremity was associated with cerebral metastases, but not with gliomas (p = 0.002). CONCLUSIONS: Our study underlines the diagnostic potential of nTMS motor mapping to go beyond surgical risk stratification. Pathological alterations in motor cortex excitability can be measured with nTMS mapping. Pathological cortical excitability was more frequent in cerebral metastases than in gliomas.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Motor Cortex , Pyramidal Tracts , Transcranial Magnetic Stimulation , Humans , Pyramidal Tracts/physiopathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Brain Neoplasms/physiopathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Motor Cortex/pathology , Male , Female , Middle Aged , Retrospective Studies , Adult , Aged , Glioma/physiopathology , Glioma/pathology , Glioma/diagnostic imaging , Brain Mapping , Evoked Potentials, Motor/physiology
5.
Hum Brain Mapp ; 45(8): e26723, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38864296

ABSTRACT

This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.


Subject(s)
Brain Neoplasms , Functional Laterality , Glioma , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Male , Glioma/diagnostic imaging , Glioma/pathology , Glioma/physiopathology , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Adult , Middle Aged , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/pathology , Sensorimotor Cortex/physiopathology , Functional Laterality/physiology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Motor Cortex/diagnostic imaging , Motor Cortex/pathology , Motor Cortex/physiopathology , Brain Mapping , Young Adult
6.
Acta Neuropathol ; 147(1): 100, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38884646

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , Spinal Cord , Superoxide Dismutase-1 , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , Motor Cortex/pathology , Motor Cortex/metabolism , Mutation/genetics , Spinal Cord/pathology , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Biomarkers/analysis
7.
J Clin Neurosci ; 124: 130-136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703473

ABSTRACT

OBJECTIVE: Anatomy and connections of the supplementary motor area (SMA) are studied essentially to analyze the SMA syndrome. Experience with surgical treatment of 19 tumors located in SMA is analyzed. MATERIAL AND METHODS: The cortical anatomy and subcortical connectivity of the SMA was studied on ten previously frozen and formalin fixed human cadaveric brain specimens. The white fiber dissection was performed using Klingler's method. Nineteen patients with low grade gliomas in the region of the SMA treated surgically were clinically analyzed. RESULTS: The white fiber connections of the SMA include short arcuate connections with the pre-central, middle and inferior frontal gyri, the medial part of the SLF, the cingulum, the frontal aslant tract (FAT), the claustro-cortical fibers, the fronto-striatal tract and the crossed frontal aslant tract. All tumors were operated using en-masse surgical technique described by us and its subsequent modifications that focused on attempts towards preservation of related critical fiber tracts namely FAT, cingulum and corpus callosum presumed to be responsible for postoperative SMA syndrome. Eight patients developed an SMA syndrome in the immediate post-operative period. Eleven patients did not develop any post-operative neurological deficits. In all these 11 patients it was apparent that the cingulum, FAT and the corpus callosal fibers were preserved during surgery by modifying the tumor resection technique. CONCLUSIONS: SMA syndrome is a frequent occurrence following surgery in patients with tumors in the region of the SMA complex. Surgical strategy that preserves the cingulum and the FAT can prevent the occurrence of the SMA syndrome.


Subject(s)
Brain Neoplasms , Glioma , Motor Cortex , White Matter , Humans , Female , Male , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Adult , Middle Aged , White Matter/surgery , White Matter/pathology , White Matter/diagnostic imaging , Glioma/surgery , Glioma/pathology , Motor Cortex/surgery , Motor Cortex/pathology , Young Adult , Adolescent , Neurosurgical Procedures/methods , Neural Pathways/surgery , Neural Pathways/pathology , Child
8.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786016

ABSTRACT

The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neurons , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , Humans , Motor Neurons/pathology , Motor Neurons/physiology , Animals , Nerve Net/physiopathology , Nerve Net/pathology , Neuromuscular Junction/physiopathology , Neuromuscular Junction/pathology , Disease Models, Animal , Motor Cortex/physiopathology , Motor Cortex/pathology
9.
Nat Commun ; 15(1): 4163, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755145

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Subject(s)
Amyotrophic Lateral Sclerosis , Asparaginase , DNA-Binding Proteins , Neurons , TDP-43 Proteinopathies , Animals , Female , Humans , Male , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Asparaginase/genetics , Asparaginase/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Brain/metabolism , Brain/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Cortex/metabolism , Motor Cortex/pathology , Neurons/metabolism , Neurons/pathology , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism
11.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651310

ABSTRACT

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Subject(s)
Basal Ganglia , Dystonia , Motor Cortex , Neural Pathways , Parkinsonian Disorders , Rats, Long-Evans , Animals , Motor Cortex/physiopathology , Motor Cortex/pathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Rats , Neural Pathways/physiopathology , Dystonia/physiopathology , Dystonia/pathology , Dystonia/etiology , Basal Ganglia/pathology , Male , Globus Pallidus/pathology , Disease Models, Animal
12.
Acta Neuropathol Commun ; 12(1): 69, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664831

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Humans , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Male , Motor Neurons/pathology , Motor Neurons/metabolism , Spinal Cord/pathology , Spinal Cord/metabolism , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Female , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Middle Aged , Aged , Motor Cortex/pathology , Motor Cortex/metabolism
13.
Brain ; 147(8): 2826-2841, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643019

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. The spatial architecture of cell types and gene expression are the basis of cell-cell interactions, biological function and disease pathology, but are not well investigated in the human motor cortex, a key ALS-relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, the brain regional vulnerability of ALS-associated genes and the genetic link between region-specific genes and ALS risk remain largely unclear. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics. We benchmarked SpatialE against another enrichment tool (multimodal intersection analysis) using spatial transcriptomics data from both human and mouse brain tissues. To investigate regional vulnerability, we analysed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function variants detected by whole-genome sequencing in ALS patients and controls, then analysed differential gene expression in the TargetALS RNA-sequencing dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than multimodal intersection analysis in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogeneous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 of the motor cortex, with abundant expression of upper motor neurons and layer 5 excitatory neurons. Burden analyses of rare loss-of-function variants in Layer 5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6814 ALS patients and 3324 controls (P = 0.029). Gene expression analyses in CNS tissues revealed downregulation of NOMO1 in ALS, which is consistent with a loss-of-function disease mechanism. In conclusion, our integrated spatial transcriptomics and genomic analyses identified regional brain vulnerability in ALS and the association of a layer 5 gene (NOMO1) with ALS risk.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Mice , Animals , Motor Cortex/metabolism , Motor Cortex/pathology , Transcriptome , Genomics/methods , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Male
15.
Neurosurgery ; 95(2): 347-356, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38511960

ABSTRACT

BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation. METHODS: This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade. RESULTS: A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score ( P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively). CONCLUSION: ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.


Subject(s)
Brain Neoplasms , Glioma , Machine Learning , Neoplasm Grading , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Glioma/surgery , Glioma/pathology , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Male , Female , Middle Aged , Adult , Retrospective Studies , Motor Cortex/physiopathology , Motor Cortex/pathology , Aged , Young Adult , Evoked Potentials, Motor/physiology , Cohort Studies
16.
Radiol Oncol ; 58(1): 145-152, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38183280

ABSTRACT

BACKGROUND: The objective of the present study was to explore the effectiveness and safety of 'Sandwich treatment' strategy for large brain metastases (LBM) with diameter over 3 cm (minimum volume >= 15 cm3) located in motor area. PATIENTS AND METHODS: Patients from four gamma knife center that received 'Sandwich treatment' were retrospectively studied from January 2016 to March 2023. The strategy was one-week treatment course including 2 stages of stereotactic radiosurgery (SRS) and using bevacizumab once during SRS gap. The tumor volume and peri-tumor edema changes were analyzed before and after 'Sandwich treatment'. Manual muscle testing (MMT) score and Barthel Index (BI) score were used to evaluate the changes of patients' movement and physical strength rehabilitation. The patients' overall survival (OS) and tumor local control (TLC) rate was calculated. Cox regression model was used to analyze the risk factors that related to TLC. RESULTS: 61 patients with 72 lesions received the 'Sandwich treatment'. The median prescription dose was 13.0 Gy and 12.5 Gy at the first- and second-stage SRS. The mean tumor volume at the time of 'Sandwich treatment' and 3 months later was 20.1 cm3 and 12.3, respectively (P < 0.01). The mean peri-tumor edema volume at the first- and second-stage SRS was 12.6 cm3 and 5.2 cm3, respectively (P < 0.01). Patients' median MMT score improved from 6 at the beginning to 8 at the end of 'Sandwich treatment' (P < 0.01), BI score was also greatly improved from 45 at the time of 'Sandwich treatment' to 95 after 3 months (P < 0.01). Patients' median OS was 14.0 months, and the 3, 6, 12 months OS rate was 92.0%, 86.0% and 66.0%, respectively. The TLC rate at 3, 6, 12 months was 98.4%, 93.4%, and 85.3%, respectively. Patients with lung cancer had lower risk of tumor relapse. The cumulative incidence of patient's hemorrhage and radiation necrosis was 4.92% (3/61) and 13.11% (8/61) after 'Sandwich treatment'. CONCLUSIONS: 'Sandwich treatment' strategy is safe and effective for LBM located in motor area. The strategy could rapidly improve the patients' movement and enhance their physical strength rehabilitation.


Subject(s)
Brain Neoplasms , Motor Cortex , Radiosurgery , Humans , Treatment Outcome , Retrospective Studies , Motor Cortex/pathology , Neoplasm Recurrence, Local , Brain Neoplasms/pathology , Edema/etiology , Edema/surgery , Radiosurgery/adverse effects
17.
Neurosurgery ; 94(3): 606-613, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37823677

ABSTRACT

BACKGROUND AND OBJECTIVES: To study the clinical, imaging, and survival outcomes in patients with motor cortex brain metastases treated with stereotactic radiosurgery (SRS). METHODS: Imaging and clinical data were obtained from our prospective patient registry. Tumor volumes were obtained from serial imaging data. RESULTS: The outcomes of 208 patients with metastases involving the motor cortex who underwent SRS between 2012 and 2021 were analyzed. A total of 279 metastases (0.01 cm 3 -12.18 cm 3 , mean 0.74 cm 3 ) were irradiated. The SRS margin dose varied from 10 to 20 Gy (mean 16.9 Gy). The overall tumor control rate was 97.8%. Perilesional edema was noted in 69 (25%) tumors at presentation. Adverse radiation effects (ARE) were noted in 6% of all tumors but were symptomatic in only 1.4%. Median time to appearance of symptomatic ARE was 8 months. Edema without ARE was observed in 13%. New focal seizures were noted in 5 patients (2%) and new generalized seizures in 1 patient (0.3%). Thirty-six patients (17%) presented with motor deficits. At final follow-up, 32 (85%) were improved or unchanged, 13 (41%) had a normal examination, 10 (31%) had mild deficits, and 9 (28%) still had moderate deficits. New remote brain metastases were found in 31% of patients at a median of 8 months. After treatment, the Karnofsky performance score distribution of the population showed an overall right shift and a median survival of 10 months. Patients with incidentally found brain metastases had significantly better survival than those presenting with deficits (median 13 vs 9 months) ( P = .048). Absence of a neurological deficit, recursive partitioning analysis Class I and II, and dose >18 Gy were each associated with a significant survival advantage. CONCLUSION: SRS for motor cortex metastases is safe in most patients and effective in providing tumor control. Patients treated before neurological deficits develop show better outcomes.


Subject(s)
Brain Neoplasms , Motor Cortex , Radiation Injuries , Radiosurgery , Humans , Radiosurgery/methods , Retrospective Studies , Motor Cortex/pathology , Prospective Studies , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Radiation Injuries/etiology , Seizures/etiology , Treatment Outcome
18.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38061694

ABSTRACT

Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Magnetic Resonance Imaging , Brain/pathology , Motor Cortex/pathology
19.
Nature ; 625(7994): 345-351, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057661

ABSTRACT

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Subject(s)
Frontotemporal Lobar Degeneration , TATA-Binding Protein Associated Factors , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Brain Stem/metabolism , Brain Stem/pathology , Cryoelectron Microscopy , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/ultrastructure , Temporal Lobe/metabolism , Temporal Lobe/pathology
20.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Article in English | MEDLINE | ID: mdl-37527694

ABSTRACT

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Subject(s)
Mucuna , Parkinson Disease , Plant Extracts , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Glutamic Acid/metabolism , Biomarkers/metabolism , Motor Cortex/drug effects , Motor Cortex/metabolism , Motor Cortex/pathology , Mucuna/chemistry , Plant Extracts/administration & dosage , Gait/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL