Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 681
Filter
1.
Front Immunol ; 15: 1436717, 2024.
Article in English | MEDLINE | ID: mdl-39108272

ABSTRACT

Neurological disorders, including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), may be associated with alterations in blood cell composition and phenotype. Here, we focused our attention on circulating mucosal-associated invariant T (MAIT) cells, a CD8+ T cell memory population expressing the invariant Vα7.2 region in the T cell receptor and high surface levels of the CD161 marker. Transcriptomics data relative to peripheral blood mononuclear cells (PBMC) highlighted downregulation of CD161 and other MAIT-associated markers in progressive MS and not relapsing remitting (RR)-MS when gene expressions relative to each disease course were compared to those from healthy controls. Multiparametric flow cytometry of freshly isolated PBMC samples from untreated RR-MS, primary or secondary progressive MS (PP- or SP-MS), ALS and age- and sex-matched healthy controls revealed specific loss of circulating CD8+ MAIT cells in PP-MS and no other MS courses or another neurological disorder such as ALS. Overall, these observations point to the existence of immunological changes in blood specific for the primary progressive course of MS that may support clinical definition of disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Mucosal-Associated Invariant T Cells , Humans , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/blood , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Middle Aged , Female , Adult , Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Biomarkers , Flow Cytometry
2.
PLoS Pathog ; 20(8): e1012372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39110717

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that respond to riboflavin biosynthesis and cytokines through TCR-dependent and -independent pathways, respectively. MAIT cell activation plays an immunoprotective role against several pathogens, however the functional capacity of MAIT cells following direct infection or exposure to infectious agents remains poorly defined. We investigated the impact of Varicella Zoster Virus (VZV) on blood-derived MAIT cells and report virus-mediated impairment of activation, cytokine production, and altered transcription factor expression by VZV infected (antigen+) and VZV exposed (antigen-) MAIT cells in response to TCR-dependent and -independent stimulation. Furthermore, we reveal that suppression of VZV exposed (antigen-) MAIT cells is not mediated by a soluble factor from neighbouring VZV infected (antigen+) MAIT cells. Finally, we demonstrate that VZV impairs the cytolytic potential of MAIT cells in response to riboflavin synthesising bacteria. In summary, we report a virus-mediated immune-evasion strategy that disarms MAIT cell responses.


Subject(s)
Herpesvirus 3, Human , Mucosal-Associated Invariant T Cells , Humans , Mucosal-Associated Invariant T Cells/immunology , Herpesvirus 3, Human/immunology , Lymphocyte Activation/immunology , Cytokines/metabolism , Cytokines/immunology , Riboflavin/immunology , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/virology , Immune Evasion/immunology , Herpes Zoster/immunology , Herpes Zoster/virology
3.
Front Immunol ; 15: 1432651, 2024.
Article in English | MEDLINE | ID: mdl-39086492

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Animals , Wound Healing/immunology , Homeostasis/immunology , Regeneration/immunology
4.
BMC Oral Health ; 24(1): 829, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039547

ABSTRACT

BACKGROUND: Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS: The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS: Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS: MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.


Subject(s)
Lichen Planus, Oral , Mucosal-Associated Invariant T Cells , Humans , Lichen Planus, Oral/immunology , Lichen Planus, Oral/pathology , Mucosal-Associated Invariant T Cells/immunology , Male , Female , Middle Aged , Adult , Antigens, CD , Aged , Granzymes/metabolism , Adrenal Cortex Hormones/therapeutic use , Cytokines/metabolism , Programmed Cell Death 1 Receptor , Case-Control Studies , Antigens, Differentiation, T-Lymphocyte , Phenotype , Flow Cytometry , Lectins, C-Type
5.
Sci Rep ; 14(1): 17256, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39060324

ABSTRACT

Sjögren syndrome (SS) is an autoimmune disease characterized by chronic inflammatory infiltrates in the salivary and lacrimal glands. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T-cells, predominantly found in mucosal tissues with crucial role in epithelial homeostasis. Thus, MAIT cells may be implicated in mucosal alterations of SS patients. Activation markers, inflammatory and cytotoxic cytokines were examined in 23 SS patients and compared to 23 healthy controls (HC). Tissular MAIT cells in salivary gland (SG) biopsies were also analyzed. Circulating MAIT cells were decreased in SS patients with a higher expression of CD69 and a higher CD4/CD8 ratio of MAIT cells. MAIT cells showed a higher production of IFNγ, TNFα and GzB in SS compare to HC. Tissular MAIT cells were present within inflamed SG of SS patients, while they were absent in SG of HC. Overall, circulating MAIT cells are decreased in the peripheral blood of SS albeit producing higher amounts of IFNγ, TNFα, and GzB. Tissular MAIT cells are detected in salivary glands from SS with a proinflammatory tissular cytokine environment. MAIT cells with abnormal phenotype, functions and tissular homeostasis may contribute to epithelial damage in SS.


Subject(s)
Mucosal-Associated Invariant T Cells , Salivary Glands , Sjogren's Syndrome , Humans , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Female , Middle Aged , Male , Salivary Glands/pathology , Salivary Glands/immunology , Salivary Glands/metabolism , Adult , Cytokines/metabolism , Aged , Case-Control Studies
6.
Gut Microbes ; 16(1): 2370616, 2024.
Article in English | MEDLINE | ID: mdl-38961712

ABSTRACT

Amino acids, metabolized by host cells as well as commensal gut bacteria, have signaling effects on host metabolism. Oral supplementation of the essential amino acid histidine has been shown to exert metabolic benefits. To investigate whether dietary histidine aids glycemic control, we performed a case-controlled parallel clinical intervention study in participants with type 2 diabetes (T2D) and healthy controls. Participants received oral histidine for seven weeks. After 2 weeks of histidine supplementation, the microbiome was depleted by antibiotics to determine the microbial contribution to histidine metabolism. We assessed glycemic control, immunophenotyping of peripheral blood mononucelar cells (PBMC), DNA methylation of PBMCs and fecal gut microbiota composition. Histidine improves several markers of glycemic control, including postprandial glucose levels with a concordant increase in the proportion of MAIT cells after two weeks of histidine supplementation. The increase in MAIT cells was associated with changes in gut microbial pathways such as riboflavin biosynthesis and epigenetic changes in the amino acid transporter SLC7A5. Associations between the microbiome and MAIT cells were replicated in the MetaCardis cohort. We propose a conceptual framework for how oral histidine may affect MAIT cells via altered gut microbiota composition and SLC7A5 expression in MAIT cells directly and thereby influencing glycemic control. Future studies should focus on the role of flavin biosynthesis intermediates and SLC7A5 modulation in MAIT cells to modulate glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Histidine , Mucosal-Associated Invariant T Cells , Humans , Histidine/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Gastrointestinal Microbiome/drug effects , Middle Aged , Male , Female , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Glycemic Control , Dietary Supplements , Case-Control Studies , Feces/microbiology , Blood Glucose/metabolism , Aged , Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Administration, Oral , DNA Methylation
7.
Front Immunol ; 15: 1424987, 2024.
Article in English | MEDLINE | ID: mdl-38979423

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.


Subject(s)
Histocompatibility Antigens Class I , Mucosal-Associated Invariant T Cells , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Humans , Animals , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/metabolism , Autoantigens/immunology , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
8.
Sci Immunol ; 9(96): eadi8954, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905325

ABSTRACT

Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.


Subject(s)
Colitis , Dysbiosis , Gastrointestinal Microbiome , Mice, Inbred C57BL , Mucosal-Associated Invariant T Cells , Animals , Mucosal-Associated Invariant T Cells/immunology , Colitis/immunology , Colitis/microbiology , Dysbiosis/immunology , Mice , Gastrointestinal Microbiome/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Riboflavin/immunology
9.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892082

ABSTRACT

Mucosal-associated invariant T (MAIT) cells, a subset of Vα7.2+ T cells, are a crucial link between innate and adaptive immunity, responding to various stimuli through TCR-dependent and independent pathways. We investigated the responses of MAIT cells and Vα7.2+/CD161- T cells to different stimuli and evaluated the effects of Cyclosporin A (CsA) and Vitamin D3 (VitD). Peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with various agents (PMA/Ionomycin, 5-OP-RU, 5-OP-RU/IL-12/IL-33) with or without CsA and VitD. Flow cytometric analysis assessed surface markers and intracellular cytokine production. Under steady-state conditions, MAIT cells displayed elevated expression of CCR6 and IL-13. They showed upregulated activation and exhaustion markers after activation, producing IFNγ, TNFα, and TNFα/GzB. CsA significantly inhibited MAIT cell activation and cytokine production. Conversely, Vα7.2+/CD161- T cells exhibited distinct responses, showing negligible responses to 5-OP-RU ligand but increased cytokine production upon PMA stimulation. Our study underscores the distinct nature of MAIT cells compared to Vα7.2+/CD161- T cells, which resemble conventional T cells. CsA emerges as a potent immunosuppressive agent, inhibiting proinflammatory cytokine production in MAIT cells. At the same time, VitD supports MAIT cell activation and IL-13 production, shedding light on potential therapeutic avenues for immune modulation.


Subject(s)
Mucosal-Associated Invariant T Cells , NK Cell Lectin-Like Receptor Subfamily B , Humans , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Mucosal-Associated Invariant T Cells/drug effects , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Immunologic Factors/pharmacology , Cytokines/metabolism , Cyclosporine/pharmacology , Cholecalciferol/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology
10.
Curr Opin Virol ; 67: 101412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838550

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mucosal-Associated Invariant T Cells , SARS-CoV-2 , Humans , Mucosal-Associated Invariant T Cells/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/immunology , Immunogenicity, Vaccine , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Cytokines/immunology , Cytokines/metabolism
11.
Microbiol Spectr ; 12(8): e0320723, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916330

ABSTRACT

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE: The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.


Subject(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Riboflavin , Riboflavin/biosynthesis , Riboflavin/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Flavin-Adenine Dinucleotide/metabolism , Biosynthetic Pathways/genetics , Gene Knockdown Techniques , Mucosal-Associated Invariant T Cells/metabolism , Gene Expression Regulation, Bacterial
12.
Trends Immunol ; 45(7): 535-548, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879436

ABSTRACT

Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.


Subject(s)
Immunity, Innate , Liver Diseases , Humans , Animals , Liver Diseases/immunology , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Liver/immunology
13.
Front Immunol ; 15: 1391280, 2024.
Article in English | MEDLINE | ID: mdl-38840918

ABSTRACT

Background: Currently, there is a lack of an objective quantitative measure to comprehensively evaluate the inflammatory activity of axSpA, which poses certain challenges in accurately assessing the disease activity. Objective: To explore the value of combined-parameter models of sacroiliac joints (SIJs) MRI relaxometry and peripheral blood Mucosal-associated invariant T (MAIT) cells in evaluating the inflammatory activity of axial spondyloarthritis (axSpA). Methods: This retrospective clinical study included 88 axSpA patients (median age 31.0 (22.0, 41.8) years, 21.6% females) and 20 controls (median age 28.0 (20.5, 49.5) years, 40.0% females). The axSpA group was classified into active subgroup (n=50) and inactive subgroup (n=38) based on ASDAS-CRP. All participants underwent SIJs MRI examination including T1 and T2* mapping, and peripheral blood flow cytometry analysis of MAIT cells (defined as CD3+Vα7.2+CD161+) and their activation markers (CD69). The T1 and T2* values, as were the percentages of MAIT cells and CD69+MAIT cells were compared between different groups. Combined-parameter models were established using logistic regression, and ROC curves were employed to evaluate the diagnostic efficacy. Results: The T1 values of SIJs and %CD69+MAIT cells in the axSpA group and its subgroup were higher than the control group (p<0.05), while %MAIT cells were lower than the control group (p<0.05). The T1 values and %CD69+MAIT cells correlated positively, while %MAIT cells correlated negatively, with the ASDAS-CRP (r=0.555, 0.524, -0.357, p<0.001). Between the control and axSpA groups, and between the inactive and active subgroups, the combined-parameter model T1 mapping+%CD69+MAIT cells has the best efficacy (AUC=0.959, 0.879, sensibility=88.6, 70%, specificity=95.0, 94.7%, respectively). Conclusion: The combined-parameter model T1 mapping+%CD69+MAIT cells allows a more accurate evaluation of the level of inflammatory activity.


Subject(s)
Axial Spondyloarthritis , Magnetic Resonance Imaging , Mucosal-Associated Invariant T Cells , Humans , Female , Mucosal-Associated Invariant T Cells/immunology , Male , Adult , Magnetic Resonance Imaging/methods , Axial Spondyloarthritis/diagnostic imaging , Axial Spondyloarthritis/immunology , Retrospective Studies , Middle Aged , Young Adult , Sacroiliac Joint/diagnostic imaging , Sacroiliac Joint/pathology , Inflammation/immunology , Inflammation/diagnostic imaging , Biomarkers
14.
Sci Adv ; 10(24): eadn6331, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865451

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.


Subject(s)
Appendicitis , Inflammation , Mucosal-Associated Invariant T Cells , Humans , Appendicitis/pathology , Appendicitis/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Inflammation/pathology , Inflammation/immunology , Inflammation/metabolism , Cytokines/metabolism , Acute Disease , Lymphocyte Activation/immunology , Organoids , Cell Movement , Child , Male , Female , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Appendix/pathology , Appendix/immunology
15.
J Clin Immunol ; 44(6): 139, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822857

ABSTRACT

We evaluated the impact of early recovery of mucosal-associated invariant T cells (MAIT) and gamma-delta (γδ) T cells, especially Vδ2+ T cells, on the clinical outcomes of 76 patients who underwent allogeneic hematopoietic cell transplantation (allo-HCT). MAIT cells were identified at day 20-30 post-transplant using flow cytometry and defined as CD3+ TCRVα7.2+CD161+. Two subsets of Vδ2+ T cells were analyzed according to the expression of CD26. The cytotoxicity profile of MAIT and Vδ2+ T cells was analyzed according to the intracellular expression of perforin and granzyme B, and intracellular IFN-γ was evaluated after in vitro activation. CD26+Vδ2+ T cells displayed higher intracellular levels of IFN-γ, whereas CD26- Vδ2+ T were found to be more cytotoxic. Moreover, MAIT cell frequency was correlated with the frequency of Vδ2+ T cells with a better correlation observed with Vδ2+CD26+ than with the Vδ2+CD26- T cell subset. By using the composite endpoint graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) as the primary endpoint, we found that patients with a higher MAIT cell frequency at day 20-30 after allo-HCT had a significantly increased GRFS and a better overall survival (OS) and disease-free survival (DFS). Moreover, patients with a low CD69 expression by MAIT cells had an increased cumulative incidence of grade 2-4 acute GvHD (aGvHD). These results suggest that MAIT cell reconstitution may provide mitigating effects early after allo-HCT depending on their activation markers and functional status. Patients with a high frequency of Vδ2+CD26+ T cells had a significantly higher GRFS, OS and DFS, but there was no impact on cumulative incidence of grade 2-4 aGVHD, non-relapse mortality and relapse. These results revealed that the impact of Vδ2+ T cells on the success of allo-HCT may vary according to the frequency of the CD26+ subset.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mucosal-Associated Invariant T Cells , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Mucosal-Associated Invariant T Cells/immunology , Young Adult , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adolescent , Aged , Treatment Outcome , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Dipeptidyl Peptidase 4/metabolism , Cytotoxicity, Immunologic
16.
Scand J Immunol ; 100(3): e13391, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38773691

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Eosinophils , Immunity, Innate , Mice, Knockout , Mucosal-Associated Invariant T Cells , Animals , Mucosal-Associated Invariant T Cells/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Mice , Humans , Immunity, Innate/immunology , Eosinophils/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Cell Line, Tumor , Coculture Techniques , Homeodomain Proteins
17.
Viral Immunol ; 37(5): 240-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808464

ABSTRACT

Human pegivirus (HPgV) appears to alter the prognosis of HIV disease by modulating T cell homeostasis, chemokine/cytokine production, and T cell activation. In this study, we evaluated if HPgV had any 'favorable' impact on the quantity and quality of T cells in HIV-infected individuals. T cell subsets such as CD4lo, CD4hi, and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, follicular helper T (TFH) cells, and follicular cytotoxic T (TFC) cells were characterized based on the expression of markers associated with immune activation (CD69, ICOS), proliferation (ki67), cytokine production (TNF-α, IFN-γ), and exhaustion (PD-1). HIV+HPgV+ individuals had lower transaminase SGOT (liver) and GGT (biliary) in the plasma than those who were HPgV-. HIV/HPgV coinfection was significantly associated with increased absolute CD4+ T cell counts. HIV+HPgV+ and HIV+HPgV- individuals had highly activated T cell subsets with high expression of CD69 and ICOS on bulk CD4+ and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, and CXCR5+CD4+ T cells and CXCR5+CD8+ T cells compared with healthy controls. Irrespective of immune activation markers, these cells also displayed higher levels of PD-1 on CD4+ T and CD8+ T cells . Exploring effector functionality based on mitogen stimulation demonstrated increased cytokine production by CD4+ MAIT and CD8+ MAIT cells. Decrease in absolute CD4+ T cell counts correlated positively with intracellular IFN-γ levels by CD4lo T cells, whereas increase of the same correlated negatively with TNF-α in the CD4lo T cells of HIV+HPgV+ individuals. HIV/HPgV coinfected individuals display functional CD4+ and CD8+ MAIT, TFH, and TFC cells irrespective of PD-1 expression.


Subject(s)
Coinfection , Flaviviridae Infections , HIV Infections , Mucosal-Associated Invariant T Cells , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , Mucosal-Associated Invariant T Cells/immunology , Coinfection/immunology , Coinfection/virology , Male , HIV Infections/immunology , HIV Infections/virology , Adult , Female , Flaviviridae Infections/immunology , Flaviviridae Infections/virology , Middle Aged , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology , Cytokines/metabolism , T Follicular Helper Cells/immunology , Antigens, Differentiation, T-Lymphocyte , Lymphocyte Activation/immunology , Antigens, CD , CD4-Positive T-Lymphocytes/immunology , Lectins, C-Type
19.
Immunol Cell Biol ; 102(6): 429-431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38690663

ABSTRACT

In this article for the Highlights of 2023 Series, we discuss recent research on unconventional T cells with a focus on gamma delta T cell development and cancer cell targeting, as well as the contributions of MAIT cells to wound repair.


Subject(s)
Neoplasms , Animals , Humans , Cell Differentiation/immunology , Cell Movement/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Neoplasms/immunology , T-Lymphocytes/immunology , Wound Healing/immunology
20.
J Biol Chem ; 300(6): 107338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705391

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.


Subject(s)
Histocompatibility Antigens Class I , Minor Histocompatibility Antigens , Mucosal-Associated Invariant T Cells , Species Specificity , Animals , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Mice , Cattle , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/chemistry , Swine , Macaca , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL