Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.208
Filter
1.
Front Immunol ; 15: 1404316, 2024.
Article in English | MEDLINE | ID: mdl-38938576

ABSTRACT

Background: The primary treatment for acute relapses in multiple sclerosis (MS) is the intravenous administration of high-dose methylprednisolone (IVMP). However, the mechanisms through which corticosteroid treatment impacts acute neuroinflammation in people with MS (pwMS) remain not fully understood. In particular, the changes induced by glucocorticoids (GCs) on cells of the innate immune system and the differences between patients with distinct immunotherapies have received little attention to date. Methods: We conducted immunophenotyping using flow cytometry on peripheral blood mononuclear cells of pwMS who received IVMP treatment during a relapse. We compared the impact of an IVMP treatment on a broad variety of immune cell subsets within three groups: twelve patients who were treatment-naïve to disease modifying therapies (wDMT) to ten patients on platform therapies (PT) and eighteen patients on fingolimod therapy (FTY). Results: We observed pronounced interindividual short- and intermediate-term effects of IVMP on distinct immune cells subsets. In addition to the well-documented decrease in T-helper cells (Th cells), we detected significant alterations after the first IVMP infusion within the innate immune response among neutrophil, eosinophil and basophil granulocytes, monocytes and plasmacytoid dendritic cells (pDCs). When comparing patients wDMT to the PT and FTY cohorts, we found that IVMP had a similar impact on innate immune cells across all treatment groups. However, we did not observe a significant further decline in T lymphocyte counts during IVMP in patients with pre-existing lymphopenia under FTY treatment. Although T cell apoptosis is considered the main mechanism of action of GCs, patients with FTY still reported symptom improvement following IVMP treatment. Conclusion: In addition to T cell suppression, our data suggests that further immunoregulatory mechanisms of GC, particularly on cells of the innate immune response, are of greater significance than previously understood. Due to the regulation of the adaptive immune cells by DMTs, the impact of GC on these cells varies depending on the underlying DMT. Additional studies involving larger cohorts and cerebrospinal fluid samples are necessary to gain a deeper understanding of the immune response to GC in pwMS with different DMTs during relapse to define and explain differences in clinical response profiles.


Subject(s)
Multiple Sclerosis , Humans , Female , Male , Adult , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/administration & dosage , Immunity, Innate/drug effects , Methylprednisolone/therapeutic use , Methylprednisolone/administration & dosage , Immunophenotyping , Leukocytes, Mononuclear/immunology , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Immunosuppressive Agents/therapeutic use , Glucocorticoids/therapeutic use , Glucocorticoids/administration & dosage
2.
Nat Commun ; 15(1): 5404, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926356

ABSTRACT

B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.


Subject(s)
Autoimmunity , B-Lymphocytes , CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Interleukin-23 , Myelin-Oligodendrocyte Glycoprotein , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , B-Lymphocytes/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Autoimmunity/immunology , Interleukin-23/immunology , Interleukin-23/metabolism , CD4-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Central Nervous System/immunology , Mice, Inbred C57BL , Female , Myelin Sheath/immunology , Myelin Sheath/metabolism , Meninges/immunology , Meninges/pathology , Multiple Sclerosis/immunology
3.
Med ; 5(6): 482-484, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878763

ABSTRACT

The efficacy of CD19 chimeric antigen receptor (CAR) T cells in B cell malignancies has generated recent interest in their application to other B cell-related pathologies, such as autoimmune diseases. Fischbach et al.1 report on the use of CD19 CAR T cells in two patients with progressive multiple sclerosis, demonstrating feasibility and safety for the first time in this disease process.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Multiple Sclerosis , Receptors, Chimeric Antigen , Humans , Antigens, CD19/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology
4.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928437

ABSTRACT

Multiple sclerosis (MS) onset at an advanced age is associated with a higher risk of developing progressive forms and a greater accumulation of disability for which there are currently no effective disease-modifying treatments. Immunosenescence is associated with the production of the senescence-associated secretory phenotype (SASP), with IL-6 being one of the most prominent cytokines. IL-6 is a determinant for the development of autoimmunity and neuroinflammation and is involved in the pathogenesis of MS. Herein, we aimed to preclinically test the therapeutic inhibition of IL-6 signaling in experimental autoimmune encephalomyelitis (EAE) as a potential age-specific treatment for elderly MS patients. Young and aged mice were immunized with myelin oligodendrocyte protein (MOG)35-55 and examined daily for neurological signs. Mice were randomized and treated with anti-IL-6 antibody. Inflammatory infiltration was evaluated in the spinal cord and the peripheral immune response was studied. The blockade of IL-6 signaling did not improve the clinical course of EAE in an aging context. However, IL-6 inhibition was associated with an increase in the peripheral immunosuppressive response as follows: a higher frequency of CD4 T cells producing IL-10, and increased frequency of inhibitory immune check points PD-1 and Tim-3 on CD4+ T cells and Lag-3 and Tim-3 on CD8+ T cells. Our results open the window to further studies aimed to adjust the anti-IL-6 treatment conditions to tailor an effective age-specific therapy for elderly MS patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interleukin-6 , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Animals , Mice , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Aging/immunology , Interleukin-10/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/drug effects
5.
Sci Immunol ; 9(96): eadq7284, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848339

ABSTRACT

Whole-proteome autoantibody profiling reveals an immunological signature that predates the clinical onset of multiple sclerosis.


Subject(s)
Autoantibodies , Biomarkers , Multiple Sclerosis , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Autoantibodies/immunology , Autoantibodies/blood , Proteome/immunology , Proteomics/methods
6.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844736

ABSTRACT

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Subject(s)
Amniotic Fluid , Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Amniotic Fluid/cytology , Amniotic Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Female , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL
7.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892158

ABSTRACT

Neuroinflammatory conditions in the central nervous system (CNS) are implicated in the pathogenesis of several neuroimmune disorders such as acquired demyelinating syndromes, autoimmune encephalopathies, acute or chronic bacterial and viral CNS infections as well as multiple sclerosis (MS) [...].


Subject(s)
Neuroinflammatory Diseases , Humans , Neuroinflammatory Diseases/immunology , Animals , Multiple Sclerosis/therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/drug therapy , Central Nervous System/metabolism , Central Nervous System/pathology , Central Nervous System/immunology , Inflammation
8.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892275

ABSTRACT

We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-ß1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.


Subject(s)
Dendritic Cells , Immune Tolerance , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Humans , Myelin-Oligodendrocyte Glycoprotein/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/drug therapy , Immune Tolerance/drug effects , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Adult , Female , Mannans/pharmacology , Male , Cell Differentiation/drug effects , Monocytes/immunology , Monocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cells, Cultured , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism
9.
BMC Immunol ; 25(1): 35, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898409

ABSTRACT

BACKGROUND: For the past three years, the pandemic has had a major effect on global public health, mainly on those with underlying medical conditions, such as people living with Multiple Sclerosis. Vaccination among this group is of great importance, and the long-term impacts of vaccination and its safety on the health of these patients will continue to be revealed. Therefore, risks related to vaccination and immune response need to be assessed. The objective here was to characterize the immune response, short-term safety, and the effects of multiple variables on these factors after COVID-19 vaccination (mainly Sinopharm) among people with Multiple Sclerosis. We assessed the short-term safety and humoral SARS-COV-2 anti-RBD IgG response using a data collection form and Immunoassay, respectively. RESULTS: No severe adverse events or MS relapse was observed. Myalgia/body pain (26.7%), low-grade fever (22.2%), and mild headache (15.6%) were the most common adverse events. The use and type of vaccine influenced the frequency of side effects with a p-value < 0.0001. Regarding immune response, patients on rituximab and fingolimod had a lower antibody titer compared to other medications. With a significant difference, hybrid immunity (p-value: 0.047) and type of DMTs (p-value: 0.017) affected the humoral response. CONCLUSION: There is a low incidence of serious adverse effects, MS worsening or relapse after COVID-19 vaccination, and mainly, side effects are similar to that of the general population. It appears that treatment with various disease-modifying therapies does not induce or worsen the post-vaccination side effects, although some, including Rituximab and fingolimod, may affect the immunity induced after vaccination.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Multiple Sclerosis , SARS-CoV-2 , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/drug therapy , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Female , Antibodies, Viral/immunology , Antibodies, Viral/blood , Male , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Adult , Middle Aged , Rituximab/adverse effects , Rituximab/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/immunology , Vaccination/adverse effects , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use
10.
Elife ; 122024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900149

ABSTRACT

Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein-Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Disease Models, Animal , HLA-DRB1 Chains , Multiple Sclerosis , Spinal Cord , Animals , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Mice , HLA-DRB1 Chains/genetics , CD8-Positive T-Lymphocytes/immunology , Spinal Cord/immunology , Spinal Cord/pathology , Brain/pathology , Brain/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , CD4-Positive T-Lymphocytes/immunology , Female
11.
Front Immunol ; 15: 1404260, 2024.
Article in English | MEDLINE | ID: mdl-38860028

ABSTRACT

Objectives: Previous studies have indicated a correlation between cytokines and autoimmune diseases. yet the causality remains uncertain. Through Mendelian Randomization (MR) analysis, we aimed to investigate the causal relationships between genetically predicted levels of 91 cytokines and three autoimmune diseases: Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and Hashimoto's Thyroiditis (HT). Methods: A bidirectional two-sample MR approach was utilized to assess the causal relationships between cytokines and MS, SLE, and HT. The datasets included 47,429 MS cases and 68,374 controls, 5,201 SLE cases and 9,066 controls, and 16,191 HT cases with 210,612 controls. Data on 91 cytokines comprised 14,824 participants. Causal analyses primarily employed inverse variance weighted, weighted median, and MR-Egger methods, with sensitivity analyses including heterogeneity and pleiotropy assessment. Results: Genetically predicted levels of IL-18 (OR = 0.706; 95% C.I. 0.538-0.925), ADA (OR = 0.808; 95% C.I. 0.673-0.970), and SCF (OR = 0.898; 95% C.I. 0.816-0.987) were associated with a decreased risk of MS. IL-4 (OR = 1.384; 95% C.I. 1.081-1.771), IL-7 (OR = 1.401; 95% C.I. 1.010-1.943), IL-10RA (OR = 1.266; 95% C.I. 1.004-1.596), CXCL5 (OR = 1.170; 95% C.I. 1.021-1.341), NTN (OR = 1.225; 95% C.I. 1.004-1.496), FGF23 (OR = 0.644; 95% C.I. 0.460-0.902), and MCP4 (OR = 0.665; 95% C.I. 0.476-0.929) were associated with SLE risk. CDCP1 (OR = 1.127; 95% C.I. 1.008-1.261), IL-33 (OR = 0.852; 95% C.I. 0.727-0.999), and TRAIL (OR = 0.884; 95% C.I. 0.799-0.979) were associated with HT risk. Bidirectional MR results suggest the involvement of CCL19, IL-13, SLAM, ARTN, Eotaxin, IL-22RA1, ADA, and MMP10 in the downstream development of these diseases. Conclusions: Our findings support causal relationships between certain cytokines and the risks of MS, SLE, and HT, identifying potential biomarkers for diagnosis and prevention. Additionally, several cytokines previously unexplored in these autoimmune disease contexts were discovered, laying new groundwork for the study of disease mechanisms and therapeutic potentials.


Subject(s)
Autoimmune Diseases , Cytokines , Mendelian Randomization Analysis , Humans , Cytokines/blood , Cytokines/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Genetic Predisposition to Disease , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Polymorphism, Single Nucleotide , Hashimoto Disease/genetics , Hashimoto Disease/blood , Hashimoto Disease/immunology
12.
Front Immunol ; 15: 1400641, 2024.
Article in English | MEDLINE | ID: mdl-38933267

ABSTRACT

Background and objectives: B cell depleting anti-CD20 monoclonal antibodies (aCD20 mAbs) are highly effective in treatment of multiple sclerosis (MS) but fail to halt the formation of meningeal ectopic lymphoid tissue (mELT) in the murine model experimental autoimmune encephalomyelitis (EAE). While mELT can be examined in EAE, it is not accessible in vivo in MS patients. Our key objectives were to compare the immune cells in cerebrospinal fluid (CSF), which is accessible in patients, with those in mELT, and to study the effects of aCD20 mAbs on CSF and mELT in EAE. Methods: Applying single cell RNA sequencing, we compared gene expression profiles in immune cells from (1) CSF with mELT and (2) aCD20 mAbs treated with control treated mice in a spontaneous 2D2xTh EAE model. Results: The immune cell composition in CSF and mELT was very similar. Gene expression profiles and pathway enrichment analysis revealed no striking differences between the two compartments. aCD20 mAbs led not only to a virtually complete depletion of B cells in the CSF but also to a reduction of naïve CD4+ T cells and marked increase of macrophages. No remarkable differences in regulated genes or pathways were observed. Discussion: Our results suggest that immune cells in the CSF may serve as a surrogate for mELT in EAE. Future studies are required to confirm this in MS patients. The observed increase of macrophages in B cell depleted CSF is a novel finding and requires verification in CSF of aCD20 mAbs treated MS patients. Due to unresolved technical challenges, we were unable to study the effects of aCD20 mAbs on mELT. This should be addressed in future studies.


Subject(s)
B-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Meninges , Single-Cell Analysis , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/cerebrospinal fluid , Mice , Meninges/immunology , Meninges/pathology , B-Lymphocytes/immunology , Female , Tertiary Lymphoid Structures/immunology , Mice, Inbred C57BL , Antibodies, Monoclonal/immunology , Transcriptome , Gene Expression Profiling , Antigens, CD20/immunology , Cerebrospinal Fluid/immunology , Disease Models, Animal , Multiple Sclerosis/immunology , Multiple Sclerosis/cerebrospinal fluid
13.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843296

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Subject(s)
Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Female , Male , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Adult , Antibodies, Viral/immunology , Middle Aged , Cross Reactions/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , T-Lymphocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/virology , Antigens, Viral/immunology , Viral Load , Infectious Mononucleosis/immunology , Infectious Mononucleosis/virology , Epstein-Barr Virus Nuclear Antigens/immunology , Immunoglobulin G/immunology
14.
Front Immunol ; 15: 1384411, 2024.
Article in English | MEDLINE | ID: mdl-38911861

ABSTRACT

Background: Although fingolimod, a sphingosine 1-phosphate receptor agonist, has shown to be an effective treatment reducing relapse rate and also slowing down the disability progression in relapsing-remitting multiple sclerosis (RRMS) patients, it is important to quickly identify those suboptimal responders. Objective: The main objective was to assess different clinical, radiological, genetic and environmental factors as possible early predictors of response in MS patients treated with fingolimod for 24 months. The secondary objective was to analyze the possible contribution of the environmental factors analyzed to the progression and activity of the disease along the 2-years of follow-up. Methods: A retrospective study with 151 patients diagnosed with MS, under fingolimod treatment for 24 months, with serum samples at initiation and six months later, and with clinical and radiological data at initiation and 24 months later, were included in the study. Clinical and radiological variables were collected to establish NEDA-3 (no evidence of disease activity: patients without relapses, disability progression and new T2 lesions or Gd+ lesions) and EDA (evidence of disease activity: patients with relapses and/or progression and/or new T2 lesions or gadolinium-positive [Gd+] lesions) conditions. Human leukocyte antigen II (HLA-II), EBNA-1 IgG and VCA IgG from Epstein-Barr virus (EBV) and antibody titers against Human herpesvirus 6A/B (HHV-6A/B) were also analyzed. Results: A total of 151 MS patients fulfilled the inclusion criteria: 27.8% was NEDA-3 (37.5% among those previously treated with high efficacy therapies >24 months). The following early predictors were statistically significantly associated with NEDA-3 condition: sex (male; p=0.002), age at baseline (older; p=0.009), relapses 2-years before fingolimod initiation ≤1 (p=0.010), and absence of Gd+ lesions at baseline (p=0.006). Regarding the possible contribution of the environmental factors included in the study to the activity or the progression of the disease, we only found that EBNA-1 IgG titers decreased in 20.0% of PIRA (progression independent from relapse activity) patients vs. 73.3% of RAW (relapse-associated worsening) patients (p=0.006; O.R. = 11.0). Conclusion: MS patients that are male, older, and with a low clinical and radiological activity at fingolimod initiation have a greater probability to reach NEDA-3 condition after two years with this therapy. An intriguing association of EBV with the progression of the disease has also been described, but it should be further study in a larger cohort to confirm these results.


Subject(s)
Disease Progression , Epstein-Barr Virus Nuclear Antigens , Fingolimod Hydrochloride , Immunoglobulin G , Humans , Fingolimod Hydrochloride/therapeutic use , Female , Male , Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Retrospective Studies , Immunoglobulin G/blood , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Treatment Outcome , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/blood
15.
PLoS One ; 19(6): e0305042, 2024.
Article in English | MEDLINE | ID: mdl-38861512

ABSTRACT

Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.


Subject(s)
CD8-Positive T-Lymphocytes , Glioblastoma , MicroRNAs , Multiple Sclerosis , Signal Transduction , Sphingolipids , Transcriptome , Humans , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/blood , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Sphingolipids/blood , Sphingolipids/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , MicroRNAs/genetics , MicroRNAs/blood , Gene Expression Profiling , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/blood , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic
16.
Wiad Lek ; 77(4): 640-645, 2024.
Article in English | MEDLINE | ID: mdl-38865616

ABSTRACT

OBJECTIVE: Aim: To investigate the possible effect of COVID-19 disease on cytokine profile and some circulating growth factors in patients with multiple sclerosis (MS). PATIENTS AND METHODS: Materials and Methods: Serum cytokine levels as well as growth factors content were assessed be means of a solid phase enzyme linked­immunosorbent assay in 97 MS patients of which 41 had and 56 did not have confirmed COVID-19 in the past 4-6-month period, and 30 healthy individuals who were age­, and gender­matched. RESULTS: Results: Some proinflammatory cytokine (such as TNFα, IFNγ) levels were higher while anti-inflammatory cytokine, namely IL­4, was lower in MS patients compared to controls indicating Th1/Th2 imbalance. Our findings revealed that the imbalance of circulating Th1/Th2 cytokines in MS patients after SARS-CoV-2 infection became even more pronounced, thus, might be a reason for the disease deterioration. Furthermore, nuclear factor κB level in MS patients after COVID-19 was found significantly elevated from that with no history of SARS-CoV-2 infection, and could be the cause of proinflammatory cytokines overexpression. CONCLUSION: Conclusions: Our findings revealed that immunopathology of MS is associated with a Th1/Th2 imbalance, furthermore, SARS-CoV-2 infection can lead to the deterioration of this condition in MS patients, causing even more pronounced overexpression of proinflammatory cytokines and decrease in anti-inflammatory cytokines. Our results also indicated that studied growth factors can be involved in MS development but exact mechanism is not clearly understood and requires further research.


Subject(s)
COVID-19 , Cytokines , Multiple Sclerosis , Humans , COVID-19/immunology , COVID-19/blood , Female , Male , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Adult , Cytokines/blood , Middle Aged , SARS-CoV-2/immunology , Case-Control Studies
17.
Methods Cell Biol ; 188: 35-60, 2024.
Article in English | MEDLINE | ID: mdl-38880527

ABSTRACT

Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.


Subject(s)
Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Encephalomyelitis, Autoimmune, Experimental/pathology , Animals , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Mice , Humans , Rats , Female
18.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38880650

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Subject(s)
Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Interleukin-6 , Microglia , Multiple Sclerosis , Animals , Dendritic Cells/metabolism , Dendritic Cells/immunology , Mice , Interleukin-6/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Microglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Female
19.
Proc Natl Acad Sci U S A ; 121(24): e2312837121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838013

ABSTRACT

Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.


Subject(s)
Immunity, Innate , Immunologic Memory , Interferon-gamma , Th1 Cells , Th1 Cells/immunology , Animals , Immunologic Memory/immunology , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Memory T Cells/immunology , Mice, Inbred C57BL , Legionella pneumophila/immunology , Multiple Sclerosis/immunology , Interleukin-12/metabolism , Interleukin-12/immunology
20.
Nat Microbiol ; 9(6): 1540-1554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806670

ABSTRACT

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Herpesvirus 4, Human/genetics , Multiple Sclerosis/virology , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Transcriptome , Virus Replication , Gene Expression Regulation, Viral , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Gene Expression Profiling , Adult , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...