Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.118
Filter
1.
PLoS One ; 19(5): e0302129, 2024.
Article in English | MEDLINE | ID: mdl-38753705

ABSTRACT

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Genomics/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Sensitivity and Specificity , Algorithms , Multiplex Polymerase Chain Reaction/methods , Liquid Biopsy/methods
2.
BMC Ecol Evol ; 24(1): 67, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773413

ABSTRACT

BACKGROUND: The ecology and biology of oysters (Ostreidae) across the tropics is poorly understood. Morphological plasticity and shared characteristics among oysters have resulted in the misidentification of species, creating challenges for understanding basic species-specific biological information that is required for restoration and aquaculture. Genetic barcoding has proven essential for accurate species identification and understanding species geographic ranges. To reduce the costs of molecular species identification we developed multiplex assays using the cytochrome c oxidase subunit I (COI or cox1) barcoding gene for the rapid identification of five species of oysters within the genus Saccostrea that are commonly found in Queensland, Australia: Saccostrea glomerata, Saccostrea lineage B, Saccostrea lineage F, Saccostrea lineage G, and Saccostrea spathulata (lineage J). RESULTS: Multiplex assays were successful in species-specific amplification of targeted species. The practical application of these primers was tested on wild spat collected from a pilot restoration project in Moreton Bay, Queensland, with identified species (S. glomerata, lineage B and lineage G) validated by Sanger sequencing. DNA sampling by extraction of oyster pallial fluid was also tested on adult oysters collected from the Noosa estuary in Queensland to assess whether oysters were able to be identified non-destructively. DNA concentrations as low as 1 ng/ µL still amplified in most cases, allowing for identification, and mortality at 6 weeks post pallial fluid collection was low (3 out of 104 sampled oysters). CONCLUSION: These multiplex assays will be essential tools for species identification in future studies, and we successfully demonstrate their practical application in both restoration and aquaculture contexts in Queensland. The multiplex assays developed in this study outline easily replicable methods for the development of additional species-specific primer sets for the rapid identification of other species of Saccostrea found across the Indo-Pacific, which will be instrumental in unravelling the taxonomic ambiguities within this genus in tropical regions.


Subject(s)
Aquaculture , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Multiplex Polymerase Chain Reaction , Ostreidae , Animals , Multiplex Polymerase Chain Reaction/methods , Aquaculture/methods , DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Ostreidae/genetics , Queensland , Species Specificity , Conservation of Natural Resources/methods
3.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711319

ABSTRACT

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Subject(s)
Blood Culture , Multiplex Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction/methods , Humans , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Bacteremia/microbiology , Bacteremia/diagnosis
4.
BMC Pregnancy Childbirth ; 24(1): 338, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702634

ABSTRACT

OBJECTIVE: This study aims to perform a prenatal genetic diagnosis of a high-risk fetus with trisomy 7 identified by noninvasive prenatal testing (NIPT) and to evaluate the efficacy of different genetic testing techniques for prenatal diagnosis of trisomy mosaicism. METHODS: For prenatal diagnosis of a pregnant woman with a high risk of trisomy 7 suggested by NIPT, karyotyping and chromosomal microarray analysis (CMA) were performed on an amniotic fluid sample. Low-depth whole-genome copy number variation sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were used to clarify the results further. In addition, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to analyze the possibility of uniparental disomy(UPD). RESULTS: Amniotic fluid karyotype analysis revealed a 46, XX result. Approximately 20% mosaic trisomy 7 was detected according to the CMA result. About 16% and 4% of mosaicism was detected by CNV-seq and FISH, respectively. MS-MLPA showed no methylation abnormalities. The fetal ultrasound did not show any detectable abnormalities except for mild intrauterine growth retardation seen at 39 weeks of gestation. After receiving genetic counseling, the expectant mother decided to continue the pregnancy, and follow-up within three months of delivery was normal. CONCLUSION: In high-risk NIPT diagnosis, a combination of cytogenetic and molecular genetic techniques proves fruitful in detecting low-level mosaicism. Furthermore, the exclusion of UPD on chromosome 7 remains crucial when NIPT indicates a positive prenatal diagnosis of trisomy 7.


Subject(s)
Chromosomes, Human, Pair 7 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Karyotyping , Mosaicism , Trisomy , Uniparental Disomy , Humans , Female , Mosaicism/embryology , Pregnancy , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human, Pair 7/genetics , Trisomy/diagnosis , Trisomy/genetics , Karyotyping/methods , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Prenatal Diagnosis/methods , Microarray Analysis/methods , Noninvasive Prenatal Testing/methods , Multiplex Polymerase Chain Reaction/methods , Amniotic Fluid
5.
Front Cell Infect Microbiol ; 14: 1295841, 2024.
Article in English | MEDLINE | ID: mdl-38707510

ABSTRACT

Introduction: Although the existence of Candida species in the respiratory tract is often considered commensal, it is crucial to recognize the significance of Candida colonization in immunocompromised or COVID-19 patients. The emergence of Candida auris as an emerging pathogen further emphasizes the importance of monitoring yeast infection/colonization, particularly in COVID-19 patients. Methods: In this study, respiratory samples mainly from COVID-19 patients, primarily those suspected of having a fungal infection, were cultured on Sabouraud dextrose agar plates and the yeast colonies were identified using a two-step multiplex PCR method. The samples suspected of C. auris underwent specific nested PCR followed by sequence analysis. Results: A total of 199 respiratory samples were collected from 73 women and 126 men, ranging in age from 1.6 to 88 years. Among the patients, 141 had COVID-19, 32 had cancer, 5 were hospitalized in ICU, 2 had chronic obstructive pulmonary disease)COPD(, and others were patients with combination diseases. From these samples, a total of 334 yeast strains were identified. C. albicans (n=132, 39.52%) was the most common species, followed by C. tropicalis (n=67, 20%), C. glabrata (n=56, 16.76%), C. krusei (n=18, 5.4%), C. parapsilosis (n=17, 5.08%), Saccharomyces cerevisiae (n=10, 3%), C. kefyr (n=9, 2.6%), C. dubliniensis (n=7, 2.1%), C. lusitaniae (n=5, 1.5%), C. auris (n=3, 0.9%), C. guilliermondii (n=2, 0.6%), C. rugosa (n=1, 0.3%), C. intermedia (n=1, 0.3%), and Trichosporon spp. (n=1, 0.3%). C. auris was detected in a patient in ICU and two COVID-19 patients. While its presence was confirmed through sequence analysis, our extensive efforts to isolate C. auris were unsuccessful. Conclusion: While C. albicans colonization remains prevalent, our study found no evidence of Candida lung infection. Since the role of Candida colonization in airway secretions remains ambiguous due to limited research, further studies are imperative to shed light on this matter.


Subject(s)
COVID-19 , Candida auris , Candidiasis , SARS-CoV-2 , Humans , COVID-19/microbiology , Aged , Middle Aged , Female , Male , Aged, 80 and over , Adult , Child, Preschool , Candidiasis/microbiology , Child , Adolescent , Young Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Infant , Candida auris/genetics , Candida auris/isolation & purification , Candida/isolation & purification , Candida/classification , Candida/genetics , Respiratory System/microbiology , Respiratory System/virology , Multiplex Polymerase Chain Reaction
6.
Arch Virol ; 169(6): 119, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753197

ABSTRACT

Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.


Subject(s)
Circoviridae Infections , Circovirus , Multiplex Polymerase Chain Reaction , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Swine , Animals , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/diagnosis , Swine Diseases/virology , Swine Diseases/diagnosis , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Reproducibility of Results , DNA Primers/genetics , DNA, Viral/genetics
7.
Hum Genomics ; 18(1): 48, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769549

ABSTRACT

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Subject(s)
Influenza A virus , Influenza B virus , Multiplex Polymerase Chain Reaction , Wastewater , Wastewater/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Humans , Influenza B virus/genetics , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Reproducibility of Results , Influenza, Human/diagnosis , Influenza, Human/virology , Influenza, Human/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
8.
J Agric Food Chem ; 72(20): 11640-11651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725129

ABSTRACT

Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/µL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.


Subject(s)
Dairy Products , Food Contamination , Goats , Milk , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Animals , Milk/chemistry , Real-Time Polymerase Chain Reaction/methods , Cattle/genetics , Food Contamination/analysis , Dairy Products/analysis , Multiplex Polymerase Chain Reaction/methods , Sheep/genetics , Goats/genetics , Horses/genetics , Buffaloes/genetics , Camelus/genetics , Equidae/genetics , DNA Primers/genetics
9.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705209

ABSTRACT

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Subject(s)
Multiplex Polymerase Chain Reaction , Nasopharynx , Recombinases , Animals , Cattle , Nasopharynx/microbiology , Recombinases/genetics , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Interspersed Repetitive Sequences/genetics , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Bovine Respiratory Disease Complex/microbiology , Conjugation, Genetic , Sensitivity and Specificity , Mannheimia haemolytica/genetics , Mannheimia haemolytica/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230118, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705189

ABSTRACT

Molecular methods are currently some of the best-suited technologies for implementation in insect monitoring. However, the field is developing rapidly and lacks agreement on methodology or community standards. To apply DNA-based methods in large-scale monitoring, and to gain insight across commensurate data, we need easy-to-implement standards that improve data comparability. Here, we provide three recommendations for how to improve and harmonize efforts in biodiversity assessment and monitoring via metabarcoding: (i) we should adopt the use of synthetic spike-ins, which will act as positive controls and internal standards; (ii) we should consider using several markers through a multiplex polymerase chain reaction (PCR) approach; and (iii) we should commit to the publication and transparency of all protocol-associated metadata in a standardized fashion. For (i), we provide a ready-to-use recipe for synthetic cytochrome c oxidase spike-ins, which enable between-sample comparisons. For (ii), we propose two gene regions for the implementation of multiplex PCR approaches, thereby achieving a more comprehensive community description. For (iii), we offer guidelines for transparent and unified reporting of field, wet-laboratory and dry-laboratory procedures, as a key to making comparisons between studies. Together, we feel that these three advances will result in joint quality and calibration standards rather than the current laboratory-specific proof of concepts. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Insecta , Animals , DNA Barcoding, Taxonomic/methods , DNA Barcoding, Taxonomic/standards , Insecta/genetics , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/standards
11.
Sci Rep ; 14(1): 10926, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740833

ABSTRACT

In contrast to acute diarrhoea, the aetiology of persistent digestive disorders (≥ 14 days) is poorly understood in low-resource settings and conventional diagnostic approaches lack accuracy. In this multi-country study, we compared multiplex real-time PCR for enteric bacterial, parasitic and viral pathogens in stool samples from symptomatic patients and matched asymptomatic controls in Côte d'Ivoire, Mali and Nepal. Among 1826 stool samples, the prevalence of most pathogens was highest in Mali, being up to threefold higher than in Côte d'Ivoire and up to tenfold higher than in Nepal. In all settings, the most prevalent bacteria were EAEC (13.0-39.9%) and Campylobacter spp. (3.9-35.3%). Giardia intestinalis was the predominant intestinal protozoon (2.9-20.5%), and adenovirus 40/41 was the most frequently observed viral pathogen (6.3-25.1%). Significantly different prevalences between symptomatic and asymptomatic individuals were observed for Campylobacter, EIEC and ETEC in the two African sites, and for norovirus in Nepal. Multiple species pathogen infection was common in Côte d'Ivoire and Mali, but rarely found in Nepal. We observed that molecular testing detected multiple enteric pathogens and showed low discriminatory accuracy to distinguish between symptomatic and asymptomatic individuals. Yet, multiplex PCR allowed for direct comparison between different countries and revealed considerable setting-specificity.


Subject(s)
Abdominal Pain , Diarrhea , Feces , Multiplex Polymerase Chain Reaction , Humans , Cote d'Ivoire/epidemiology , Diarrhea/microbiology , Diarrhea/parasitology , Diarrhea/virology , Diarrhea/epidemiology , Diarrhea/diagnosis , Multiplex Polymerase Chain Reaction/methods , Nepal/epidemiology , Mali/epidemiology , Male , Female , Adult , Feces/microbiology , Feces/parasitology , Feces/virology , Adolescent , Child , Middle Aged , Child, Preschool , Young Adult , Infant , Prevalence , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Aged , Giardia lamblia/isolation & purification , Giardia lamblia/genetics
12.
Nat Methods ; 21(5): 748, 2024 May.
Article in English | MEDLINE | ID: mdl-38745075
13.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623666

ABSTRACT

BACKGROUND: We evaluated the diagnostic performance of the FilmArray Blood Culture Identification Panel (BCID; bioMerieux) for the detection of bloodstream pathogens. METHODS: From May to August 2022, up to 67 samples from positive blood cultures previously processed with BACTEC FX (BD) were collected and submitted to the BCID panel. BCID panel results were compared with traditional culture results. RESULTS: We tested 67 positive blood culture samples; 13 samples were from pediatric bottles of BACTEC Peds Plus/F media (BD). The overall sensitivity of the BCID panel was 89.9% (62/69; 95% CI, 80.2 - 95.3%). For blood-stream pathogens targeted by the BCID panel, sensitivity was 98.4% (62/63; 95% CI, 90.7 - > 99.9%). Interestingly, Proteus species were additionally detected in 6 samples from pediatric blood culture bottles. CONCLUSIONS: BCID demonstrated high clinical sensitivity for target pathogens, but positive findings for unexpected multiple targets or Proteus species require cautious interpretation to avoid false positives.


Subject(s)
Bacteremia , Multiplex Polymerase Chain Reaction , Humans , Child , Multiplex Polymerase Chain Reaction/methods , Bacteria/genetics , Blood Culture/methods , Bacteremia/diagnosis
14.
Article in English | MEDLINE | ID: mdl-38575379

ABSTRACT

OBJECTIVES: To elaborate the utility of multiplex quantitative polymerase chain reaction (multiplex qPCR) for the accurate diagnosis of severe respiratory tract infections (RTIs) in hospitalized children. METHODS: In two separate periods during 2022, 76 respiratory specimens (combined throat/nasopharyngeal swabs) were submitted for multiplex qPCR regarding 26 respiratory pathogens. The specimens were obtained from children with severe RTIs hospitalized in the Institute for Respiratory Diseases in Children, Skopje. RESULTS: Multiplex qPCR detected at least one respiratory pathogen in all examined specimens (76/76), with 83% (63/76) rate of co-infections. Considering that positive results are only the ones with Ct value below 28, the rates of detected pathogens and co-infections decrease to 75% and 22%, respectively. The most commonly detected pathogens during the spring period were Parainfluenza type 3 (PIV3) followed by Adenovirus (AdV) and Respiratory syncytial virus type B (RSVB) with frequency rate of 23%, 19% and 19%, respectively. During the autumn period, the most common were RSVB and Streptococcus pneumoniae with frequency rate of 31% and 17%, respectively. CONCLUSION: Multiplex qPCR is a powerful tool for diagnosing RTIs. Semi-quantification of the viral load by reporting Ct values added higher level of evidence for accurate diagnosis. Seasonal detection of the examined viruses was notable with higher prevalence of PIV3 in spring and RSVB in autumn period.


Subject(s)
Coinfection , Respiratory Tract Infections , Child , Humans , Infant , Multiplex Polymerase Chain Reaction/methods , Child, Hospitalized , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Prevalence
15.
Pathol Oncol Res ; 30: 1611590, 2024.
Article in English | MEDLINE | ID: mdl-38605929

ABSTRACT

Lung cancer is a paradigm for a genetically driven tumor. A variety of drugs were developed targeting specific biomarkers requiring testing for tumor genetic alterations in relevant biomarkers. Different next-generation sequencing technologies are available for library generation: 1) anchored multiplex-, 2) amplicon based- and 3) hybrid capture-based-PCR. Anchored multiplex PCR-based sequencing was investigated for routine molecular testing within the national Network Genomic Medicine Lung Cancer (nNGM). Four centers applied the anchored multiplex ArcherDX-Variantplex nNGMv2 panel to re-analyze samples pre-tested during routine diagnostics. Data analyses were performed by each center and compiled centrally according to study design. Pre-defined standards were utilized, and panel sensitivity was determined by dilution experiments. nNGMv2 panel sequencing was successful in 98.9% of the samples (N = 90). With default filter settings, all but two potential MET exon 14 skipping variants were identified at similar allele frequencies. Both MET variants were found with an adapted calling filter. Three additional variants (KEAP1, STK11, TP53) were called that were not identified in pre-testing analyses. Only total DNA amount but not a qPCR-based DNA quality score correlated with average coverage. Analysis was successful with a DNA input as low as 6.25 ng. Anchored multiplex PCR-based sequencing (nNGMv2) and a sophisticated user-friendly Archer-Analysis pipeline is a robust and specific technology to detect tumor genetic mutations for precision medicine of lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Multiplex Polymerase Chain Reaction , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Mutation/genetics , High-Throughput Nucleotide Sequencing , Biomarkers , DNA
16.
Parasit Vectors ; 17(1): 171, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566239

ABSTRACT

BACKGROUND: Identification of mosquitoes greatly relies on morphological specification. Since some species cannot be distinguished reliably by morphological methods, it is important to incorporate molecular techniques into the diagnostic pipeline. DNA barcoding using Sanger sequencing is currently widely used for identification of mosquito species. However, this method does not allow detection of multiple species in one sample, which would be important when analysing mosquito eggs. Detection of container breeding Aedes is typically performed by collecting eggs using ovitraps. These traps consist of a black container filled with water and a wooden spatula inserted for oviposition support. Aedes mosquitoes of different species might lay single or multiple eggs on the spatula. In contrast to Sanger sequencing of specific polymerase chain reaction (PCR) products, multiplex PCR protocols targeting specific species of interest can be of advantage for detection of multiple species in the same sample. METHODS: For this purpose, we adapted a previously published PCR protocol for simultaneous detection of four different Aedes species that are relevant for Austrian monitoring programmes, as they can be found in ovitraps: Aedes albopictus, Aedes japonicus, Aedes koreicus, and Aedes geniculatus. For evaluation of the multiplex PCR protocol, we analysed 2271 ovitrap mosquito samples from the years 2021 and 2022, which were collected within the scope of an Austrian nationwide monitoring programme. We compared the results of the multiplex PCR to the results of DNA barcoding. RESULTS: Of 2271 samples, the multiplex PCR could identify 1990 samples, while species determination using DNA barcoding of the mitochondrial cytochrome c oxidase subunit I gene was possible in 1722 samples. The multiplex PCR showed a mixture of different species in 47 samples, which could not be detected with DNA barcoding. CONCLUSIONS: In conclusion, identification of Aedes species in ovitrap samples was more successful when using the multiplex PCR protocol as opposed to the DNA barcoding protocol. Additionally, the multiplex PCR allowed us to detect multiple species in the same sample, while those species might have been missed when using DNA barcoding with Sanger sequencing alone. Therefore, we propose that the multiplex PCR protocol is highly suitable and of great advantage when analysing mosquito eggs from ovitraps.


Subject(s)
Aedes , DNA Barcoding, Taxonomic , Female , Animals , Multiplex Polymerase Chain Reaction , Ovum , Aedes/genetics , Mosquito Vectors/genetics
17.
Cancer Med ; 13(7): e7162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572952

ABSTRACT

PURPOSE: Genetic mutation detection has become an important step in nonsmall-cell lung cancer (NSCLC) treatment because of the increasing number of drugs that target genomic rearrangements. A multiplex test that can detect multiple gene mutations prior to treatment is thus necessary. Currently, either next-generation sequencing (NGS)-based or polymerase chain reaction (PCR)-based tests are used. We evaluated the performance of the Oncomine Dx Target Test (ODxTT), an NGS-based multiplex biomarker panel test, and the AmoyDx Pan Lung Cancer PCR Panel (AmoyDx PLC panel), a real-time PCR-based multiplex biomarker panel test. MATERIALS AND METHODS: Patients with histologically diagnosed NSCLC and a sufficient sample volume to simultaneously perform the AmoyDx PLC panel and ODxTT-M were included in the study. The success and detection rates of both tests were evaluated. RESULTS: Biopsies revealed 116 cases of malignancies, 100 of which were NSCLC. Of these, 59 met the inclusion criteria and were eligible for analysis. The success rates were 100% and 98% for AmoyDx PLC panel and ODxTT-M, respectively. Nine driver mutations were detected in 35.9% and 37.3% of AmoyDx PLC and ODxTT-M panels, respectively. EGFR mutations were detected in 14% and 12% of samples using the AmoyDx PLC panel and ODxTT-M, respectively. Of the 58 cases in which both NGS and AmoyDx PLC panels were successful, discordant results were observed in seven cases. These differences were mainly due to different sensitivities of the detection methods used and the gene variants targeted in each test. DISCUSSION: The AmoyDx PLC panel, a PCR-based multiplex diagnostic test, exhibits a high success rate. The frequency of the nine genes targeted for treatment detected by the AmoyDx PLC panel was comparable to the frequency of mutations detected by ODxTT-M. Clinicians should understand and use the AmoyDx PLC panel and ODxTT-M with respect to their respective performances and limitations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Multiplex Polymerase Chain Reaction , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Mutation , High-Throughput Nucleotide Sequencing/methods , Biomarkers
18.
Mol Biol Rep ; 51(1): 490, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578476

ABSTRACT

BACKGROUND: One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS: We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS: The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , DNA/genetics , Base Sequence , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Muscles
19.
Front Cell Infect Microbiol ; 14: 1377225, 2024.
Article in English | MEDLINE | ID: mdl-38644962

ABSTRACT

Background: Bacterial vaginosis (BV) is a most common microbiological syndrome. The use of molecular methods, such as multiplex real-time PCR (mPCR) and next-generation sequencing, has revolutionized our understanding of microbial communities. Here, we aimed to use a novel multiplex PCR test to evaluate the microbial composition and dominant lactobacilli in non-pregnant women with BV, and combined with machine learning algorithms to determine its diagnostic significance. Methods: Residual material of 288 samples of vaginal secretions derived from the vagina from healthy women and BV patients that were sent for routine diagnostics was collected and subjected to the mPCR test. Subsequently, Decision tree (DT), random forest (RF), and support vector machine (SVM) hybrid diagnostic models were constructed and validated in a cohort of 99 women that included 74 BV patients and 25 healthy controls, and a separate cohort of 189 women comprising 75 BV patients, 30 intermediate vaginal microbiota subjects and 84 healthy controls, respectively. Results: The rate or abundance of Lactobacillus crispatus and Lactobacillus jensenii were significantly reduced in BV-affected patients when compared with healthy women, while Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae, BVAB2, Megasphaera type 2, Prevotella bivia, and Mycoplasma hominis were significantly increased. Then the hybrid diagnostic models were constructed and validated by an independent cohort. The model constructed with support vector machine algorithm achieved excellent prediction performance (Area under curve: 0.969, sensitivity: 90.4%, specificity: 96.1%). Moreover, for subjects with a Nugent score of 4 to 6, the SVM-BV model might be more robust and sensitive than the Nugent scoring method. Conclusion: The application of this mPCR test can be effectively used in key vaginal microbiota evaluation in women with BV, intermediate vaginal microbiota, and healthy women. In addition, this test may be used as an alternative to the clinical examination and Nugent scoring method in diagnosing BV.


Subject(s)
Artificial Intelligence , Microbiota , Multiplex Polymerase Chain Reaction , Vagina , Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology , Vagina/microbiology , Adult , Microbiota/genetics , Multiplex Polymerase Chain Reaction/methods , Young Adult , Lactobacillus/isolation & purification , Lactobacillus/genetics , Support Vector Machine , Sensitivity and Specificity , ROC Curve , Middle Aged
20.
Open Vet J ; 14(1): 389-397, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633161

ABSTRACT

Background: Minced meat is a valuable source of nutrients, but it is vulnerable to contamination by microorganisms commonly present in the environment. In addition, there is a risk of adulteration with cheaper meat sources, which can be harmful to consumers. Aim: It is crucial to identify meat adulteration with distinct microbiological analysis for legal, economic, religious, and public health purposes. Methods: A total of 100 minced meat samples were collected from several markets in Sharkia Governorate, Egypt. These samples were then subjected to bacteriological testing and an advanced multiplex PCR method. This method enables the detection of bovine, equine, porcine, and dog species in meat samples with just one step. Results: The adulterated samples had a higher total bacterial count and pH values compared to pure bovine meat. These differences in bacterial count and pH values were statistically significant, with p-values of 0.843 (log10) and 0.233, respectively. The frequency of Escherichia coli occurrence was 13%, and the O111 serotype was predominant in the adulterated samples. Listeria monocytogenes and Staphylococcus aureus were isolated with prevalence rates of 3% and 29%, respectively. Besides, the SYBR-green multiplex real-time PCR assay used in this study detected adulteration with dog, equine, and porcine meats in the examined samples at rates of 9%, 5%, and 4%, respectively. Conclusion: This method provides a sensitive and specific approach to detect issues related to well-being and safety.


Subject(s)
Benzothiazoles , Diamines , Food Contamination , Meat , Quinolines , Animals , Cattle , Horses , Swine , Dogs , Real-Time Polymerase Chain Reaction/veterinary , Food Contamination/analysis , Multiplex Polymerase Chain Reaction/veterinary , Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL
...