Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Minerva Pediatr (Torino) ; 75(2): 243-252, 2023 04.
Article in English | MEDLINE | ID: mdl-32748606

ABSTRACT

BACKGROUND: Maroteaux-Lamy disease (MPS Type VI) is an autosomal recessive lysosomal storage disorder. Skeletal abnormalities are vast. Early recognition may facilitate timely diagnosis and intervention, leading to improved patient outcomes. The most challenging is when patients manifest a constellation of craniocervical and articular deformities with variable age of onset. METHODS: We collected 15 patients with MPS VI (aged from 6 years-58 years). From within our practice in Pediatric Orthopedics, we present patients with MPS type VI who were found to manifest a diverse and confusing clinical presentation of hip deformities and cervical cord compression. Stem cell transplants were proposed as treatment tool and enzyme replacement therapy has been instituted in some patients. RESULTS: The spectrum of the clinical involvement in our group of patients was supported firstly via the clinical phenotype followed by assessment of the biochemical defect, which has been detected through the deficiency of N-acetylgalactosamine-4-sulfatase (arylsulphatase B) leading to increased excretion of dermatan sulphate. Secondly, through the molecular genetic results, which showed homozygous or compound heterozygous mutation in the ARSB gene on chromosome 5q14. Hip replacements and decompression operations have been performed to restore function and to alleviate pain in the former and life saving procedure in the latter. CONCLUSIONS: The efforts in searching for the etiological diagnosis in patients with skeletal dysplasia/MPSs has not been rewarding as many had anticipated. This emerged from several facts such as improper clinical documentation, missing diagnostic pointers in radiographic interpretations, limited knowledge in skeletal dysplasia and its variants, and the reliance on underpowered studies. Physicians and radiologists are required to appreciate and assess the diverse phenotypic and the radiographic variability of MPS VI. The importance of considering MPS in the differential diagnosis of other forms skeletal dysplasia is mandatory. Finally, we stress that the value of early diagnosis is to overcome dreadful complications.


Subject(s)
Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Humans , Age of Onset , Mucopolysaccharidosis VI/diagnosis , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/chemistry , N-Acetylgalactosamine-4-Sulfatase/genetics , Mutation , Phenotype
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361933

ABSTRACT

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Subject(s)
Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Humans , Chondroitin Sulfates/metabolism , Dermatan Sulfate , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Sulfates
3.
Hum Mutat ; 43(4): e1-e23, 2022 04.
Article in English | MEDLINE | ID: mdl-35005816

ABSTRACT

Mucopolysaccharidoses (MPSs) are rare, heterogeneous inborn errors of metabolism (IEM) diagnosed through a combination of clinical, biochemical, and genetic investigations. The aim of this study was molecular characterization of the largest cohort of Iranian MPS patients (302 patients from 289 unrelated families), along with tracking their ethnicity and geographical origins. 185/289 patients were studied using an IEM-targeted NGS panel followed by complementary Sanger sequencing, which led to the diagnosis of 154 MPS patients and 5 non-MPS IEMs (diagnostic yield: 85.9%). Furthermore, 106/289 patients who were referred with positive findings went through reanalysis and confirmatory tests which confirmed MPS diagnosis in 104. Among the total of 258 MPS patients, 225 were homozygous, 90 harbored novel variants, and 9 had copy number variations. MPS IV was the most common type (34.8%) followed by MPS I (22.7%) and MPS VI (22.5%). Geographical origin analysis unveiled a pattern of distribution for frequent variants in ARSB (c.430G>A, c.962T>C [p.Leu321Pro], c.281C>A [p.Ser94*]), GALNS (c.319G>A [p.Ala107Thr], c.860C>T [p.Ser287Leu], c.1042A>G [p.Thr348Ala]), and IDUA (c.1A>C [p.Met1Leu], c.1598C>G [p.Pro533Arg], c.1562_1563insC [p.Gly522Argfs*50]). Our extensive patient cohort reveals the genetic and geographic landscape of MPS in Iran, which provides insight into genetic epidemiology of MPS and can facilitate a more cost-effective, time-efficient diagnostic approach based on the region-specific variants.


Subject(s)
Chondroitinsulfatases , Mucopolysaccharidoses , Mucopolysaccharidosis I , Mucopolysaccharidosis VI , Chondroitinsulfatases/genetics , DNA Copy Number Variations , Humans , Iran/epidemiology , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/genetics , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/epidemiology , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis VI/genetics
4.
Mol Genet Metab ; 135(2): 143-153, 2022 02.
Article in English | MEDLINE | ID: mdl-34417096

ABSTRACT

Maroteaux - Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is a lysosomal storage disease resulting from insufficient enzymatic activity for degradation of the specific glycosaminoglycans (GAG) chondroitin sulphate (CS) and dermatan sulphate (DS). Among the most pronounced MPS VI clinical manifestations caused by cellular accumulation of excess CS and DS are eye disorders, in particular those that affect the cornea. Ocular manifestations are not treated by the current standard of care, enzyme replacement therapy (ERT), leaving patients with a significant unmet need. Using in vitro and in vivo models, we previously demonstrated the potential of the ß-D-xyloside, odiparcil, as an oral GAG clearance therapy for MPS VI. Here, we characterized the eye phenotypes in MPS VI arylsulfatase B deficient mice (Arsb-) and studied the effects of odiparcil treatment in early and established disease models. Severe levels of opacification and GAG accumulation were detected in the eyes of MPS VI Arsb- mice. Histological examination of MPS VI Arsb- eyes showed an aggregate of corneal phenotypes, including reduction in the corneal epithelium thickness and number of epithelial cell layers, and morphological malformations in the stroma. In addition, colloidal iron staining showed specifically GAG accumulation in the cornea. Orally administered odiparcil markedly reduced GAG accumulation in the eyes of MPS VI Arsb- mice in both disease models and restored the corneal morphology (epithelial layers and stromal structure). In the early disease model of MPS VI, odiparcil partially reduced corneal opacity area, but did not affect opacity area in the established model. Analysis of GAG types accumulating in the MPS VI Arsb- eyes demonstrated major contribution of DS and CS, with some increase in heparan sulphate (HS) as well and all were reduced with odiparcil treatment. Taken together, we further reveal the potential of odiparcil to be an effective therapy for eye phenotypes associated with MPS VI disease.


Subject(s)
Eye Diseases/drug therapy , Glycosides , Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Animals , Disease Models, Animal , Eye/pathology , Eye Diseases/genetics , Glycosides/therapeutic use , Humans , Mice , Mucopolysaccharidosis VI/drug therapy , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Phenotype
5.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948256

ABSTRACT

Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a rare, autosomal recessive genetic disease, mainly affecting the pediatric age group. The disease is due to pathogenic variants of the ARSB gene, coding for the lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). The enzyme deficit causes a pathological accumulation of the undegraded glycosaminoglycans dermatan-sulphate and chondroitin-sulphate, natural substrates of ASB activity. Intracellular and extracellular deposits progressively take to a pathological scenario, often severe, involving most organ-systems and generally starting from the osteoarticular apparatus. Neurocognitive and behavioral abilities, commonly described as maintained, have been actually investigated by few studies. The disease, first described in 1963, has a reported prevalence between 0.36 and 1.3 per 100,000 live births across the continents. With this paper, we wish to contribute an updated overview of the disease from the clinical, diagnostic, and therapeutic sides. The numerous in vitro and in vivo preclinical studies conducted in the last 10-15 years to dissect the disease pathogenesis, the efficacy of the available therapeutic treatment (enzyme replacement therapy), as well as new therapies under study are here described. This review also highlights the need to identify new disease biomarkers, potentially speeding up the diagnostic process and the monitoring of therapeutic efficacy.


Subject(s)
Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/physiopathology , Chondroitin Sulfates/therapeutic use , Enzyme Replacement Therapy , Glycosaminoglycans/therapeutic use , Humans , Mucopolysaccharidosis VI/therapy , N-Acetylgalactosamine-4-Sulfatase/genetics
6.
Am J Med Genet A ; 185(12): 3804-3809, 2021 12.
Article in English | MEDLINE | ID: mdl-34435740

ABSTRACT

Maroteaux-Lamy syndrome (MPS-VI) is a rare autosomal-recessive disorder with a wide spectrum of clinical manifestations, ranging from an attenuated to a rapidly progressive disease. It is caused by variants in ARSB, which encodes the lysosomal arylsulfatase B (ARSB) enzyme, part of the degradation process of glycosaminoglycans in lysosomes. Over 220 variants have been reported so far, with a majority of missense variants. We hereby report two siblings of Bedouin origin with a diagnosis of MPS-VI. Western blots in patient fibroblasts revealed total absence of ARSB protein production. Complete sequencing of the coding region of ARSB did not identify a candidate disease-associated variant. However, deep sequencing of the noncoding region of ARSB by whole genome sequencing (WGS) revealed a c.1142+581A to G variant. The variant is located within intron 5 and fully segregated with the disease in the family. Determination of the genetic cause for these patients enabled targeted treatment by enzyme replacement therapy, along with appropriate genetic counseling and prenatal diagnosis for the family. These results highlight the advantage of WGS as a powerful tool, for improving the diagnostic rate of rare disease-causing variants, and emphasize the importance of studying deep intronic sequence variation as a cause of monogenic disorders.


Subject(s)
Genetic Counseling , Genetic Predisposition to Disease , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Arabs/genetics , Child, Preschool , Exons/genetics , Female , Humans , Infant , Introns/genetics , Male , Mucopolysaccharidosis VI/pathology , Mutation, Missense/genetics
7.
BMC Ophthalmol ; 21(1): 214, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985463

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type VI (MPS VI) is a rare autosomal recessive inherited disease caused by mutations in the arylsulfatase B (ARSB) gene. MPS VI is a multisystemic disease resulting from a deficiency in arylsulfatase B causing an accumulation of glycosaminoglycans in the tissues and organs of the body. In this report, we present the case of a 16-year-old Chinese male who presented with vision loss caused by corneal opacity. MPS VI was confirmed by genetic diagnosis. CASE PRESENTATION: A 16-year-old Chinese male presented with a one-year history of binocular vision loss. The best-corrected visual acuity was 0.25 in the right eye and 0.5 in the left eye. Although slit-lamp examination revealed corneal opacification in both eyes, the ocular examinations of his parents were normal. At the same time, the patient presented with kyphotic deformity, short stature, joint and skeletal malformation, thick lips, long fingers, and coarse facial features. Genetic assessments revealed that ARSB was the causative gene. Compound heterozygous missense mutations were found in the ARSB gene, namely c.1325G > A (p. Thr442Met) (M1) and c.1197G > C (p. Phe399Leu) (M2). Genetic diagnosis confirmed that the patient had MPS VI. CONCLUSIONS: This paper reports a case of MPS VI confirmed by genetic diagnosis. MPS VI is a multisystem metabolic disease, with corneal opacity as a concomitant ocular symptom. As it is difficult for ophthalmologists to definitively diagnose MPS VI, genetic testing is useful for disease confirmation.


Subject(s)
Mucopolysaccharidosis VI , N-Acetylgalactosamine-4-Sulfatase , Adolescent , China , Humans , Male , Mucopolysaccharidosis VI/diagnosis , Mucopolysaccharidosis VI/genetics , Mutation , Mutation, Missense , N-Acetylgalactosamine-4-Sulfatase/genetics
8.
Mol Genet Metab ; 133(1): 100-108, 2021 05.
Article in English | MEDLINE | ID: mdl-33775523

ABSTRACT

OBJECTIVE: Long-term outcomes of patients with mucopolysaccharidosis (MPS) VI treated with galsulfase enzyme replacement therapy (ERT) since infancy were evaluated. METHODS: The study was a multicenter, prospective evaluation using data from infants with MPS VI generated during a phase 4 study (ASB-008; Clinicaltrials.govNCT00299000) and clinical data collected ≥5 years after completion of the study. RESULTS: Parents of three subjects from ASB-008 (subjects 1, 2, and 4) provided written informed consent to participate in the follow-up study. One subject was excluded as consent was not provided. Subjects 1, 2, and 4 were aged 0.7, 0.3, and 1.1 years, respectively, at initiation of galsulfase and 10.5, 7.9, and 10.5 years, respectively, at follow-up. All subjects had classical MPS VI based on pre-treatment urinary glycosaminoglycans and the early onset of clinical manifestations. At follow-up, subject 4 had normal stature for age; subjects 1 and 2 had short stature, but height remained around the 90th percentile of growth curves for untreated classical MPS VI. Six-minute walk distance was normal for age/height in subjects 1 (550 m) and 4 (506 m), and reduced for subject 2 (340 m). Subject 2 preserved normal respiratory function, while percent predicted forced vital capacity and forced expiratory volume in 1 s decreased over time in the other subjects. Skeletal dysplasia was already apparent in all subjects at baseline and continued to progress. Cardiac valve disease showed mild progression in subject 1, mild improvement in subject 4, and remained trivial in subject 2. All subjects had considerably reduced pinch and grip strength at follow-up, but functional dexterity was relatively normal for age and there was limited impact on activities of daily living. Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) results showed that subjects 2 and 4 had numerous fine and gross motor competencies. Corneal clouding progressed in all subjects, while progression of hearing impairment was variable. Liver size normalized from baseline in subjects 1 and 4, and remained normal in subject 2. CONCLUSION: Very early and continuous ERT appears to slow down the clinical course of MPS VI, as shown by preservation of endurance, functional dexterity, and several fine and gross motor competencies after 7.7-9.8 years of treatment, and less growth impairment or progression of cardiac disease than could be expected based on the patients' classical phenotype. ERT does not seem to prevent progression of skeletal or eye disease in the long term.


Subject(s)
Chondroitinsulfatases/genetics , Enzyme Replacement Therapy , Mucopolysaccharidosis VI/therapy , N-Acetylgalactosamine-4-Sulfatase/genetics , Activities of Daily Living , Child , Child, Preschool , Follow-Up Studies , Glycosaminoglycans/urine , Humans , Infant , Male , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/pathology , Recombinant Proteins/genetics , Respiratory Function Tests
9.
Anim Genet ; 51(6): 982-986, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32985704

ABSTRACT

Mucopolysaccharidosis (MPS) VI is a lysosomal storage disease caused by a deficiency of N-acetylgalactosamine-4-sulfatase, also called arylsulfatase B (ARSB, EC 3.1.6.12). Dogs with MPS VI show progressive predominantly oculoskeletal signs homologous to those in human and feline patients. We report herein two pathogenic ARSB gene variants in Miniature Pinscher and Miniature Schnauzer dogs with MPS VI and a genotyping survey in these breeds. All exons and adjacent regions of the ARSB gene were sequenced from three affected Miniature Pinschers and three affected Miniature Schnauzers. Allelic discrimination assays were used for genotyping. A missense variant (NM_001048133.1:c.910G>A) was found in exon 5 of MPS VI-affected Miniature Pinschers that is predicted to result in a deleterious amino acid substitution of a highly conserved glycine to arginine (NP_001041598.1:p.Gly304Arg). In MPS VI-affected Miniature Schnauzers, a 56 bp deletion (NM_001048133.1:c.-24_32del) was found at the junction of exon 1 and its upstream region, predicting no enzyme synthesis. All clinically affected Miniature Pinschers and Miniature Schnauzers were homozygous for the respective variants, and screened healthy dogs in each breed were either heterozygous or homozygous for the wt allele. Whereas the Miniature Pinscher variant seemed to occur commonly (0.133 allele frequency), the Miniature Schnauzer variant was presumed to be rare. In conclusion, two breed-specific pathogenic ARSB gene variants were identified in Miniature Pinscher and Miniature Schnauzer dogs with MPS VI, allowing for genotyping and informed breeding to prevent the production of affected offspring.


Subject(s)
Dog Diseases/genetics , Dogs/genetics , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Animals , Breeding , Exons , Gene Frequency , Homozygote , Mutation, Missense
10.
PLoS One ; 15(5): e0233032, 2020.
Article in English | MEDLINE | ID: mdl-32413051

ABSTRACT

Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy-ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the ß-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux-Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 µM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving µM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.


Subject(s)
Glycosaminoglycans/metabolism , Glycosides/therapeutic use , Mucopolysaccharidosis VI/drug therapy , Mucopolysaccharidosis VI/metabolism , Administration, Oral , Animals , Cattle , Cells, Cultured , Chondroitin Sulfates , Dermatan Sulfate/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Glycosides/administration & dosage , Glycosides/pharmacokinetics , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mucopolysaccharidosis VI/genetics , Rats , Rats, Sprague-Dawley
11.
BMC Med Genet ; 21(1): 37, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075597

ABSTRACT

BACKGROUND: The Mucopolysaccharidosis type VI (MPS VI), also known as Maroteaux-Lamy syndrome (OMIM 253200) is an autosomal recessive lysosomal disorder, caused by the deficiency of the enzyme N-acetylgalactosamine 4-sulfatase (also known as arylsulfatase B) due to mutations of the ARSB gene. Cardiologic features are well recognized, and are always present in MPS VI patients. Generally, the onset and the progression of the cardiologic symptoms are insidious, and just a few patients have developed a rapidly progressive disease. Cardiac involvement in MPS VI is a common and progressive feature. For MPS patients, cardiac evaluations are recommended every 1 to 2 years, including blood pressure measurement, electrocardiography and echocardiography. However, congestive heart failure and valvular surgical repair are not frequently seen, and if so, they are performed in adults. Here we report on an atypical MPS VI case with ascites fetalis and a rapidly progressive cardiac disease. CASE PRESENTATION: A 6-month-old Brazilian male, only child of a Brazilian healthy non-consanguineous couple. During pregnancy, second trimester ultrasonography observed fetal ascites and bilateral hydrocele. Physical exam at 6 months-old revealed a typical gibbus deformity and MPS was suspected. Biochemical investigation revealed a diagnosis of MPS type VI, confirmed by molecular test. Baseline echocardiogram revealed discrete tricuspid regurgitation and a thickened mitral valve with posterior leaflet prolapse, causing moderate to severe regurgitation. The patient evolved with mitral insufficiency and congestive heart failure, eventually requiring surgical repair by the first year of age. CONCLUSIONS: We report the first case of MPS VI whose manifestations started in the prenatal period with fetal ascites, with severe cardiac valvular disease that eventually required early surgical repair. Moreover, in MPS with neonatal presentation, including fetal hydrops, besides MPS I, IVA and VII, clinicians should include MPS VI in the differential diagnosis.


Subject(s)
Heart Failure/genetics , Heart/physiopathology , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Ascites , Brazil/epidemiology , Disease Progression , Heart/diagnostic imaging , Heart Failure/diagnosis , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Humans , Infant , Male , Mucopolysaccharidosis VI/diagnostic imaging , Mucopolysaccharidosis VI/physiopathology , Mutation , Phenotype
12.
Am J Med Genet A ; 182(3): 469-483, 2020 03.
Article in English | MEDLINE | ID: mdl-31926052

ABSTRACT

Several studies have been published on the frequency of the mucopolysaccharidoses (MPS) in different countries. The objective of the present study was to estimate the birth prevalence (BP) of MPS in Brazil. MPS diagnosis registered at MPS-Brazil Network and in Instituto Vidas Raras were reviewed. BP was estimated by (a) the number of registered patients born between 1994 and 2015 was divided by the number of live births (LBs), and (b) a sample of 1,000 healthy individuals was tested for the most frequent variant in IDUA gene in MPS I (p.Trp402Ter) to estimate the frequency of heterozygosity and homozygosity. (a) The BP based on total number of LBs was (cases per 100,000 LBs): MPS overall: 1.25; MPS I: 0.24; MPS II: 0.37; MPS III: 0.21; MPS IV: 0.14; MPS VI: 0.28; MPS VII: 0.02. (b) The overall frequency of p.Trp402Ter was 0.002. Considering the frequency of heterozygotes for the p.Trp402Ter IDUA variant in the RS state, the frequency of this variant among MPS I patients and the relative frequency of the different MPSs, we estimated the birth prevalence of MPS in total and of each MPS type, as follows: MPS overall: 4.62; MPS I: 0.95; MPS II: 1.32; MPS III: 0.56; MPS IV: 0.57; MPS VI: 1.02; MPS VII: 0.05. This study provided original data about BP and relative frequency of the MPS types, in Brazil, based on the frequency of the commonest IDUA pathogenic variant and in the records of two large patient databases.


Subject(s)
Iduronidase/genetics , Mucopolysaccharidoses/genetics , Brazil/epidemiology , Female , Humans , Iduronidase/blood , Live Birth , Male , Mucopolysaccharidoses/blood , Mucopolysaccharidoses/epidemiology , Mucopolysaccharidoses/pathology , Mucopolysaccharidosis I/blood , Mucopolysaccharidosis I/epidemiology , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis II/epidemiology , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis III/blood , Mucopolysaccharidosis III/epidemiology , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis VI/blood , Mucopolysaccharidosis VI/epidemiology , Mucopolysaccharidosis VI/genetics , Mutation/genetics
13.
Gene ; 706: 1-5, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31009684

ABSTRACT

BACKGROUND: Mucopolysaccharidosis (MPS) type VI, also known as Maroteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by a deficiency in arylsulfatase B (ARSB) enzyme. Our objectives were to investigate clinical phenotypes and performed molecular studies in Iranian patients with MPS VI, for the first time, in the southwestern Iran. METHODS: We studied 14 cases from 10 unrelated kindreds with MPS VI that were enrolled during 8 years. The mutational analysis of coding and flanking regions of ARSB gene was performed for the patients and their families using genomic DNA from whole blood by direct sequencing. RESULTS: All cases had parental consanguinity. Except one who had Fars ethnicity and presented with a very mild degree of coarse face, but normal otherwise, even near normal height, all were from Arab ethnicity with characteristic phenotypes including severe facial changes, cardiac involvement and dysostosis multiplex. Sequencing analysis of ARSB gene revealed four pathogenic homozygote mutations, including a novel nonsense mutation c.281C>A (p.Ser94X) in 9 patients, as well as, a known nonsense mutation c.753C>G (p.Try251X) in 3 cases, and two missense mutations c.904G>A (p.Gly302Arg) and c.454C>T (p.Arg152Trp) in two cases. The type of mutations affected the severity patient's phenotypes. CONCLUSIONS: These findings increased the genetic databases of Iranian patients with MPS VI and would be so much helpful for the high-risk families to speed the detection of carriers with accuracy and perform the prenatal test of disorder with cost-effective in this population.


Subject(s)
Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Adult , Consanguinity , DNA/genetics , DNA Mutational Analysis/methods , Exons , Female , Humans , Iran , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/metabolism , Mutation/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/physiology , Phenotype , Sequence Analysis, DNA/methods
14.
Mol Biol Rep ; 46(3): 3417-3426, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30982216

ABSTRACT

Mucopolysaccharidosis VI is a rare autosomal recessive disorder caused by the deficiency of enzyme Arylsulfatase B. The enzyme deficiency leads to the accumulation of dermatan sulfate in connective tissue which causes manifestations related to MPS VI. Up to now, three different disease causing variants are reported in Iranian patients. In this study, we scanned ARSB gene of 13 Iranian patients from 12 families in whom all parents were consanguineous and from the same ethnicity except one family that were not consanguineous but co-ethnic. We found six not previously reported disease causing variants. We extracted DNA from peripheral blood samples of patients that were previously confirmed as MPS VI by clinical, biochemical and enzymatic assays including berry-spot test and fluorimetry, followed by PCR and direct sequencing. Computational approaches were used to analyze novel variants in terms of their impact on the protein structure. 11 disease causing variants and 15 polymorphisms were found. Six disease causing variants were novel and five were previously reported of which three were in Iranian population. Four of patients, who were unrelated, two by two had the same disease causing variant and polymorphisms, which indicates a possible founder effect. Our study also implicates genotype-phenotype correlation. Computational structural modeling indicated these disease causing variants might affect structural stability and function of the protein. Data of this study confirms the existence of mutational heterogeneity in the ARSB between Iranian patients. Disease causing variants with high frequency can be used in the prenatal diagnosis and genetic counseling. Also, the existence of the same variants and polymorphisms in some of the unrelated patients indicates a possible founder effect.


Subject(s)
Mucopolysaccharidosis VI/genetics , Mutation , N-Acetylgalactosamine-4-Sulfatase/genetics , Child , Child, Preschool , DNA/genetics , DNA Mutational Analysis , Exons , Female , Genetic Association Studies , Genetic Testing , Genetic Variation/genetics , Humans , Infant , Iran , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/metabolism , N-Acetylgalactosamine-4-Sulfatase/metabolism , Pedigree , Polymorphism, Genetic/genetics
15.
Int J Mol Sci ; 20(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669586

ABSTRACT

Metabolic phenotyping is poised as a powerful and promising tool for biomarker discovery in inherited metabolic diseases. However, few studies applied this approach to mcopolysaccharidoses (MPS). Thus, this innovative functional approach may unveil comprehensive impairments in MPS biology. This study explores mcopolysaccharidosis VI (MPS VI) or Maroteaux⁻Lamy syndrome (OMIM #253200) which is an autosomal recessive lysosomal storage disease caused by the deficiency of arylsulfatase B enzyme. Urine samples were collected from 16 MPS VI patients and 66 healthy control individuals. Untargeted metabolomics analysis was applied using ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Furthermore, dermatan sulfate, amino acids, carnitine, and acylcarnitine profiles were quantified using liquid chromatography coupled to tandem mass spectrometry. Univariate analysis and multivariate data modeling were used for integrative analysis and discriminant metabolites selection. Pathway analysis was done to unveil impaired metabolism. The study revealed significant differential biochemical patterns using multivariate data modeling. Pathway analysis revealed that several major amino acid pathways were dysregulated in MPS VI. Integrative analysis of targeted and untargeted metabolomics data with in silico results yielded arginine-proline, histidine, and glutathione metabolism being the most affected. This study is one of the first metabolic phenotyping studies of MPS VI. The findings might shed light on molecular understanding of MPS pathophysiology to develop further MPS studies to enhance diagnosis and treatments of this rare condition.


Subject(s)
Metabolome , Metabolomics , Mucopolysaccharidosis VI/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Computational Biology/methods , Female , Humans , Male , Metabolic Networks and Pathways , Metabolomics/methods , Middle Aged , Molecular Sequence Annotation , Mucopolysaccharidosis VI/genetics , Phenotype , Young Adult
16.
Pediatrics ; 142(6)2018 12.
Article in English | MEDLINE | ID: mdl-30470723

ABSTRACT

Mucopolysaccharidosis type VI (MPS VI) is a clinically heterogeneous lysosomal disease, which can be divided into 2 main categories on the basis of age of onset and severity of symptoms. The diagnosis of the attenuated form is often delayed given subtle facial features rather than the typical coarse facial features of the classic form. Here, we discuss the difficulties in establishing the diagnosis of MPS VI on the basis of the report of 4 individuals. The most common signs and symptoms in our series were bone abnormalities and hip pain as initial manifestations and cardiac changes detected after follow-up studies. On the basis of our cohort and others worldwide, awareness of attenuated forms of MPS VI should be increased particularly among general practitioners, pediatricians, rheumatologists, orthopedists, ophthalmologists, and cardiologists. Moreover, these health care providers should be aware of the technical aspects involved in the molecular and biochemical diagnosis process so that they are aware how diagnostic errors may occur.


Subject(s)
Mucopolysaccharidosis VI/diagnostic imaging , Mucopolysaccharidosis VI/genetics , Mutation/genetics , Adult , Child , Diagnosis, Differential , Female , Humans , Male , Pedigree , Young Adult
17.
Hum Mutat ; 39(12): 1788-1802, 2018 12.
Article in English | MEDLINE | ID: mdl-30118150

ABSTRACT

Maroteaux-Lamy syndrome (MPS VI) is an autosomal recessive lysosomal storage disorder caused by pathogenic ARSB gene variants, commonly diagnosed through clinical findings and deficiency of the arylsulfatase B (ASB) enzyme. Detection of ARSB pathogenic variants can independently confirm diagnosis and render genetic counseling possible. In this review, we collect and summarize 908 alleles (201 distinct variants, including 3 polymorphisms previously considered as disease-causing variants) from 478 individuals diagnosed with MPS VI, identified from literature and public databases. Each variant is further analyzed for clinical classification according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results highlight the heterogeneity of ARSB alleles, with most unique variants (59.5%) identified as missense and 31.7% of unique alleles appearing once. Only 18% of distinct variants were previously recorded in public databases with supporting evidence and clinical significance. ACMG recommends publishing clinical and biochemical data that accurately characterize pathogenicity of new variants in association with reporting specific alleles. Variants analyzed were sent to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and MPS VI locus-specific database (http://mps6-database.org) where they will be available. High clinical suspicion coupled with diagnostic testing for deficient ASB activity and timely submission and classification of ARSB variants with biochemical and clinical data in public databases is essential for timely diagnosis of MPS VI.


Subject(s)
Genetic Testing/methods , Genetic Variation , Mucopolysaccharidosis VI/diagnosis , N-Acetylgalactosamine-4-Sulfatase/genetics , Databases, Factual , Early Diagnosis , Gene Frequency , Homozygote , Humans , Molecular Conformation , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/metabolism , Mutation, Missense , N-Acetylgalactosamine-4-Sulfatase/chemistry , N-Acetylgalactosamine-4-Sulfatase/metabolism , Societies, Medical
18.
Vet Pathol ; 55(2): 286-293, 2018 03.
Article in English | MEDLINE | ID: mdl-29157190

ABSTRACT

Mucopolysaccharidoses are inherited metabolic disorders that result from a deficiency of lysosomal enzymes required for the catabolism of glycosaminoglycans. Lysosomal glycosaminoglycan accumulation results in cell and organ dysfunction. This study characterized the phenotype and genotype of mucopolysaccharidosis VI in a Great Dane puppy with clinical signs of stunted growth, facial dysmorphia, skeletal deformities, corneal opacities, and increased respiratory sounds. Clinical and pathologic evaluations, urine glycosaminoglycan analyses, lysosomal enzyme assays, and ARSB sequencing were performed. The urine mucopolysaccharide spot test was strongly positive predominantly due to the accumulation of dermatan sulfate. Enzyme assays in leukocytes and tissues indicated a deficiency of arylsulfatase B (ARSB) activity. Histologic examination revealed cytoplasmic vacuoles in many tissues. Analysis of the exonic ARSB DNA sequences from the affected puppy compared to the published canine genome sequence revealed a homozygous nonsense mutation (c.295C>T) in exon 1, replacing glutamine with a premature stop codon (p.Gln99*), predicting no enzyme synthesis. A polymerase chain reaction-based restriction fragment length polymorphism test was established to assist with the clinical diagnosis and breeding of Great Danes. This genotyping test revealed that the clinically healthy parents and some other relatives of the puppy were heterozygous for the mutant allele, but all 200 clinically healthy dogs screened including 15 Great Danes were homozygous for the normal allele. This ARSB mutation is the fourth identified genetic variant causing canine mucopolysaccharidosis VI. Mucopolysaccharidosis VI is the first lysosomal storage disorder described in Great Danes but does not appear to be widespread in this breed.


Subject(s)
Codon, Nonsense/genetics , Dog Diseases/genetics , Mucopolysaccharidosis VI/veterinary , N-Acetylgalactosamine-4-Sulfatase/genetics , Animals , Dog Diseases/pathology , Dogs , Male , Mucopolysaccharidosis VI/genetics , Mucopolysaccharidosis VI/pathology , Sequence Analysis, DNA/veterinary
19.
Acta Med Iran ; 55(9): 585-590, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29202552

ABSTRACT

Mucopolysaccharidosis VI (MPS-VI) is an infrequent autosomal recessive disorder caused by mutations in ARSB gene and deficiency in lysosomal enzyyme ARSB activities subsequently. This enzyme is essential for the breaking of glycosaminoglycans (GAGs) such as dermatan sulfate and chondroitin sulfate. ARSB dysfunction results in imperfect breakdown of GAGs and their accumulation in urine. Mutations in ARSB gene are the main players in MPS-VI disease and its clinical consequences. Most reported mutations are point mutations but there are some other examples in literature. Here we report a novel missense mutation in ARSB gene that is inherited as an autosomal recessive mode and probably explain the clinical status of the proband. This mutation replaces the threonine 92 by proline and alters ARSB structure. This is the most feasible scenario for clinical condition we described here. This novel mutation should be remarked for PND and PGD to improve the health and management of such families.


Subject(s)
Mucopolysaccharidosis VI/genetics , Mutation, Missense/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Child , Humans , Iran , Male
20.
Am J Med Genet A ; 173(11): 2954-2967, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28884960

ABSTRACT

Mucopolysaccharidosis type VI (MPS VI) is a lysosomal storage disorder (LSD) characterized by a chronic, progressive course with multiorgan involvement. In our study, clinical, biochemical, molecular findings, and response to enzyme replacement therapy (ERT) for at least 6 months were evaluated in 20 patients with MPS VI. Treatment effects on clinical findings such as liver and spleen sizes, cardiac and respiratory parameters, visual and auditory changes, joints' range of motions, endurance tests and changes in urinary glycosaminoglycan excretions, before and after ERT were analyzed. ERT caused increased physical endurance and decreased urinary dermatan sulfate/chondroitin sulfate ratios. Changes in growth parameters, cardiac, respiratory, visual, auditory findings, and joint mobility were not significant. All patients and parents reported out an increased quality of life, which were not correlated with clinical results. The most prevalent mutation was p.L321P, accounting for 58.8% of the mutant alleles and two novel mutations (p.G79E and p.E390 K) were found. ERT was a safe but expensive treatment for MPS VI, with mild benefits in severely affected patients. Early treatment with ERT is mandatory before many organs and systems are involved.


Subject(s)
Lysosomal Storage Diseases/genetics , Mucopolysaccharidosis VI/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Adolescent , Adult , Child , Child, Preschool , Enzyme Replacement Therapy , Female , Gene Frequency , Genetic Association Studies , Humans , Infant , Infant, Newborn , Lysosomal Storage Diseases/enzymology , Lysosomal Storage Diseases/pathology , Lysosomal Storage Diseases/therapy , Male , Mucopolysaccharidosis VI/enzymology , Mucopolysaccharidosis VI/pathology , Mucopolysaccharidosis VI/therapy , Quality of Life , Turkey/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...