Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 589
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732114

ABSTRACT

Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.


Subject(s)
Biomarkers , Exosomes , Multiple Organ Failure , Sepsis , Humans , Exosomes/metabolism , Sepsis/metabolism , Multiple Organ Failure/metabolism , Multiple Organ Failure/immunology , Multiple Organ Failure/etiology , Animals
2.
J Clin Lab Anal ; 36(5): e24309, 2022 May.
Article in English | MEDLINE | ID: mdl-35325494

ABSTRACT

BACKGROUND: Long noncoding RNA GAS5 (lnc-GAS5) is able to regulate macrophage M1 polarization and Th17 cell differentiation, also engaged in sepsis-induced inflammation and organ injury. This study aimed to further evaluate its linkage with Th1 cells and Th17 cells, as well as its clinical value in sepsis management. METHODS: About 101 sepsis patients were enrolled followed by peripheral blood mononuclear cell (PBMC) and serum samples collection. PBMC lnc-GAS5 was detected by RT-qPCR; Th1 cells and Th17 cells in PBMC CD4+ T cells were detected by flow cytometry; serum IFN-γ and IL-17A were detected by ELISA. Besides, PBMC lnc-GAS5 was also detected in 50 health controls (HCs). RESULTS: Lnc-GAS5 was reduced in sepsis patients than in HCs (p < 0.001), which also well-distinguished sepsis patients from HCs with AUC 0.860. Lnc-GAS5 did not relate to Th1 cells (p = 0.059) or IFN-γ (p = 0.192); while negatively linked with Th17 cells (p = 0.002) and IL-17A (p = 0.019) in sepsis patients. Interestingly, lnc-GAS5 negatively correlated with SOFA score (p = 0.001), SOFA-Respiratory system score (p = 0.001), SOFA-Coagulation score (p = 0.015), and SOFA-Renal system score (p = 0.026), but not SOFA-Liver score (p = 0.080), SOFA-Cardiovascular system score (p = 0.207) or SOFA-Nervous system score (p = 0.182) in sepsis patients. Furthermore, lnc-GAS5 was negatively related to CRP (p = 0.002) and APACHE II score (p = 0.004) in sepsis patients. Finally, lnc-GAS5 was decreased in dead sepsis patients compared to survivors (p = 0.007), which also distinguished sepsis deaths from survivors with AUC 0.713. CONCLUSION: Lnc-GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis severity and mortality risk.


Subject(s)
RNA, Long Noncoding , Sepsis , Th17 Cells , Biomarkers , Humans , Inflammation/immunology , Interleukin-17/immunology , Leukocytes, Mononuclear/immunology , Multiple Organ Failure/immunology , Prognosis , RNA, Long Noncoding/immunology , Sepsis/immunology , Th17 Cells/immunology
3.
J Leukoc Biol ; 112(2): 221-232, 2022 08.
Article in English | MEDLINE | ID: mdl-35141943

ABSTRACT

LPS challenge is used to model inflammation-induced organ dysfunction. The effects of T cell activation on LPS-mediated organ dysfunction and immune responses are unknown. We studied these interactions through in vivo administration of anti-CD3ε (CD3) T cell activating antibody and LPS. Mortality in response to high-dose LPS (LPSHi; 600 µg) was 60%; similar mortality was observed with a 10-fold reduction in LPS dose (LPSLo; 60 µg) when administered with CD3 (CD3LPSLo). LPSHi and CD3LPSLo cohorts suffered severe organ dysfunction. CD3LPSLo led to increased IFNγ and IL12p70 produced by T cells and dendritic cells (cDCs) respectively. CD3LPSLo caused cDC expression of CD40 and MHCII and prevented PD1 expression in response to CD3. These interactions led to the generation of CD4 and CD8 cytolytic T cells. CD3LPSLo responded to IFNγ or IL12p40 blockade, in contrast to LPSHi. The combination of TCR activation and LPS (CD3LPSLo) dysregulated T cell activation and increased LPS-associated organ dysfunction and mortality through T cell and cDC interactions.


Subject(s)
Interferon-gamma , Lymphocyte Activation , Multiple Organ Failure , T-Lymphocytes , Animals , Inflammation , Interferon-gamma/metabolism , Lipopolysaccharides/toxicity , Mice , Multiple Organ Failure/chemically induced , Multiple Organ Failure/immunology , T-Lymphocytes/immunology
4.
Pediatr Res ; 91(2): 464-469, 2022 01.
Article in English | MEDLINE | ID: mdl-35022559

ABSTRACT

The complex physiology and medical requirements of children with sepsis and multiple organ dysfunction syndrome (MODS) challenge traditional care coordination models. While the involvement of multiple clinical subspecialty services is often necessary to support different care processes and individual organ system dysfunctions, it can also delay the diagnostic process, monitoring, and treatment. The logistics of coordinating with many specialty providers for critically ill patients are challenging and time consuming, and often can result in fragmented communication. To address these and other related issues, we developed a new multi-disciplinary consult service focused on streamlining diagnostics, management, and communication for patients with sepsis and MODS-associated immune dysregulation. The service, called the Program in Inflammation, Immunity, and the Microbiome (PrIIMe), is now a hospital-wide clinical consult service at our institution caring for a broad group of patients with immune dysregulation, particularly focusing on patients with sepsis and MODS. In this paper, we summarize the development, structure, and function of the program, as well as the initial impact. This information may be helpful to clinicians and healthcare leaders who are developing multi-disciplinary consult services for children with complex care needs, especially those with sepsis and MODS-associated immune dysregulation. IMPACT: The care of children with sepsis and multiple organ dysfunction-associated immune dysregulation requires rapid and flexible involvement of multiple clinical subspecialists that is difficult to achieve without fragmented care and delayed decision making. In this narrative review we describe the development, structure, and function of a multi-disciplinary consult service at a children's hospital dedicated to helping coordinate management and provide continuity of care for patients with sepsis and multiple organ dysfunction-associated immune dysregulation. This information may be helpful to clinicians and healthcare leaders who are developing multi-disciplinary consult services for children with complex care needs, especially those with sepsis and MODS-associated immune dysregulation.


Subject(s)
Multiple Organ Failure/therapy , Sepsis/therapy , Child , Humans , Multiple Organ Failure/complications , Multiple Organ Failure/immunology , Sepsis/complications , Sepsis/immunology
5.
Biomed Pharmacother ; 145: 112419, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34781146

ABSTRACT

Interleukin-6 (IL-6) is a multi-tasking cytokine that represents high activity in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cancer. High concentration of this pleiotropic cytokine accounts for hyperinflammation and cytokine storm, and is related to multi-organ failure in patients with SARS-CoV-2 induced disease. IL-6 promotes lymphopenia and increases C-reactive protein (CRP) in such cases. However, blockade of IL-6 is not a full-proof of complete response. Hypoxia, hypoxemia, aberrant angiogenesis and chronic inflammation are inter-related events occurring as a response to the SARS-CoV-2 stimulatory effect on high IL-6 activity. Taking both pro- and anti-inflammatory activities will make complex targeting IL-6 in patient with SARS-CoV-2 induced disease. The aim of this review was to discuss about interactions occurring within the body of patients with SARS-CoV-2 induced disease who are representing high IL-6 levels, and to determine whether IL-6 inhibition therapy is effective for such patients or not. We also address the interactions and targeted therapies in cancer patients who also have SARS-CoV-2 induced disease.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Immune Checkpoint Inhibitors/pharmacology , Interleukin-6 , Multiple Organ Failure , Neoplasms , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19/complications , COVID-19/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/immunology , SARS-CoV-2
6.
Mayo Clin Proc ; 96(12): 3099-3108, 2021 12.
Article in English | MEDLINE | ID: mdl-34863398

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus with significant global impact, morbidity, and mortality. The SARS-CoV-2 virus may result in widespread organ manifestations including acute respiratory distress syndrome, acute renal failure, thromboembolism, and myocarditis. Virus-induced endothelial injury may cause endothelial activation, increased permeability, inflammation, and immune response and cytokine storm. Endothelial dysfunction is a systemic disorder that is a precursor of atherosclerotic vascular disease that is associated with cardiovascular risk factors and is highly prevalent in patients with atherosclerotic cardiovascular and peripheral disease. Several studies have associated various viral infections including SARS-CoV-2 infection with inflammation, endothelial dysfunction, and subsequent innate immune response and cytokine storm. Noninvasive monitoring of endothelial function and identification of high-risk patients who may require specific therapies may have the potential to improve morbidity and mortality associated with subsequent inflammation, cytokine storm, and multiorgan involvement.


Subject(s)
COVID-19 , Endothelium , COVID-19/immunology , COVID-19/physiopathology , Cytokine Release Syndrome/virology , Disease Management , Endothelium/physiopathology , Endothelium/virology , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/prevention & control , Systemic Inflammatory Response Syndrome/virology
7.
Viral Immunol ; 34(10): 679-688, 2021 12.
Article in English | MEDLINE | ID: mdl-34882013

ABSTRACT

The newfound coronavirus disease 2019 (COVID-19), initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health concern, threatening the lives of millions of people worldwide. The virus seems to have a propensity to infect older males, especially those with underlying diseases. The cytokine storm following hyperactivated immune responses due to SARS-CoV-2 infection is probably the crucial source of severe pneumonia that leads to acute lung injury, systemic inflammatory response syndrome, or acute respiratory distress syndrome, and finally multiple organ dysfunction syndromes, as well as death in many cases. Several studies revealed that interleukin (IL)-1ß levels were elevated during COVID-19 infection. In addition, the IL-1 cytokine family has a pivotal role in the induction of cytokine storm due to uncontrolled immune responses in COVID-19 infection. This article reviews the role of IL-1 in inflammation and utilization of IL-1 inhibitor agents in controlling the inflammatory outcomes initiated by SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , COVID-19/mortality , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Humans , Interleukin-1/antagonists & inhibitors , Multiple Organ Failure/drug therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
8.
Front Immunol ; 12: 742990, 2021.
Article in English | MEDLINE | ID: mdl-34970255

ABSTRACT

Background: Human parvovirus B19 (B19) can cause acute hepatitis and is attributed to the high mortality of alcoholic hepatitis (AH). B19 infection is generally self-healing in previously healthy people, but it can cause fatal effects in some high-risk groups and increase its virulence and infectivity. Disseminated B19 infection-induced multiple organ dysfunction syndrome (MODS) in patients with AH has not been reported yet. Here, we described B19 viremia in an adult patient with AH accompanied by hemolytic anemia (HA), leading to disseminated infection and secondary MODS, as well as self-limiting B19 infections in seven nurses caring for him. Meanwhile, we reviewed the literature on AH and B19 infection. Case Presentation: A 43-year-old male patient with AH accompanied by HA was transferred to the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, on March 31, 2021. After supportive treatment, his transaminase and bilirubin levels were reduced, but his anemia worsened. He received a red blood cell (RBC) infusion on April 9 for hemoglobin (Hb) lower than 6 g/dl. On April 13, he suddenly had a high fever. Under empirical anti-infection, his high fever dropped and maintained at a low fever level; however, his anemia worsened. On April 25, he was transferred to the medical intensive care unit (MICU) due to severe pneumonia, acute respiratory distress syndrome (ARDS), acute aplastic crisis (AAC), and hemophagocytic syndrome (HPS), which were subsequently confirmed to be related to B19 infection. After methylprednisolone, intravenous immunoglobulin (IVIG), empirical anti-infection, and supportive treatment, the lung infection improved, but hematopoietic and liver abnormalities aggravated, and systemic B19 infection occurred. Finally, the patient developed a refractory arrhythmia, heart failure, and shock and was referred to a local hospital by his family on May 8, 2021. Unfortunately, he died the next day. Fourteen days after he was transferred to MICU, seven nurses caring for him in his first two days in the MICU developed self-limiting erythema infectiosum (EI). Conclusions: B19 infection is self-limiting in healthy people, with low virulence and infectivity; however, in AH patients with HA, it can lead to fatal consequences and high contagion.


Subject(s)
Anemia, Hemolytic/immunology , Hepatitis, Alcoholic/immunology , Multiple Organ Failure/immunology , Parvoviridae Infections/immunology , Parvovirus B19, Human/immunology , Adult , Hepatitis, Alcoholic/diagnosis , Humans , Male , Multiple Organ Failure/diagnosis , Parvoviridae Infections/diagnosis
9.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34831101

ABSTRACT

As the number of confirmed cases and deaths occurring from Coronavirus disease 2019 (COVID-19) surges worldwide, health experts are striving hard to fully comprehend the extent of damage caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 primarily manifests itself in the form of severe respiratory distress, it is also known to cause systemic damage to almost all major organs and organ systems within the body. In this review, we discuss the molecular mechanisms leading to multi-organ failure seen in COVID-19 patients. We also examine the potential of stem cell therapy in treating COVID-19 multi-organ failure cases.


Subject(s)
COVID-19/complications , COVID-19/therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Stem Cell Transplantation , COVID-19/immunology , Clinical Trials as Topic , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Humans , Immunomodulation , Multiple Organ Failure/immunology , Regenerative Medicine , SARS-CoV-2/pathogenicity , Stem Cells/cytology , Stem Cells/immunology
10.
Immunopharmacol Immunotoxicol ; 43(6): 633-643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647511

ABSTRACT

The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Purinergic Antagonists/therapeutic use , Receptors, Purinergic/drug effects , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Host-Pathogen Interactions , Humans , Ligands , Molecular Targeted Therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/prevention & control , Multiple Organ Failure/virology , Purinergic Antagonists/adverse effects , Receptors, Purinergic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction
11.
Sci Rep ; 11(1): 17772, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493741

ABSTRACT

We investigated the impact of aerobic exercise (AE) on multiple organ dysfunction syndrome (MODS), aortic injury, pathoglycemia, and death during sepsis. ICR mice were randomized into four groups: Control (Con), Lipopolysaccharide (LPS), Exercise (Ex), and Exercise + LPS (Ex + LPS) groups. Mice were trained with low-intensity for 4 weeks. LPS and Ex + LPS mice received 5 mg/kg LPS intraperitoneally for induction of sepsis. Histopathological micrographs showed the organ morphology and damage. This study examined the effects of AE on LPS-induced changes in systemic inflammation, pulmonary inflammation, lung permeability, and bronchoalveolar lavage fluid (BALF) cell count, oxidative stress-related indicators in the lung, blood glucose levels, plasma lactate levels, serum insulin levels, plasma high-mobility group box 1 (HMGB1) levels, glucose transporter 1 (Glut1) and HMGB1, silent information regulator 1 (Sirt-1), and nuclear factor erythroid 2-related factor 2 (Nrf-2) mRNA expression levels in lung tissue. AE improved sepsis-associated multiple organ dysfunction syndrome (MODS), aortic injury, hypoglycemia, and death. AE prominently decreased pulmonary inflammation, pulmonary edema, and modulated redox balance during sepsis. AE prominently decreased neutrophil content in organ. AE prominently downregulated CXCL-1, CXCL-8, IL-6, TNF-α, Glu1, and HMGB1 mRNA expression but activated IL-1RN, IL-10, Sirt-1, and Nrf-2 mRNA expression in the lung during sepsis. AE decreased the serum levels of lactate and HMGB1 but increased blood glucose levels and serum insulin levels during sepsis. A 4-week AE improves sepsis-associated MODS, aortic injury, pathoglycemia, and death. AE impairs LPS-induced lactate and HMGB1 release partly because AE increases serum insulin levels and decreases the levels of Glut1. AE is a novel therapeutic strategy for sepsis targeting aerobic glycolysis.


Subject(s)
Endotoxemia/therapy , Exercise , Glycolysis/physiology , Multiple Organ Failure/prevention & control , Physical Conditioning, Animal/physiology , Animals , Blood Glucose/analysis , Bronchoalveolar Lavage Fluid/cytology , Cytokines/analysis , Endotoxemia/chemically induced , Endotoxemia/complications , Glucose Transporter Type 1/blood , HMGB1 Protein/blood , Humans , Immunity, Innate , Insulin/blood , Lactates/blood , Lipopolysaccharides/toxicity , Lung/pathology , Male , Mice , Mice, Inbred ICR , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Neutrophils/pathology , Oxidative Stress , Random Allocation , Viscera/pathology
12.
Int J Mol Sci ; 22(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34360684

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) began at the end of 2019. COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with COVID-19 may exhibit poor clinical outcomes. Some patients with severe COVID-19 experience cytokine release syndrome (CRS) or a cytokine storm-elevated levels of hyperactivated immune cells-and circulating pro-inflammatory cytokines, including interleukin (IL)-1ß and IL-18. This severe inflammatory response can lead to organ damage/failure and even death. The inflammasome is an intracellular immune complex that is responsible for the secretion of IL-1ß and IL-18 in various human diseases. Recently, there has been a growing number of studies revealing a link between the inflammasome and COVID-19. Therefore, this article summarizes the current literature regarding the inflammasome complex and COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Inflammasomes/immunology , Inflammasomes/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Adaptive Immunity/immunology , Animals , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Humans , Multiple Organ Failure/drug therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , COVID-19 Drug Treatment
13.
Eur J Pharmacol ; 906: 174279, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34197778

ABSTRACT

Acute pancreatitis (AP) is a common pancreatic inflammation associated with substantial morbidity and mortality. AP may be mild or severe which can spread systemically causing multiple organs failure (MOF) and even death. In the current study, protocatechuic acid (PCA), a natural phenolic acid, was investigated for its possible protective potential against L-arginine induced AP and multiple organs injury (MOI) in rats. AP was induced by L-arginine (500 mg/100 g, ip). Two dose levels of PCA were tested (50 and 100 mg/kg, oral, 10 days before L-arginine injection). PCA successfully protected against L-arginine induced AP and MOI that was manifested by normalizing pancreatic, hepatic, pulmonary, and renal tissue architecture and restoring the normal values of pancreatic enzymes (amylase and lipase), serum total protein, liver enzymes (alanine transaminase (ALT) and aspartate transaminase (AST)) and kidney function biomarkers (blood urea nitrogen (BUN) and serum creatinine (Cr)) that were significantly elevated upon L-arginine administration. Additionally, PCA restored balanced oxidant/antioxidants status that was disrupted by L-arginine and normalized pancreatic levels of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) content. Moreover, PCA significantly decreased L-arginine induced elevation in pancreatic high motility group box protein 1 (HMGB1), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), tumor necrosis factor- α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) expression. PCA significantly ameliorated L-arginine-induced AP and MOI through its anti-inflammatory and antioxidant effects. HMGB1/TLR4/NF-κB was the major pathway involved in the observed protective potential.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hydroxybenzoates/pharmacology , Multiple Organ Failure/prevention & control , Pancreatitis/prevention & control , Animals , Anti-Inflammatory Agents/therapeutic use , Arginine/administration & dosage , Arginine/toxicity , Disease Models, Animal , HMGB1 Protein/metabolism , Humans , Hydroxybenzoates/therapeutic use , Kidney/drug effects , Kidney/immunology , Kidney/pathology , Liver/drug effects , Liver/immunology , Liver/pathology , Male , Multiple Organ Failure/chemically induced , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , NF-kappa B/metabolism , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/immunology , Pancreatitis/pathology , Rats , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
14.
J Trauma Acute Care Surg ; 91(4): 700-707, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34238858

ABSTRACT

BACKGROUND: Inflammatory lipid mediators in mesenteric lymph (ML), including arachidonic acid (AA), are considered to play an important role in the pathogenesis of multiple-organ dysfunction after hemorrhagic shock. A previous study suggested that vagus nerve stimulation (VNS) could relieve shock-induced gut injury and abrogate ML toxicity, resulting in the prevention of multiple-organ dysfunction. However, the detailed mechanism of VNS in lymph toxicity remains unclear. The study aimed to investigate the relationship between VNS and inflammatory lipid mediators in ML. METHODS: Male Sprague-Dawley rats underwent laparotomy and superior mesenteric artery obstruction (SMAO) for 60 minutes to induce intestinal ischemia followed by reperfusion and observation. The ML duct was cannulated, and ML samples were obtained both before and after SMAO. The distal ileum was removed at the end of the observation period. In one group of animals, VNS was performed from 10 minutes before 10 minutes after SMAO (5 V, 0.5 Hz). Liquid chromatography-electrospray ionization-tandem mass spectrometry analysis of AA was performed for each ML sample. The biological activity of ML was examined using a monocyte nuclear factor κ-light-chain-enhancer of activated B cells activation assay. Western blotting of phospholipase A2 group IIA (PLA2-IIA) was also performed for ML and ileum samples. RESULTS: Vagus nerve stimulation relieved the SMAO-induced histological gut injury. The concentration of AA and level of nuclear factor κ-light-chain-enhancer of activated B cells activation in ML increased significantly after SMAO, whereas VNS prevented these responses. Western blotting showed PLA2-IIA expression in the ML and ileum after SMAO; however, the appearance of PLA2-IIA band was remarkably decreased in the samples from VNS-treated animals. CONCLUSION: The results suggested that VNS could relieve gut injury induced by SMAO and decrease the production of AA in ML by altering PLA2-IIA expression in the gut and ML.


Subject(s)
Arachidonic Acid/metabolism , Multiple Organ Failure/prevention & control , Reperfusion Injury/therapy , Shock, Hemorrhagic/complications , Vagus Nerve Stimulation , Animals , Disease Models, Animal , Humans , Lymph/immunology , Lymph/metabolism , Lymphatic Vessels/pathology , Male , Mesentery/pathology , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Shock, Hemorrhagic/immunology
15.
Pharmacol Res ; 172: 105781, 2021 10.
Article in English | MEDLINE | ID: mdl-34302975

ABSTRACT

Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Diterpenes, Kaurane/therapeutic use , Multiple Organ Failure/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Diterpenes, Kaurane/pharmacology , Glutathione/metabolism , Glycerophospholipids/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipopolysaccharides , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Male , Metabolomics , Mice, Inbred BALB C , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Myocardium/metabolism , Myocardium/pathology , Pantothenic Acid/metabolism , Purines/metabolism , Sepsis/complications , Sepsis/immunology , Sepsis/metabolism , Spleen/drug effects , Spleen/metabolism , Spleen/pathology
16.
Int J Med Sci ; 18(12): 2624-2629, 2021.
Article in English | MEDLINE | ID: mdl-34104094

ABSTRACT

Objective: To investigate clinical immunological characteristics and imaging findings of multiple organ damage of systemic lupus erythematosus (SLE) patients with hematologic involvement. Methods: SLE patients diagnosed in the Second Affiliated Hospital of Nanchang University from June 2015 to March 2019 were selected, including 93 SLE patients with hematologic involvement and 68 SLE patients without hematologic involvement. Immunological indicators such as autoantibodies, immunoglobulin G (IgG), complement 4 (C4) and imaging data of several organs were measured respectively. The results were statistically analyzed. Results: SLE patients with hematologic involvement were more likely to have autoimmune hemolytic anemia (AIHA) (20.43%, P<0.05). The erythrocyte sedimentation rate (ESR) of SLE patients with hematologic involvement was 75.82 (±35.33) mm/h, IgG was 28.84 (±6.00) g/L and C4 was 0.073 (±0.031) g/L (P< 0.05). The area under the curve (AUC) of IgG was the highest among the above indicators (P<0.01). The positive anti-RO-52 antibody (OR=15.926, P<0.05) was an independent risk factor for pulmonary inflammatory lesions in SLE patients with hematologic involvement. Conclusion: Compared with the control group, abnormal immunological indicators and multiple organs damage are more obvious. Positive anti-RO-52 antibody may play an important role in the pathogenesis of pulmonary inflammation in SLE patients.


Subject(s)
Anemia, Hemolytic, Autoimmune/epidemiology , Autoantibodies/blood , Lupus Erythematosus, Systemic/complications , Multiple Organ Failure/epidemiology , Adult , Anemia, Hemolytic, Autoimmune/blood , Anemia, Hemolytic, Autoimmune/diagnosis , Anemia, Hemolytic, Autoimmune/immunology , Autoantibodies/immunology , Blood Sedimentation , Female , Humans , Immunoglobulin G/immunology , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/diagnosis , Multiple Organ Failure/immunology , Young Adult
17.
Pediatr Infect Dis J ; 40(7): e259-e262, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34097663

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2 infection is an infrequent and poorly understood illness. It can present as severe multiorgan failure in children, potentially lethal. Immunomodulation is the empiric treatment because a dysregulated immune response is the primary pathophysiologic mechanism. We present an infant with severe MIS-C, refractory to usual treatment, successfully treated with plasmapheresis.


Subject(s)
COVID-19/therapy , Immunomodulation , Multiple Organ Failure/immunology , Multiple Organ Failure/therapy , Plasma Exchange , Systemic Inflammatory Response Syndrome/therapy , Child, Preschool , Female , Humans , Treatment Outcome
18.
J Cell Physiol ; 236(11): 7814-7831, 2021 11.
Article in English | MEDLINE | ID: mdl-33885157

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a cellular signal transcription factor that has recently attracted a great deal of attention. It can trigger a variety of genes transcription in response to cytokines and growth factors stimulation, which plays an important role in many cellular biological processes involved in anti/proinflammatory responses. Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. As a converging point of multiple inflammatory responses pathways, accumulating studies have presented the elaborate network of STAT3 in sepsis pathophysiology; these results generally indicate a promising therapeutic application for targeting STAT3 in the treatment of sepsis. In the present review, we evaluated the published literature describing the use of STAT3 in the treatment of experimental and clinical sepsis. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future biomarker and therapeutic target for sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammation Mediators/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Sepsis/drug therapy , Signal Transduction/drug effects , Animals , Biomarkers/metabolism , Humans , Inflammation Mediators/metabolism , Molecular Targeted Therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Multiple Organ Failure/prevention & control , Phosphorylation , STAT3 Transcription Factor/metabolism , Sepsis/immunology , Sepsis/metabolism
19.
Mol Med ; 27(1): 35, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33832430

ABSTRACT

BACKGROUND: Complement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome. METHODS: In a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3-6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients' admission TCC, TCC-AUC3-6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures. RESULTS: TCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3-6 correlated positively with New Injury Severity Score (Spearman's rho, p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (- 0.21, 0.02 and - 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3-6 were negatively associated with ventilator-free days. TCC-AUC3-6 outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4. CONCLUSIONS: Complement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors.


Subject(s)
Complement Activation , Craniocerebral Trauma/immunology , Multiple Organ Failure/immunology , Respiration, Artificial , Wounds and Injuries/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Complement Membrane Attack Complex/immunology , Craniocerebral Trauma/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Syndrome , Time Factors , Wounds and Injuries/mortality , Young Adult
20.
Pharmacol Res ; 168: 105581, 2021 06.
Article in English | MEDLINE | ID: mdl-33781873

ABSTRACT

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Subject(s)
Brain Diseases/therapy , Brain/drug effects , COVID-19/therapy , Heart Diseases/therapy , Heart/drug effects , Adrenal Cortex Hormones/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , Brain/immunology , Brain/metabolism , Brain Diseases/immunology , Brain Diseases/metabolism , COVID-19/immunology , COVID-19/metabolism , Critical Care/methods , Critical Illness/therapy , Dietary Supplements , Functional Food , Heart Diseases/immunology , Heart Diseases/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Microvessels/drug effects , Microvessels/immunology , Microvessels/metabolism , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Multiple Organ Failure/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...