Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Virol ; 96(15): e0075122, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867566

ABSTRACT

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Subject(s)
Blood , Diptera , Feeding Behavior , Insect Vectors , Lumpy Skin Disease , Lumpy skin disease virus , Aedes/anatomy & histology , Aedes/virology , Animals , Cattle/virology , Ceratopogonidae/anatomy & histology , Ceratopogonidae/virology , Culex/anatomy & histology , Culex/virology , Diptera/anatomy & histology , Diptera/physiology , Diptera/virology , Insect Vectors/anatomy & histology , Insect Vectors/physiology , Insect Vectors/virology , Lumpy Skin Disease/virology , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/physiology , Membranes, Artificial , Muscidae/anatomy & histology , Muscidae/virology , Time Factors
2.
J Insect Sci ; 21(2)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33822129

ABSTRACT

The salivary glands of insects play a key role in the replication cycle and vectoring of viral pathogens. Consequently, Musca domestica (L.) (Diptera: Muscidae) and the Salivary Gland Hypertrophy Virus (MdSGHV) serve as a model to study insect vectoring of viruses. A better understanding of the structural changes of the salivary glands by the virus will help obtain a better picture of the pathological impact the virus has on adult flies. The salivary glands are a primary route for viruses to enter a new host. As such, studying the viral effect on the salivary glands is particularly important and can provide insights for the development of strategies to control the transmission of vector-borne diseases, such as dengue, malaria, Zika, and chikungunya virus. Using scanning and transmission electron microscopic techniques, researchers have shown the effects of infection by MdSGHV on the salivary glands; however, the exact location where the infection was found is unclear. For this reason, this study did a close examination of the effects of the hypertrophy virus on the salivary glands to locate the specific sites of infection. Here, we report that hypertrophy is present mainly in the secretory region, while other regions appeared unaffected. Moreover, there is a disruption of the cuticular, chitinous lining that separates the secretory cells from the lumen of the internal duct, and the disturbance of this lining makes it possible for the virus to enter the lumen. Thus, we report that the chitinous lining acts as an exit barrier of the salivary gland.


Subject(s)
Houseflies/virology , Insect Viruses/pathogenicity , Salivary Glands/pathology , Animals , Muscidae/virology , Salivary Glands/ultrastructure , Salivary Glands/virology
3.
Transbound Emerg Dis ; 68(3): 1190-1204, 2021 May.
Article in English | MEDLINE | ID: mdl-32750188

ABSTRACT

To deal with the limited literature data on the vectorial capacity of blood-feeding arthropods (BFAs) and their role in the transmission of African swine fever virus (ASFV) in Metropolitan France, a dedicated working group of the French Agency for Food, Environmental and Occupational Health & Safety performed an expert knowledge elicitation. In total, 15 different BFAs were selected as potential vectors by the ad hoc working group involved. Ten criteria were considered to define the vectorial capacity: vectorial competence, current abundance, expected temporal abundance, spatial distribution, longevity, biting rate, active dispersal capacity, trophic preferences for Suidae, probability of contact with domestic pigs and probability of contact with wild boar. Fourteen experts participated to the elicitation. For each BFA, experts proposed a score (between 0 and 3) for each of the above criteria with an index of uncertainty (between 1 and 4). Overall, all experts gave a weight for all criteria (by distributing 100 marbles). A global weighted sum of score per BFA was calculated permitting to rank the different BFAs in decreasing order. Finally, a regression tree analysis was used to group those BFAs with comparable likelihood to play a role in ASF transmission. Out of the ten considered criteria, the experts indicated vectorial competence, abundance and biting rate as the most important criteria. In the context of Metropolitan France, the stable fly (Stomoxys calcitrans) was ranked as the most probable BFA to be a vector of ASFV, followed by lice (Haematopinus suis), mosquitoes (Aedes, Culex and Anopheles), Culicoides and Tabanidea. Since scientific knowledge on their vectorial competence for ASF is scarce and associated uncertainty on expert elicitation moderate to high, more studies are however requested to investigate the potential vector role of these BFAs could have in ASFV spread, starting with Stomoxys calcitrans.


Subject(s)
African Swine Fever Virus , African Swine Fever/transmission , Insect Vectors , Mosquito Vectors , African Swine Fever/virology , Animals , Disease Vectors , Feeding Behavior , France , Insect Vectors/physiology , Insect Vectors/virology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Muscidae/virology , Phthiraptera/physiology , Sus scrofa/virology , Swine , Swine Diseases/virology
4.
Transbound Emerg Dis ; 68(3): 1541-1549, 2021 May.
Article in English | MEDLINE | ID: mdl-32910533

ABSTRACT

African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.


Subject(s)
African Swine Fever Virus/physiology , African Swine Fever/transmission , Insect Vectors/virology , Muscidae/virology , African Swine Fever/virology , Animals , Models, Theoretical , Sus scrofa , Swine
5.
J Vet Diagn Invest ; 32(1): 108-111, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31967528

ABSTRACT

Control of bovine viral diarrhea virus (BVDV) relies on resource-intensive sampling to detect and remove persistently infected (PI) cattle. Herd-level surveillance tools would be useful for herds with unknown BVDV status and for monitoring herds with BVDV-free status. Our objective was to determine the feasibility of using stable flies as a sampling tool to detect BVDV at the herd level. Stable flies (Stomoxys calcitrans) were fed citrated blood from either BVDV-PI or BVDV-free cattle to establish pools of 100 flies with various proportions of BVDV-fed flies (0%, 1%, 10%, 20%, 40%, or 100% in each pool). BVDV-fed flies in these pools were harvested either 1, 2, or 3 d after consuming BVDV-PI blood to determine the impact of time after feeding. Two replicates of a 3-d by 6-dilution level matrix were produced. BVDV RNA was consistently detected on day 1 when ≥10% of the flies in the pool consumed PI blood. On days 2 and 3, positive BVDV RNA detection was variable and became less consistent. Our results demonstrate that BVDV RNA can be detected in stable flies after feeding on blood from PI cattle. Successful use of stable flies as a surveillance tool will require validation under field conditions.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/blood , Diarrhea Viruses, Bovine Viral/isolation & purification , Insect Vectors/virology , Muscidae/virology , Animals , Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Female
6.
BMC Genomics ; 20(1): 616, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31357943

ABSTRACT

BACKGROUND: The horn fly (Haematobia irritans) is an obligate blood feeder that causes considerable economic losses in livestock industries worldwide. The control of this cattle pest is mainly based on insecticides; unfortunately, in many regions, horn flies have developed resistance. Vaccines or biological control have been proposed as alternative control methods, but the available information about the biology or physiology of this parasite is rather scarce. RESULTS: We present a comprehensive description of the salivary and midgut transcriptomes of the horn fly (Haematobia irritans), using deep sequencing achieved by the Illumina protocol, as well as exploring the virome of this fly. Comparison of the two transcriptomes allow for identification of uniquely salivary or uniquely midgut transcripts, as identified by statistically differential transcript expression at a level of 16 x or more. In addition, we provide genomic highlights and phylogenetic insights of Haematobia irritans Nora virus and present evidence of a novel densovirus, both associated to midgut libraries of H. irritans. CONCLUSIONS: We provide a catalog of protein sequences associated with the salivary glands and midgut of the horn fly that will be useful for vaccine design. Additionally, we discover two midgut-associated viruses that infect these flies in nature. Future studies should address the prevalence, biological effects and life cycles of these viruses, which could eventually lead to translational work oriented to the control of this economically important cattle pest.


Subject(s)
Gene Expression Profiling , Intestinal Mucosa/metabolism , Muscidae/genetics , Muscidae/virology , Salivary Glands/metabolism , Animals , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Open Vet J ; 9(1): 33-37, 2019 04.
Article in English | MEDLINE | ID: mdl-31086763

ABSTRACT

Bovine leukemia virus (BLV) is the agent responsible for enzootic bovine leukosis, the most common neoplastic disease in cattle. The horn fly, a major hematophagous pest of cattle, is able to transmit different diseases in cattle. However, its implication in BLV transmission under a natural environment is still discussed. The objectives of this work were to determine the presence of BLV in horn flies (by sequencing) and to evaluate the ability of horn flies to transmit BLV to cattle (through an experimental assay under a natural environment). To demonstrate the presence of BLV in the flies, 40 horn flies were collected from a BLV-positive cow with a sweep net and 10 pools with four horn-fly mouthparts each were prepared. The presence of BLV was determined by nested polymerase chain reaction and sequencing. To demonstrate BLV transmission, other 40 flies were collected from the same BLV-positive cow with a sweep net. Eight homogenates containing five horn-fly mouthparts each were prepared and injected to eight cows of different breeds, and blood samples were collected every 21 days. Then, to evaluate the ability of horn flies to transmit BLV to grazing cattle under natural conditions, both infected and uninfected cattle from the experimental transmission assay were kept together in the same paddock with more than 200 horn flies per animal for 120 days. Blood samples were collected every 20 days and the number of flies was determined. The sequencing results confirmed the presence of the provirus in horn flies. The results also confirmed that BLV transmission is a possible event, at least experimentally. However, the role of horn flies as vectors of BLV under a natural grazing system is still discussed.


Subject(s)
Enzootic Bovine Leukosis/transmission , Insect Vectors/virology , Leukemia Virus, Bovine/isolation & purification , Muscidae/virology , Animals , Argentina , Cattle , Female , Insect Vectors/physiology , Muscidae/physiology , Polymerase Chain Reaction/veterinary , Proviruses/isolation & purification
8.
Vet Microbiol ; 222: 25-29, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30080669

ABSTRACT

Since 2014, African swine fever virus (ASFV) has been spreading within Eastern Europe. Within affected regions, the virus has infected some farms with high biosecurity and a marked seasonality of outbreaks in domestic pigs has been observed. ASFV transmission from stable flies, Stomoxys calcitrans, has previously been shown both mechanically and via ingestion of whole flies. Hence, blood-feeding flies may offer one explanation for the introductions into high biosecurity farms and for the observed seasonality. The aim of this study was to further elucidate the potential role of stable flies in ASFV transmission. Different parts of flies were analyzed for the presence of viral DNA and infectious virus at different time points following in vitro feeding of the flies on blood from an ASFV-infected pig. Using qPCR, ASFV DNA was detectable in mouth parts of flies for at least 12 h and remained in head and body samples from the flies for up to three days following feeding. Infectious virus was detected in fly body samples prepared at 3 h and 12 h after feeding. The presence of infectious ASFV in stable flies following feeding on viremic blood means that such flies are capable of transporting infectious virus. The detection of ASFV DNA in the flies for up to three days following feeding suggests that qPCR analysis of blood-feeding flies during ASFV outbreaks could be a useful method to elucidate the role of these flies in ASFV transmission under field conditions.


Subject(s)
African Swine Fever Virus/physiology , African Swine Fever/blood , African Swine Fever/transmission , Muscidae/virology , Viremia/transmission , African Swine Fever/epidemiology , African Swine Fever/virology , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Animals , DNA, Viral/blood , Disease Outbreaks/prevention & control , Europe, Eastern/epidemiology , Feeding Behavior , Real-Time Polymerase Chain Reaction , Sus scrofa/virology , Swine
9.
PLoS One ; 13(6): e0198506, 2018.
Article in English | MEDLINE | ID: mdl-29889905

ABSTRACT

BACKGROUND: The lumpy skin disease virus (LSDV) is a dsDNA virus belonging to the Poxviridae family and the Capripoxvirus genus. Lumpy skin diseases (LSD) is a highly contagious transboundary disease in cattle producing major economic losses. In 2014, the disease was first reported in the European Union (in Cyprus); it was then reported in 2015 (in Greece) and has spread through different Balkan countries in 2016. Indirect vector transmission is predominant at small distances, but transmission between distant herds and between countries usually occurs through movements of infected cattle or through vectors found mainly in animal trucks. METHODS AND PRINCIPAL FINDINGS: In order to estimate the threat for France due to the introduction of vectors found in animal trucks (cattle or horses) from at-risk countries (Balkans and neighbours), a quantitative import risk analysis (QIRA) model was developed according to the international standard. Using stochastic QIRA modelling and combining experimental/field data and expert opinion, the yearly risk of LSDV being introduced by stable flies (Stomoxys calcitrans), that travel in trucks transporting animals was between 6 x 10-5 and 5.93 x 10-3 with a median value of 89.9 x 10-5; it was mainly due to the risk related to insects entering farms in France from vehicles transporting cattle from the at-risk area. The risk related to the transport of cattle going to slaughterhouses or the transport of horses was much lower (between 2 x 10-7 and 3.73 x 10-5 and between 5 x 10-10 and 3.95 x 10-8 for cattle and horses, respectively). The disinsectisation of trucks transporting live animals was important to reduce this risk. CONCLUSION AND SIGNIFICANCE: The development of a stochastic QIRA made it possible to quantify the risk of LSD being introduced in France through the import of vectors that travel in trucks transporting animals. This tool is of prime importance because the LSD situation in the Balkans is continuously changing. Indeed, this model can be updated to process new information on vectors and the changing health situation, in addition to new data from the TRAde Control and Expert System (TRACES, EU database). This model is easy to adapt to different countries and to other vectors and diseases.


Subject(s)
Insect Vectors , Lumpy Skin Disease/transmission , Muscidae/virology , Animals , Capripoxvirus/physiology , Cattle , France , Horses , Lumpy Skin Disease/pathology , Lumpy Skin Disease/virology , Models, Theoretical , Motor Vehicles , Muscidae/physiology , Risk
10.
Transbound Emerg Dis ; 65(5): 1152-1157, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29877056

ABSTRACT

Within Eastern Europe, African swine fever virus (ASFV) has unexpectedly spread to farms with high biosecurity. In an attempt to explain this process, pigs were allowed to ingest flies that had fed on ASFV-spiked blood, which had a realistic titre for an infected pig. Some of the pigs became infected with the virus. Thus, ingestion of blood-sucking flies, having fed on ASFV-infected wild boar before entering stables, represents a potential route for disease transmission.


Subject(s)
African Swine Fever Virus , African Swine Fever/transmission , Farms , Muscidae/virology , Animals , Denmark , Disease Outbreaks/prevention & control , Swine
11.
J Insect Sci ; 18(3)2018 May 01.
Article in English | MEDLINE | ID: mdl-29750419

ABSTRACT

Research to date on the salivary gland hypertrophy virus (SGHV) in three species of flies has focused on adult flies having access to and taking a proteinaceous diet. Since many studies have shown that diet affects viral infection in numerous organisms, this study examined the effect of a protein-free diet on the effect of the SGHV virus in adult house flies, Musca domestica. L. Adults infected with the virus, and maintained on a sugar diet only, showed salivary glands with a blue rather than a grayish color and mild hypertrophy compared with protein-fed flies. It was possible to retrieve the virus from these glands and successfully infect noninfected flies. When injected at various ages, female flies fed only sugar showed that regardless of age, sugar-fed flies still became infected and showed the pathology of the glands. In addition, electron microscope studies revealed at the ultrastructural level that there was no difference between viral replication in cells from salivary glands of adults fed a proteinaceous-free diet and those feeding on protein.


Subject(s)
Diet, Protein-Restricted , Host-Pathogen Interactions , Insect Viruses/physiology , Muscidae/virology , Salivary Glands/ultrastructure , Animals , Female , Male , Muscidae/physiology , Muscidae/ultrastructure
12.
Vet J ; 231: 8-12, 2018 01.
Article in English | MEDLINE | ID: mdl-29429489

ABSTRACT

The association between bovine papillomavirus (BPV) and equine sarcoids is well established, but it is unclear how the virus spreads. Although evidence in support of viral spread through direct animal contact exists, this does not explain sarcoid development in isolated equids. BPV DNA has been detected in flies, which could indicate that these insects serve as a vector. This study aimed to investigate whether BPV-negative stable flies (Stomoxys calcitrans) become positive for BPV DNA after exposure to equine sarcoid or bovine papilloma tissue under experimental conditions and, if so, for how long. A total of 420 stable flies were caught alive and exposed to BPV positive equine sarcoid or bovine papilloma tissue. During the following week, dead flies were collected daily and BPV loads were determined by quantitative PCR. There was a significant rise in BPV load after tissue exposure both in sarcoid and papilloma exposed flies, but the viral load was higher and remained high for a longer time after exposure to papilloma tissue compared to sarcoid tissue. Within days, viral loads decreased again and became indifferent from loads before exposure. The results of these experiments indicate that BPV transmission by S. calcitrans seems possible and is more likely to occur after contact with bovine papillomas than with equine sarcoids. Transmission seems only possible shortly after tissue exposure. Further research could include experimental induction of sarcoids with BPV positive stable flies, or a repeat of the experiment with micro-dissection prior to PCR.


Subject(s)
Bovine papillomavirus 1/isolation & purification , Disease Transmission, Infectious/veterinary , Horse Diseases/transmission , Insect Vectors/virology , Muscidae/virology , Papilloma/veterinary , Sarcoidosis/veterinary , Animals , Bovine papillomavirus 1/physiology , Horses , Papilloma/virology , Viral Load
13.
Med Vet Entomol ; 31(2): 150-160, 2017 06.
Article in English | MEDLINE | ID: mdl-27976815

ABSTRACT

The vector of lumpy skin disease (LSD), a viral disease affecting Bovidae, is currently unknown. To evaluate the possible vector of LSD virus (LSDV) under field conditions, a yearlong trapping of dipterans was conducted in dairy farms that had been affected by LSD, 1-2 years previously. This was done in order to calculate monthly relative abundances of each dipteran in each farm throughout the year. The relative abundances of Stomoxys calcitrans (Diptera: Muscidae) in the months parallel to the outbreaks (December and April) were significantly higher than those of other dipterans. A stable fly population model based on weather parameters for the affected area was used to validate these findings. Its results were significantly correlated with S. calcitrans abundance. This model, based on weather parameters during the epidemic years showed that S. calcitrans populations peaked in the months of LSD onset in the studied farms. These observations and model predictions revealed a lower abundance of stable flies during October and November, when LSD affected adjacent grazing beef herds. These findings therefore suggest that S. calcitrans is a potential vector of LSD in dairy farms and that another vector is probably involved in LSDV transmission in grazing herds. These findings should be followed up with vector competence studies.


Subject(s)
Disease Outbreaks/veterinary , Insect Vectors/physiology , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/parasitology , Muscidae/physiology , Animals , Cattle , Dairying , Insect Vectors/virology , Israel/epidemiology , Lumpy Skin Disease/virology , Lumpy skin disease virus/physiology , Muscidae/virology , Population Density , Seasons
14.
J Med Entomol ; 52(5): 1117-23, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336236

ABSTRACT

We investigated the acquisition of porcine reproductive and respiratory syndrome (PRRS) virus by the stable fly (Diptera: Muscidae; Stomoxys calcitrans (L.)) through a bloodmeal, and virus persistence in the digestive organs of the fly using virus isolation and quantitative reverse-transcription PCR (qRT-PCR). Stable flies were fed blood containing live virus, modified live vaccine virus, chemically inactivated virus, or no virus. Stable flies acquired PRRSV from the bloodmeal and the amount of virus in the flies declined with time, indicating virus did not replicate in fly digestive tissues. Virus RNA was recovered from the flies fed live virus up to 24 h postfeeding using virus isolation techniques and 96 h using qRT-PCR. We further examined the fate of PRRSV in the hemolymph of the flies following intrathoracic injection to bypass the midgut barrier. PRRSV was detected in intrathoracically inoculated adult stable flies for 10 d using qRT-PCR. In contrast to what we observed in the digestive tract, detectable virus quantities in the intrathoracically inoculated stable flies followed an exponential decay curve. The amount of virus decreased fourfold in the first 3 d and remained stable thereafter, up to 10 d.


Subject(s)
Insect Vectors/virology , Muscidae/virology , Porcine respiratory and reproductive syndrome virus/physiology , Virus Replication , Animals , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
15.
J Vector Ecol ; 36(2): 231-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22129394

ABSTRACT

House flies (Musca domestica) infected with Musca domestica salivary gland hypertrophy virus (MdSGHV) were found in fly populations collected from 12 out of 18 Danish livestock farms that were surveyed in 2007 and 2008. Infection rates ranged from 0.5% to 5% and averaged 1.2%. None of the stable flies (Stomoxys calcitrans), rat-tail maggot flies (Eristalis tenax) or yellow dung flies (Scathophaga stercoraria) collected from MdSGHV-positive farms displayed characteristic salivary gland hypertrophy (SGH). In laboratory transmission tests, SGH symptoms were not observed in stable flies, flesh flies (Sarcophaga bullata), black dump flies (Hydrotaea aenescens), or face flies (Musca autumnalis) that were injected with MdSGHV from Danish house flies. However, in two species (stable fly and black dump fly), virus injection resulted in suppression of ovarian development similar to that observed in infected house flies, and injection of house flies with homogenates prepared from the salivary glands or ovaries of these species resulted in MdSGHV infection of the challenged house flies. Mortality of virus-injected stable flies was the highest among the five species tested. Virulence of Danish and Florida isolates of MdSGHV was similar with three virus delivery protocols, as a liquid food bait (in sucrose, milk, or blood), sprayed onto the flies in a Potter spray tower, or by immersiion in a crude homogenate of infected house flies. The most effective delivery system was immersion in a homogenate of ten infected flies/ml of water, resulting in 56.2% and 49.6% infection of the house flies challenged with the Danish and Florida strains, respectively.


Subject(s)
Houseflies/virology , Insect Viruses/pathogenicity , Salivary Glands/virology , Animals , Dairying , Female , Hypertrophy/virology , Muscidae/virology , Ovary/virology , Prevalence , Salivary Glands/pathology , Sarcophagidae/virology
16.
J Med Entomol ; 48(4): 876-83, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21845948

ABSTRACT

Porcine Reproductive and respiratory syndrome (PRRS) is a globally significant swine disease caused by an arterivirus. The virus replicates in alveolar macrophages of infected pigs, resulting in pneumonia in growing pigs and late-term abortions in sows. Outbreaks occur on disparate farms within an area despite biosecurity measures, suggesting mechanical transport by arthropods. We investigated the vector potential of stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), in the transmission of porcine reproductive and respiratory syndrome virus (family Arteriviridae, genus Arterivirus, PRRSV) under laboratory conditions. Stable flies were collected around PRRS-negative boar stud barns in North Carolina and tested for presence of the virus. Stable flies were collected on alsynite traps placed near the exhaust fan of the close-sided tunnel-ventilated buildings, suggesting blood seeking flies are attracted by olfactory cues. No flies were positive for PRRSV. We assessed transmission of the virus through an infective bite by feeding laboratory reared stable flies on blood containing virus and transferring them to naive pigs for subsequent bloodmeals. Transmission of the virus to naive pigs by infective bites failed in all attempts. The volume of blood contained within the closed mouthparts of the stable fly seems to be insufficient to deliver an infective dose of the virus. Stable flies are unlikely to transmit PRRSV from one pig to another while blood feeding. The fate of the virus after a bloodmeal remains to be determined.


Subject(s)
Insect Vectors/virology , Muscidae/virology , Porcine Reproductive and Respiratory Syndrome/transmission , Porcine respiratory and reproductive syndrome virus/isolation & purification , Sus scrofa/virology , Animals , Male , North Carolina/epidemiology , Polymerase Chain Reaction/veterinary , Porcine Reproductive and Respiratory Syndrome/blood , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/blood , RNA, Viral/genetics , Swine Diseases/epidemiology , Swine Diseases/etiology , Swine Diseases/transmission
17.
J Med Entomol ; 48(3): 656-68, 2011 May.
Article in English | MEDLINE | ID: mdl-21661328

ABSTRACT

In 2006-2007, stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), were suspected of being enzootic vectors of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) during a die-off of American white pelicans (Pelecanus erythrorhynchos Gmelin) (Pelecanidae) in Montana, USA. WNV-positive stable flies were observed feeding en masse on incapacitated, WNV-positive pelicans, arousing suspicions that the flies could have been involved in WNV transmission among pelicans, and perhaps to livestock and humans. We assessed biological transmission by infecting stable flies intrathoracically with WNV and testing them at 2-d intervals over 20 d. Infectious WNV was detected in fly bodies in decreasing amounts over time for only the first 6 d postinfection, an indication that WNV did not replicate within fly tissues and that stable flies cannot biologically transmit WNV. We assessed mechanical transmission using a novel technique. Specifically, we fed WNV-infected blood to individual flies by using a cotton swab (i.e., artificial donor), and at intervals of 1 min-24 h, we allowed flies to refeed on a different swab saturated with WNV-negative blood (i.e., artificial recipient). Flies mechanically transmitted viable WNV from donor to recipient swabs for up to 6 h postinfection, with the majority of the transmission events occurring within the first hour. Flies mechanically transmitted WNV RNA to recipient swabs for up to 24 h, mostly within the first 6 h. Given its predilection to feed multiple times when disturbed, these findings support the possibility that the stable fly could mechanically transmit WNV.


Subject(s)
Insect Vectors/virology , Muscidae/virology , Virology/methods , West Nile Fever/transmission , Animals , Birds/virology , Montana , Time Factors , Viral Load , West Nile Fever/virology , West Nile virus
18.
Vet Res Commun ; 35(2): 123-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21136161

ABSTRACT

Identifying reservoirs and transmission routes for bovine viral diarrhea virus (BVDV) are important in developing biosecurity programs. The aim of this study was to evaluate BVDV transmission by the hematophagous horn fly (Haematobia irritans). Flies collected from four persistently infected cattle were placed in fly cages attached to principal (n = 4) and control (n = 4) BVDV-naïve calves housed individually in isolation rooms. Flies were able to feed on principal calves, but a barrier prevented fly feeding from control calves. Flies were tested for BVDV by RT-PCR and virus isolation at time of collection from PI cattle and after 48 h of exposure on BVDV-naïve calves. Blood samples were collected from calves and tested for BVDV infection. Virus was isolated from fly homogenates at collection from PI animals and at removal from control and principal calves. All calves remained negative for BVDV by virus isolation and serology throughout the study. Bovine viral diarrhea virus may be detected in horn flies collected from PI cattle, but horn flies do not appear to be an important vector for BVDV transmission.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/transmission , Carrier State/veterinary , Diarrhea Viruses, Bovine Viral/physiology , Muscidae/virology , Animals , Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Carrier State/transmission , Carrier State/virology , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/immunology , Male , Neutralization Tests/veterinary , RNA, Viral/chemistry , RNA, Viral/genetics , Random Allocation , Reverse Transcriptase Polymerase Chain Reaction/veterinary
19.
J Med Entomol ; 48(6): 1128-35, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22238871

ABSTRACT

The effect of Musca domestica salivary gland hypertrophy virus (MdSGHV) on selected fitness parameters of stable flies, Stomoxys calcitrans (L.), was examined in the laboratory. Virus-injected stable flies of both genders suffered substantially higher mortality than control flies. By day 9, female mortality was 59.3 +/- 10.1% in the virus group compared with 23.7 +/- 3.7% in the controls; mortality in virus-injected males was 78.1 +/- 3.1% compared with 33.3 +/- 9.3% for controls. Fecundity of control flies on days 6-9 was 49-54 eggs deposited per live female per day (total, 8,996 eggs deposited), whereas virus-injected flies produced four to five eggs per female on days 6-7 and less then one egg per female per day thereafter (total, 251 eggs). Fecal spot deposition by virus-injected flies was comparable to controls initially but decreased to approximately 50% of control levels by day 4 after injection; infected flies produced only 26% as many fecal spots as healthy flies on days 6 and 7. None of the virus-injected stable flies developed symptoms of salivary gland hypertrophy. Quantitative real-time polymerase chain reaction demonstrated virus replication in injected stable flies, with increasing titers of virus genome copies from one to four days after injection. MdSGHV in stable flies displayed tissue tropism similar to that observed in house fly hosts, with higher viral copy numbers in fat body and salivary glands compared with ovaries. Virus titers were approximately 2 orders of magnitude higher in house fly than in stable fly hosts, and this difference was probably due to the absence of salivary gland hypertrophy in the latter species.


Subject(s)
Host Specificity , Insect Viruses/physiology , Muscidae/virology , Animals , Fat Body/virology , Female , Male , Ovary/virology , Salivary Glands/virology , Viral Tropism , Virus Replication
20.
J Med Entomol ; 47(6): 1205-11, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21175073

ABSTRACT

Stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), an economically important pest of livestock and humans, were observed parasitizing prefledged American white pelicans, Pelecanus erythrorhynchos (Pelecaniformes: Pelecanidae), in a pelican breeding colony in northeastern Montana where die-offs attributed to West Nile virus (family Flaviviridae, genus Flavivirus, WNV) have occurred since 2002. Engorged and unengorged flies were collected off nine moribund chicks. Of 29 blood-engorged flies testing positive for vertebrate DNA, all 29 contained pelican DNA. Virus isolation was performed on 60 pools (1,176 flies) of unengorged flies using Vero cell plaque assay. Eighteen pools were positive for WNV for an estimated infection rate of 18.0 per 1,000 flies. Fifty-four percent (36/67) of abdomens from blood-engorged flies tested positive for WNV. Pelican viremia levels from the blood-engorged fly abdomens revealed that at least one of the ill pelicans circulated a viremia capable of infecting Culex mosquito vectors. Stable flies may be involved in WNV transmission within the pelican breeding colony by serving as either a mechanical vector or as a source for oral infection if ingested by predators.


Subject(s)
Bird Diseases/virology , Birds/parasitology , Insect Vectors/virology , Muscidae/virology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , West Nile Fever/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...