Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.287
Filter
1.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775151

ABSTRACT

Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro-tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph-circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Chemokine CX3CL1 , Lymphangiogenesis , Lymphatic Metastasis , Mouth Neoplasms , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Animals , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mice , Lymphangiogenesis/genetics , Humans , Cell Line, Tumor , Lymphatic Metastasis/pathology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Female , Tumor Microenvironment/immunology , Male
2.
BMC Oral Health ; 24(1): 588, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773401

ABSTRACT

BACKGROUND: White Sponge Nevus (WSN) is traditionally considered a benign genetic disorder affecting the oral mucosa, primarily caused by pathogenic mutations in keratin 4 (KRT4) or keratin 13 (KRT13). Despite its benign nature, recent evidence has begun to question the malignant potential of WSN. CASE PRESENTATION: We report a case involving a 70-year-old man who presented with a white lesion on the right floor of his mouth. Initial diagnostic evaluations confirmed the lesion as WSN. Over a one-year follow-up, the lesion underwent malignant transformation, evolving into local epithelial moderate-to-severe dysplasia. Exome sequencing identified a novel insertion mutation in exon 1 of the KRT4 gene, resulting in a deletion-insertion amino acid mutation involving glycine. Single-cell RNA sequencing further revealed altered epithelial proliferation and differentiation dynamics within the lesion. CONCLUSIONS: This case not only expands the known genetic spectrum of KRT4 mutations associated with WSN but also provides preliminary evidence suggesting the malignant potential of WSN. The novel pathogenic mutation in KRT4 is postulated to alter epithelial proliferation and differentiation, thereby raising concerns about the malignant transformation of WSN. Further studies are warranted to confirm these findings.


Subject(s)
Cell Transformation, Neoplastic , Keratin-4 , Leukokeratosis, Hereditary Mucosal , Humans , Male , Aged , Keratin-4/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Leukokeratosis, Hereditary Mucosal/genetics , Leukokeratosis, Hereditary Mucosal/pathology , Mutation , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Mucosa/pathology
3.
BMC Cancer ; 24(1): 564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711026

ABSTRACT

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Subject(s)
Drug Resistance, Neoplasm , Fluorouracil , Mouth Neoplasms , Wnt Signaling Pathway , Wnt3 Protein , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Drug Resistance, Neoplasm/genetics , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Wnt3 Protein/metabolism , Wnt3 Protein/genetics , beta Catenin/metabolism , beta Catenin/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , Antimetabolites, Antineoplastic/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
4.
J Transl Med ; 22(1): 477, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764038

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS: Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS: Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION: This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.


Subject(s)
B-Lymphocytes , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Proto-Oncogene Proteins , Tertiary Lymphoid Structures , Humans , Prognosis , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/immunology , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Female , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Male , Middle Aged , Cell Line, Tumor , Cell Proliferation
5.
Mol Cancer ; 23(1): 104, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755637

ABSTRACT

BACKGROUND: The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS: The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS: We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3ß collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS: Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Animals , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Signal Transduction , Cell Proliferation
6.
Commun Biol ; 7(1): 567, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745046

ABSTRACT

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Mitochondria , Mouth Neoplasms , Receptors, Prostaglandin E, EP4 Subtype , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mitochondria/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Animals , Mice , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calmodulin/metabolism , Calmodulin/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
7.
J Pak Med Assoc ; 74(4): 762-768, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751274

ABSTRACT

Cancer of the oral cavity has numerous types and, among all, oral squamous cell carcinoma represents >90% of all cancers of the oral area. Oral squamous cell carcinoma arises from the squamous lining of the oral cavity. Across the globe, most commonly it develops in the regions of tongue followed by floor of the mouth, and lower lip. Neurogenic locus notch homolog protein 1 gene has its association with oral squamous cell carcinoma and is known to be associated with both oncogenic and tumour suppressor roles. The current narrative review comprised literature published from 2013 to 2023. It was searched on Google Scholar, PubMed and Google databases. Globally, neurogenic locus notch homolog protein 1 mutations are associated with the development of oral squamous cell carcinoma. Most of the mutations are linked to ligand bind epidermal growth factor-like repeat region of extracellular domain of neurogenic locus notch homolog protein 1. Once activated, the pathway is involved in tumour progression and metastasis. The Asians compared to Caucasians are more affected by neurogenic locus notch homolog protein 1 mutations.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Mutation , Receptor, Notch1 , Humans , Receptor, Notch1/genetics , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics
8.
NPJ Biofilms Microbiomes ; 10(1): 39, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589501

ABSTRACT

Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum, Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that Fusobacterium nucleatum might contribute to cellular invasion via crosstalk with E-cadherin/ß-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Microbiota , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Epigenomics , Dysbiosis , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Bacteria , Fusobacterium nucleatum , Head and Neck Neoplasms/genetics , Epigenesis, Genetic , Tumor Microenvironment
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599260

ABSTRACT

The tongue epithelium is maintained by a proliferative basal layer. This layer contains long-lived stem cells (SCs), which produce progeny cells that move up to the surface as they differentiate. B-lymphoma Mo-MLV insertion region 1 (BMI1), a protein in mammalian Polycomb Repressive Complex 1 (PRC1) and a biomarker of oral squamous cell carcinoma, is expressed in almost all basal epithelial SCs of the tongue, and single, Bmi1-labelled SCs give rise to cells in all epithelial layers. We previously developed a transgenic mouse model (KrTB) containing a doxycycline- (dox) controlled, Tet-responsive element system to selectively overexpress Bmi1 in the tongue basal epithelial SCs. Here, we used this model to assess BMI1 actions in tongue epithelia. Genome-wide transcriptomics revealed increased levels of transcripts involved in the cellular response to hypoxia in Bmi1-overexpressing (KrTB+DOX) oral epithelia even though these mice were not subjected to hypoxia conditions. Ectopic Bmi1 expression in tongue epithelia increased the levels of hypoxia inducible factor-1 alpha (HIF1α) and HIF1α targets linked to metabolic reprogramming during hypoxia. We used chromatin immunoprecipitation (ChIP) to demonstrate that Bmi1 associates with the promoters of HIF1A and HIF1A-activator RELA (p65) in tongue epithelia. We also detected increased SC proliferation and oxidative stress in Bmi1-overexpressing tongue epithelia. Finally, using a human oral keratinocyte line (OKF6-TERT1R), we showed that ectopic BMI1 overexpression decreases the oxygen consumption rate while increasing the extracellular acidification rate, indicative of elevated glycolysis. Thus, our data demonstrate that high BMI1 expression drives hypoxic signaling, including metabolic reprogramming, in normal oral cavity epithelia.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Transgenic , Polycomb Repressive Complex 1 , Signal Transduction , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Animals , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Tongue/metabolism , Tongue/pathology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Cell Hypoxia , Epithelium/metabolism , Mouth/metabolism , Mouth/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Proto-Oncogene Proteins
10.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583021

ABSTRACT

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Subject(s)
Mouth Neoplasms , SOXF Transcription Factors , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Down-Regulation , Cell Line, Tumor , Vimentin/genetics , Vimentin/metabolism , Cadherins/genetics , Cadherins/metabolism , RNA, Small Interfering/metabolism , Mouth Neoplasms/genetics , Epithelial-Mesenchymal Transition , RNA, Messenger/metabolism , Methylation , Cell Movement/genetics , Cell Proliferation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism
11.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566395

ABSTRACT

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Tongue Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Tongue Neoplasms/metabolism , Cell Line, Tumor , Mouth Neoplasms/genetics , Tongue/metabolism , Tongue/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
12.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612901

ABSTRACT

We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Fanconi Anemia , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , DNA
13.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672474

ABSTRACT

Machine learning analyses within the realm of oral cancer outcomes are relatively underexplored compared to other cancer types. This study aimed to assess the performance of machine learning algorithms in identifying oral cancer patients, utilizing microRNA expression data. In this study, we implemented this approach using a panel of oral cancer-associated microRNAs sourced from standard incisional biopsy specimens to identify cases of oral squamous cell carcinomas (OSCC). For the model development process, we used a dataset comprising 30 OSCC and 30 histologically normal epithelium (HNE) cases. We initially trained a logistic regression prediction model using 70 percent of the dataset, while reserving the remaining 30 percent for testing. Subsequently, the model underwent hyperparameter tuning resulting in enhanced performance metrics. The hyperparameter-tuned model exhibited high accuracy (0.894) and ROC AUC (0.898) in predicting OSCC. Testing the model on cases of potentially malignant disorders (OPMDs) revealed that leukoplakia with mild dysplasia was predicted as having a high risk of progressing to OSCC, emphasizing machine learning's advantage over histopathology in detecting early molecular changes. These findings underscore the necessity for further refinement, incorporating a broader set of variables to enhance the model's predictive capabilities in assessing the risk of oral potentially malignant disorders.


Subject(s)
Carcinoma, Squamous Cell , Machine Learning , MicroRNAs , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/diagnosis , MicroRNAs/genetics , MicroRNAs/metabolism , Biopsy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/diagnosis , Female , Male , Algorithms , Gene Expression Regulation, Neoplastic , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/diagnosis
14.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667326

ABSTRACT

Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.


Subject(s)
Keratinocytes , Leukoplakia, Oral , Mouth Neoplasms , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Leukoplakia, Oral/genetics , Leukoplakia, Oral/pathology , Telomerase/genetics , Telomerase/metabolism , Genetic Engineering , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , CRISPR-Cas Systems/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mouth Mucosa/pathology , Precancerous Conditions/pathology , Precancerous Conditions/genetics
15.
Sci Rep ; 14(1): 9616, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671227

ABSTRACT

In this study, we aimed to study the role of TCONS_00006091 in the pathogenesis of oral squamous cellular carcinoma (OSCC) transformed from oral lichen planus (OLP). This study recruited 108 OSCC patients which transformed from OLP as the OSCC group and 102 OLP patients with no sign of OSCC as the Control group. ROC curves were plotted to measure the diagnostic values of TCONS_00006091, miR-153, miR-370 and let-7g, and the changes in gene expressions were measured by RT-qPCR. Sequence analysis and luciferase assays were performed to analyze the molecular relationships among these genes. Cell proliferation and apoptosis were observed via MTT and FCM. TCONS_00006091 exhibited a better diagnosis value for OSCC transformed from OLP. OSCC group showed increased TCONS_00006091 expression and decreased expressions of miR-153, miR-370 and let-7g. The levels of SNAI1, IRS and HMGA2 was all significantly increased in OSCC patients. And TCONS_00006091 was found to sponge miR-153, miR-370 and let-7g, while these miRNAs were respectively found to targe SNAI1, IRS and HMGA2. The elevated TCONS_00006091 suppressed the expressions of miR-153, miR-370 and let-7g, leading to the increased expression of SNAI1, IRS and HMGA2. Also, promoted cell proliferation and suppressed apoptosis were observed upon the over-expression of TCONS_00006091. This study demonstrated that the expressions of miR-153, miR-370 and let-7g were down-regulated by the highly expressed TCONS_00006091 in OSCC patients, which accordingly up-regulated the expressions of SNAI1, IRS and HMGA2, resulting in the promoted cell proliferation and suppressed cell apoptosis.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Proliferation , Gene Expression Regulation, Neoplastic , HMGA2 Protein , MicroRNAs , Mouth Neoplasms , Snail Family Transcription Factors , Humans , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Female , Male , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Apoptosis/genetics , Middle Aged , Up-Regulation , Cell Line, Tumor , Lichen Planus, Oral/genetics , Lichen Planus, Oral/metabolism , Lichen Planus, Oral/pathology
17.
Medicine (Baltimore) ; 103(16): e37831, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640322

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.


Subject(s)
CDC2 Protein Kinase , Carcinoma, Squamous Cell , Cyclin A2 , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Computational Biology , Cyclin A2/genetics , Cyclin A2/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks , Head and Neck Neoplasms/genetics , MicroRNAs/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
18.
Biochem Biophys Res Commun ; 714: 149965, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657447

ABSTRACT

At present, the molecular mechanisms driving the progression and metastasis of oral squamous cell carcinoma (OSCC) remain largely uncharacterized. The activation of transforming growth factor-ß (TGF-ß) signaling in the tumor microenvironment has been observed in various types of cancer and has been implicated their progression by enhancing the migration and invasion of epithelial cancer cells. However, its specific roles in the oral cancer progression remain unexplored. In this study, we examined the effects of TGF-ß signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-ß induced the activation of TGF-ß signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-ß signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-ß signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin ß3), whose expression was induced by TGF-ß in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-ß signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Disease Progression , Epithelial-Mesenchymal Transition , Neovascularization, Pathologic , Signal Transduction , Transforming Growth Factor beta , Animals , Transforming Growth Factor beta/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/blood supply , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Mice , Cell Line, Tumor , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/blood supply , Cell Movement/drug effects , Humans , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Angiogenesis
19.
Gene ; 915: 148436, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38579904

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is originating from oral mucosal epithelial cells. Autophagy plays a crucial role in cancer treatment by promoting cellular self-degradation and eliminating damaged components, thereby enhancing therapeutic efficacy. In this study, we aim to identify a novel autophagy-related biomarker to improve OSCC therapy. METHODS: We firstly utilized Cox and Lasso analyses to identify that ATF6 is associated with OSCC prognosis, and validated the results by Kaplan-Meier survival analysis. We further identified the downstream pathways and related genes by enrichment analysis and WGCNA analysis. Subsequently, we used short interfering RNA to investigate the effects of ATF6 knockdown on proliferation, migration, apoptosis, and autophagy in SCC-9 and SCC-15 cells through cell viability assay, transwell assay, EdU incorporation assay, flow cytometry analysis, western blot analysis and immunofluorescence analysis, etc. RESULTS: Bioinformatics analyses showed that ATF6 overexpression was associated with prognosis and detrimental to survival. In vitro studies verified that ATF6 knockdown reduced OSCC cell proliferation and migration. Mechanistically, ATF6 knockdown could promote cellular autophagy and apoptosis. CONCLUSION: We propose that ATF6 holds potential as a prognostic biomarker linked to autophagy in OSCC. This study provides valuable clues for further exploration of targeted therapy against OSCC.


Subject(s)
Activating Transcription Factor 6 , Autophagy , Biomarkers, Tumor , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Humans , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Cell Line, Tumor , Autophagy/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Apoptosis/genetics , Kaplan-Meier Estimate
20.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673902

ABSTRACT

Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.


Subject(s)
Lectins, C-Type , Receptors, Cell Surface , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Adult , Female , Humans , Male , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Macrophages/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...