Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
1.
Nat Commun ; 13(1): 2687, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577777

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is an illness that emerged amidst the COVID-19 pandemic but shares many clinical features with the pre-pandemic syndrome of Kawasaki disease (KD). Here we compare the two syndromes using a computational toolbox of two gene signatures that were developed in the context of SARS-CoV-2 infection, i.e., the viral pandemic (ViP) and severe-ViP signatures and a 13-transcript signature previously demonstrated to be diagnostic for KD, and validated our findings in whole blood RNA sequences, serum cytokines, and formalin fixed heart tissues. Results show that KD and MIS-C are on the same continuum of the host immune response as COVID-19. Both the pediatric syndromes converge upon an IL15/IL15RA-centric cytokine storm, suggestive of shared proximal pathways of immunopathogenesis; however, they diverge in other laboratory parameters and cardiac phenotypes. The ViP signatures reveal unique targetable cytokine pathways in MIS-C, place MIS-C farther along in the spectrum in severity compared to KD and pinpoint key clinical (reduced cardiac function) and laboratory (thrombocytopenia and eosinopenia) parameters that can be useful to monitor severity.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Systemic Inflammatory Response Syndrome , Artificial Intelligence , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , Child , Computational Biology/methods , Cytokines , Gene Expression Profiling , Humans , Immunity/physiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Pandemics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/immunology
2.
Front Immunol ; 13: 844300, 2022.
Article in English | MEDLINE | ID: mdl-35296082

ABSTRACT

Blood vessels are indispensable for host survival and are protected from inappropriate inflammation by immune privilege. This protection is lost in patients with autoimmune vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles, and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion, resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory attack to medium and large arteries. In Kawasaki's disease, a medium vessel vasculitis targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5 signaling have been implicated in undermining CD4+ Treg function. Explorations of mechanisms leading to insufficient immunosuppression and uncontrolled vascular inflammation hold the promise to discover novel therapeutic interventions that could potentially restore the immune privilege of blood vessels and pave the way for urgently needed innovations in vasculitis management.


Subject(s)
Giant Cell Arteritis , Granulomatosis with Polyangiitis , Mucocutaneous Lymph Node Syndrome , Polyarteritis Nodosa , T-Lymphocytes, Regulatory/pathology , Arteries/pathology , Giant Cell Arteritis/immunology , Giant Cell Arteritis/pathology , Granulomatosis with Polyangiitis/immunology , Granulomatosis with Polyangiitis/pathology , Humans , Inflammation , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/pathology , Polyarteritis Nodosa/immunology , Polyarteritis Nodosa/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
3.
Front Immunol ; 13: 790095, 2022.
Article in English | MEDLINE | ID: mdl-35154107

ABSTRACT

Kawasaki disease (KD) is an autoimmune-like vasculitis of childhood involving the coronary arteries. Macrophages require scavenger receptors such as CD36 to effectively clear cellular debris and induce self-tolerance. In this study, we hypothesized that CD36 plays an important role in the immunopathogenesis of KD, by aiding in the clearance of plasma mitochondrial DNA, and by amplifying the immune response by activating the inflammasome pathway via AIM2. Fifty-two healthy controls, 52 febrile controls, and 102 KD patients were recruited for RT-PCR of target mRNA expression and plasma mitochondrial DNA. Blood samples were obtained 24 hours prior and 21 days after the administration of intravenous immunoglobulin (IVIG) therapy. Patients with acute KD had higher plasma levels of cell-free mitochondrial DNA (ND1, ND4, and COX1), and higher mRNA expressions of CD36 and AIM2 when compared to both healthy and febrile controls. A greater decrease in both CD36 and AIM2 mRNA expression after IVIG therapy was associated with the development of coronary artery lesions. Coronary artery lesions were associated with a larger decrease of CD36 expression following IVIG therapy, which may indicate that prolonged expression of the scavenger receptor may have a protective effect against the development of coronary artery lesions in KD.


Subject(s)
CD36 Antigens/genetics , Coronary Artery Disease/etiology , Coronary Artery Disease/genetics , Coronary Vessels/pathology , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/pathology , Adolescent , CD36 Antigens/immunology , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Leukocyte Count , Male , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/immunology , U937 Cells
4.
J Formos Med Assoc ; 121(3): 623-632, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34193364

ABSTRACT

BACKGROUND/PURPOSE: The association between dysregulated innate immune responses seen in Kawasaki disease (KD) with predisposition to Kawasaki-like multisystem inflammatory syndrome in children (MIS-C) remains unclear. We aimed to compare the innate immunity transcriptome signature between COVID-19 and KD, and to analyze the interactions of these molecules with genes known to predispose to KD. METHODS: Transcriptome datasets of COVID-19 and KD cohorts (E-MTAB-9357, GSE-63881, GSE-68004) were downloaded from ArrayExpress for innate immune response analyses. Network analysis was used to determine enriched pathways of interactions. RESULTS: Upregulations of IRAK4, IFI16, STING, STAT3, PYCARD, CASP1, IFNAR1 and CD14 genes were observed in blood cells of acute SARS-CoV-2 infections with moderate severity. In the same patient group, increased expressions of TLR2, TLR7, IRF3, and CD36 were also noted in blood drawn a few days after COVID-19 diagnosis. Elevated blood PYCARD level was associated with severe COVID-19 in adults. Similar gene expression signature except differences in TLR8, NLRP3, STING and IRF3 levels was detected in KD samples. Network analysis on innate immune genes and genes associated with KD susceptibility identified enriched pathways of interactions. Furthermore, higher expression levels of KD susceptibility genes HLA-DOB, PELI1 and FCGR2A correlated with COVID-19 of different severities. CONCLUSION: Our findings suggest that most enriched innate immune response pathways were shared between transcriptomes of KD and COVID-19 with moderate severity. Genetic polymorphisms associated with innate immune dysregulation and KD susceptibility, together with variants in STING and STAT3, might predict COVID-19 severity and potentially susceptibility to COVID-19 related MIS-C.


Subject(s)
COVID-19 , Immunity, Innate , Mucocutaneous Lymph Node Syndrome , COVID-19/complications , COVID-19/immunology , COVID-19 Testing , Humans , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome
5.
Int Immunopharmacol ; 102: 108396, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34890998

ABSTRACT

Increasing evidence shows that the pathogenesis of Kawasaki disease (KD) is caused by abnormal and unbalanced innate and adaptive immune responses. However, the changes in and functions of adaptive immune cells in the peripheral blood of subjects with KD remain controversial. In this study, three different methods, CIBERSORT, Immune Cell Abundance Identifier (ImmuCellAI), and immune cell markers, were used to evaluate the proportions and abundances of immune cells in eight KD datasets (GSE9863, GSE9864, GSE18606, GSE63881, GSE68004, GSE73461, GSE73463, and GSE64486; a total of 1,251 samples). Compared with those in normal controls and convalescent KD samples, the proportions and abundances of innate immune cells such as neutrophils, monocytes, and macrophages in acute KD peripheral blood samples were significantly increased, while those of adaptive immune cells such as B and T cells were significantly decreased. The change tendencies of these immune cells were similar to those observed in other febrile illnesses but were more significant. However, in the coronary artery tissues of patients with convalescent KD, adaptive immune cells, especially B cells and CD8+ T cell subsets, were significantly increased. This result suggests that adaptive immune cells can be selectively recruited from peripheral blood into the coronary arteries. In addition, we found that elevated neutrophils in peripheral blood could be used as a biomarker to assist in the differential diagnosis of KD, but we did not find immune cells that could accurately predict intravenousimmunoglobulin (IVIG) responses in multiple datasets.


Subject(s)
B-Lymphocytes , Mucocutaneous Lymph Node Syndrome/immunology , T-Lymphocyte Subsets , Adaptive Immunity , Child, Preschool , Coronary Vessels/cytology , Coronary Vessels/immunology , Coronary Vessels/pathology , Humans , Infant , Mucocutaneous Lymph Node Syndrome/pathology
6.
APMIS ; 130(2): 101-110, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34894016

ABSTRACT

In the milieu of coronavirus disease 2019 (COVID-19), there are increasing reports of paediatric hyperinflammatory conditions (PHICs), including multisystem inflammatory syndrome in children (MIS-C), paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PIMS-TS) and Kawasaki disease (KD). Few analyses of PHIC prevalence in paediatric and adolescent hospitalized COVID-19 patients exist. The purpose of this study was to perform a meta-analysis to determine a pooled prevalence estimate of PHICs in paediatric and adolescent hospitalized patients admitted for treatment due to COVID-19. Individual studies were retrieved from PubMed/Medline, EMBASE and Cochrane databases. Relevant prevalence, baseline, treatment and outcome data were extracted using a standardized datasheet. The systematic review and meta-analysis were conducted as per the PRISMA and MOOSE guidelines. Overall, 14 studies with 2202 patients admitted for treatment due to COVID-19, among whom 780 were diagnosed with PHICs, were included. The crude estimate of prevalence was 35.42%, and the pooled estimate of prevalence was 29% (random pooled ES = 0.29; 95% CIs = 0.18-0.42; p < 0.0001; z = 7.45). A sizeable proportion of paediatric and adolescent hospitalized patients admitted for treatment due to COVID-19 are diagnosed with a PHIC warranting a high index of clinical suspicion for PHICs. Further studies are required to validate these findings.


Subject(s)
COVID-19/complications , Mucocutaneous Lymph Node Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/epidemiology , Adolescent , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Child , Child, Preschool , Female , Hospitalization , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Mucocutaneous Lymph Node Syndrome/virology , Prevalence , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology
7.
Eur J Immunol ; 52(1): 123-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34599760

ABSTRACT

The immunopathogenesis of multisystem inflammatory syndrome (MIS-C) in children that may follow exposure to SARS-CoV-2 is incompletely understood. Here, we studied SARS-CoV-2-specific T cells in MIS-C, Kawasaki disease (KD), and SARS-CoV-2 convalescent controls using peptide pools derived from SARS-CoV-2 spike or nonspike proteins, and common cold coronaviruses (CCC). Coordinated CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in five MIS-C subjects with cross-reactivity to CCC. CD4+ and CD8+ T-cell responses alone were documented in three and one subjects, respectively. T-cell specificities in MIS-C did not correlate with disease severity and were similar to SARS-CoV-2 convalescent controls. T-cell memory and cross-reactivity to CCC in MIS-C and SARS-CoV-2 convalescent controls were also similar. The chemokine receptor CCR6, but not CCR9, was highly expressed on SARS-CoV-2-specific CD4+ but not on CD8+ T cells. Only two of 10 KD subjects showed a T-cell response to CCC. Enumeration of myeloid APCs revealed low cell precursors in MIS-C subjects compared to KD. In summary, children with MIS-C mount a normal T-cell response to SARS-CoV-2 with no apparent relationship to antecedent CCC exposure. Low numbers of tolerogenic myeloid DCs may impair their anti-inflammatory response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Immunity, Cellular , Immunologic Memory , Mucocutaneous Lymph Node Syndrome , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , COVID-19/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/immunology
8.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830213

ABSTRACT

Kawasaki disease (KD) is an acute systemic vasculitis that occurs predominantly in children under 5 years of age. Despite much study, the etiology of KD remains unknown. However, epidemiological and immunological data support the hygiene hypothesis as a possible etiology. It is thought that more sterile or clean modern living environments due to increased use of sanitizing agents, antibiotics, and formula feeding result in a lack of immunological challenges, leading to defective or dysregulated B cell development, accompanied by low IgG and high IgE levels. A lack of B cell immunity may increase sensitivity to unknown environmental triggers that are nonpathogenic in healthy individuals. Genetic studies of KD show that all of the KD susceptibility genes identified by genome-wide association studies are involved in B cell development and function, particularly in early B cell development (from the pro-B to pre-B cell stage). The fact that intravenous immunoglobulin is an effective therapy for KD supports this hypothesis. In this review, I discuss clinical, epidemiological, immunological, and genetic studies showing that the etiopathogenesis of KD in infants and toddlers can be explained by the hygiene hypothesis, and particularly by defects or dysregulation during early B cell development.


Subject(s)
B-Lymphocytes/immunology , Hygiene Hypothesis , Lymphocyte Activation/genetics , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Child , Child, Preschool , Asia, Eastern/epidemiology , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Incidence , Infant , Infant, Newborn , Male , Mucocutaneous Lymph Node Syndrome/epidemiology
9.
Nat Commun ; 12(1): 5444, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521850

ABSTRACT

Kawasaki disease (KD) is the most common cause of acquired heart disease in children in developed countries. Although functional and phenotypic changes of immune cells have been reported, a global understanding of immune responses underlying acute KD is unclear. Here, using single-cell RNA sequencing, we profile peripheral blood mononuclear cells from seven patients with acute KD before and after intravenous immunoglobulin therapy and from three age-matched healthy controls. The most differentially expressed genes are identified in monocytes, with high expression of pro-inflammatory mediators, immunoglobulin receptors and low expression of MHC class II genes in acute KD. Single-cell RNA sequencing and flow cytometry analyses, of cells from an additional 16 KD patients, show that although the percentage of total B cells is substantially decreased after therapy, the percentage of plasma cells among the B cells is significantly increased. The percentage of CD8+ T cells is decreased in acute KD, notably effector memory CD8+ T cells compared with healthy controls. Oligoclonal expansions of both B cell receptors and T cell receptors are observed after therapy. We identify biological processes potentially underlying the changes of each cell type. The single-cell landscape of both innate and adaptive immune responses provides insights into pathogenesis and therapy of KD.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Monocytes/immunology , Mucocutaneous Lymph Node Syndrome/genetics , Plasma Cells/immunology , Acute Disease , Adaptive Immunity/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Case-Control Studies , Cell Proliferation , Child , Child, Preschool , Clone Cells , Female , Gene Expression , Humans , Immunity, Innate/drug effects , Immunoglobulins, Intravenous/therapeutic use , Immunophenotyping , Male , Monocytes/drug effects , Monocytes/pathology , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/pathology , Plasma Cells/drug effects , Plasma Cells/pathology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, RNA , Single-Cell Analysis
11.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34437303

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
12.
Nat Commun ; 12(1): 4854, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381049

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Systemic Inflammatory Response Syndrome/immunology , Transcriptome/immunology , Adolescent , CD56 Antigen/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Child , Child, Preschool , Down-Regulation , Female , Humans , Infant , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/genetics , Young Adult
13.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34464357

ABSTRACT

BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1ß have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1ß. Following IVIG treatment, activated IL-1ß+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1ß can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.


Subject(s)
COVID-19/complications , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , Case-Control Studies , Cell Death/immunology , Cell Lineage/immunology , Child , Child, Preschool , Fas Ligand Protein/immunology , Female , Humans , Infant , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/blood , Leukocyte Count , Male , Mucocutaneous Lymph Node Syndrome/blood , Neutrophil Activation , Neutrophils/classification , Neutrophils/immunology , Neutrophils/pathology , Systemic Inflammatory Response Syndrome/blood
15.
Curr Rheumatol Rep ; 23(8): 58, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34216296

ABSTRACT

PURPOSE OF REVIEW: In this article, I have reviewed current reports that explore differences and similarities between multisystem inflammatory syndrome in children (MIS-C) and other known multisystem inflammatory diseases seen in children, particularly Kawasaki disease. RECENT FINDINGS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus causing the COVID-19 disease which emerged in China in December 2019 and spread rapidly to the entire country and quickly to other countries. Currently, there is a pandemic of SARS-CoV-2 infection that results in 20% of patients admitted to hospital with illness, with 3% developing intractable acute respiratory distress syndrome (ARDS) with high mortality. However, pediatric COVID-19 is still reported to be a mild disease, affecting only 8% of children. Pathogenesis in children is comparable to adults. There are suggested impaired activation of IFN-alpha and IFN regulator 3, decreased cell response causing impaired viral defense, yet the clinical course is mild, and almost all children recover from the infection without major complications. Interestingly, there is a subset of patients that develop a late but marked immunogenic response to COVID-19 and develop MIS-C. Clinical features of MIS-C resemble certain pediatric rheumatologic diseases, such as Kawasaki disease (mucocutaneous lymph node syndrome) which affects small-medium vessels. Other features of MIS-C resemble those of macrophage activation syndrome (MAS). However, recent research suggests distinct clinical and laboratory differences between MIS-C, Kawasaki disease, and MAS. Since the start of the SARS-CoV-2 pandemic, MIS-C has become the candidate for the most common cause of acquired heart disease in children.


Subject(s)
COVID-19/immunology , Macrophage Activation Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/immunology , Systemic Inflammatory Response Syndrome/immunology , COVID-19/physiopathology , Humans , Immunity, Cellular/immunology , Interferon Regulatory Factor-3/immunology , Interferon-alpha/immunology , Macrophage Activation Syndrome/physiopathology , Mucocutaneous Lymph Node Syndrome/physiopathology , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome/physiopathology
16.
Andes Pediatr ; 92(2): 281-287, 2021 Apr.
Article in Spanish | MEDLINE | ID: mdl-34106169

ABSTRACT

In addition to the existing concern generated during the current COVID-19 pandemic outbreak in the adult population, we see how this pathology affects the pediatric population in the same way. Several countries have declared health alerts for a new syndrome that occurs late in children exposed to COVID-19, called "multisystem inflammatory syndrome". These patients manifest symptoms si milar to Kawasaki disease, but at rare ages, and it is considered as the cytokine storm manifestation in children. The objective of this review is to present the available information on COVID-19 and its re lationship with Kawasaki's disease, as well as to explain the current hypothesis of this new syndrome, its physiopathology, clinical presentation, key differences with Kawasaki's disease, and its possible therapeutic interventions.


Subject(s)
COVID-19/diagnosis , Mucocutaneous Lymph Node Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/diagnosis , COVID-19/immunology , COVID-19/therapy , Child , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Diagnosis, Differential , Humans , Mucocutaneous Lymph Node Syndrome/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy
17.
J Immunol ; 206(12): 2819-2827, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34099547

ABSTRACT

The etiology and pathology of Kawasaki disease (KD) remain elusive. Cub domain-containing protein 1 (CDCP1), a cell-surface protein that confers poor prognosis of patients with certain solid tumors, was recently identified as one of the most significantly upregulated genes in SARS-CoV-2-infected children who developed systemic vasculitis, a hallmark of KD. However, a potential role of CDCP1 in KD has not previously been explored. In this study, we found that CDCP1 knockout (KO) mice exhibited attenuated coronary and aortic vasculitis and decreased serum Candida albicans water-soluble fraction (CAWS)-specific IgM/IgG2a and IL-6 concentrations compared with wild-type mice in an established model of KD induced by CAWS administration. CDCP1 expression was not detectable in cardiomyocytes, cardio fibroblasts, or coronary endothelium, but constitutive expression of CDCP1 was observed on dendritic cells (DCs) and was upregulated by CAWS stimulation. CAWS-induced IL-6 production was significantly reduced in CDCP1 KO DCs, in association with impaired Syk-MAPK signaling pathway activation. These novel findings suggest that CDCP1 might regulate KD development by modulating IL-6 production from DCs via the Syk-MAPK signaling pathway.


Subject(s)
Antigens, Neoplasm/immunology , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Disease Models, Animal , Mucocutaneous Lymph Node Syndrome/immunology , Animals , Cell Adhesion Molecules/deficiency , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065210

ABSTRACT

Previous studies have shown that COVID-19 leads to thrombotic complications, which have been associated with high morbidity and mortality rates. Neutrophils are the largest population of white blood cells and play a pivotal role in innate immunity. During an infection, neutrophils migrate from circulation to the infection site, contributing to killing pathogens. This mechanism is regulated by chemokines such as IL-8. Moreover, it was shown that neutrophils play an important role in thromboinflammation. Through a diverse repertoire of mechanisms, neutrophils, apart from directly killing pathogens, are able to activate the formation of thrombi. In COVID-19 patients, neutrophil activation promotes neutrophil extracellular trap (NET) formation, platelet aggregation, and cell damage. Furthermore, neutrophils participate in the pathogenesis of endothelitis. Overall, this review summarizes recent progress in research on the pathogenesis of COVID-19, highlighting the role of the prothrombotic action of neutrophils in NET formation.


Subject(s)
COVID-19/immunology , Extracellular Traps/immunology , Immunity, Innate , Lung/immunology , Neutrophils/immunology , Thrombosis/immunology , COVID-19/complications , COVID-19/pathology , COVID-19/therapy , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Extracellular Traps/virology , Humans , Inflammation/immunology , Inflammation/pathology , Kidney/cytology , Kidney/immunology , Kidney/pathology , Kidney/virology , Lung/cytology , Lung/pathology , Lung/virology , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2 , Thrombosis/complications , Thrombosis/pathology , Thrombosis/virology
19.
Pediatr Rheumatol Online J ; 19(1): 76, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059085

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is an acute, self-limited febrile illness of unknown cause. Intravenous immunoglobulin (IVIG)-resistance are related to greater risk for permanent cardiac complications. We aimed to determine the correlation between monocytes and the phenotype of KD in relation to IVIG responsiveness in children. MATERIALS AND METHODS: The study cohort included 62 patients who were diagnosed with KD, 20 non febrile healthy controls (NFC), and 15 other febrile controls (OFC). In all enrolled patients, blood was taken at least 4 times and laboratory tests were performed. In addition, subtypes of monocytes were characterized via flow cytometry. RESULTS: The numbers of intermediate monocytes were significantly lower in IVIG-resistant group compared to IVIG-responsive group before IVIG infusion (p < 0.0001). After infusion, intermediate monocytes decreased in the responsive group, while a trend of increase was observed in the resistant group. Only intermediate monocytes were significant in logistic regression with adjusted OR of 0.001 and p value of 0.03. CONCLUSIONS: CD14 + CD16 + intermediate monocyte may play an important role in IVIG responsiveness among KD children. Low starting levels of intermediate monocytes, followed by a dramatic increase post-IVIG infusion during acute phase of KD are associated with IVIG-resistance. Functional studies on intermediate monocyte may help to reveal the pathophysiology.


Subject(s)
Immunoglobulins, Intravenous , Lipopolysaccharide Receptors/immunology , Monocytes , Mucocutaneous Lymph Node Syndrome , Receptors, IgG/immunology , Biomarkers, Pharmacological/analysis , Child, Preschool , Female , Fever/blood , Fever/immunology , Flow Cytometry/methods , GPI-Linked Proteins/immunology , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/immunology , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Immunophenotyping/methods , Male , Monocytes/immunology , Monocytes/pathology , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Patient Acuity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...