Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167.521
Filter
1.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710059

ABSTRACT

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Subject(s)
Down-Regulation , Fibrosis , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Wistar , Vascular Endothelial Growth Factor A , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Electric Stimulation , Electric Stimulation Therapy/methods , Disease Progression , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Muscular Diseases/etiology
2.
Physiol Res ; 73(2): 295-304, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710060

ABSTRACT

Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).


Subject(s)
Endurance Training , Janus Kinase 2 , Physical Conditioning, Animal , STAT3 Transcription Factor , Sarcopenia , Signal Transduction , Animals , Sarcopenia/metabolism , Sarcopenia/prevention & control , Sarcopenia/therapy , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Male , Mice , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Aging/metabolism
3.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717527

ABSTRACT

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Subject(s)
Columbidae , Flight, Animal , Transcriptome , Animals , Columbidae/genetics , Columbidae/physiology , Flight, Animal/physiology , Transcriptome/genetics , Gene Expression Profiling/methods , Pectoralis Muscles/metabolism , Pectoralis Muscles/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
4.
Sci Rep ; 14(1): 10554, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719903

ABSTRACT

Sarcopenia greatly reduces the quality of life of the elderly, and iron metabolism plays an important role in muscle loss. This study aimed to investigate the association between iron status and sarcopenia. A total of 286 adult patients hospitalized between 2019 and 2021 were included in this study, of which 117 were diagnosed with sarcopenia. Serum iron, total iron binding capacity (TIBC), transferrin, and transferrin saturation levels were compared between groups with and without sarcopenia and were included in the logistic analyses, with significant variables further included in the logistic regression model for the prediction of sarcopenia. Serum iron, TIBC, and transferrin levels decreased significantly in the sarcopenia group (p < 0.05), and were negatively associated with handgrip strength, relative skeletal muscle index, and multiple test performances (p < 0.05). Multivariate logistic analysis showed that sex, age, body mass index (BMI), and serum iron level were independent risk factors for sarcopenia. In the final logistic regression model, male sex (odds ratio [OR] 3.65, 95% confidence interval [CI] 1.67-7.98), age > 65 years (OR 5.40, 95% CI 2.25-12.95), BMI < 24 kg/m2 (OR 0.17, 95% CI 0.08-0.36), and serum iron < 10.95 µmol/L (OR 0.39, 95% CI 0.16-0.93) were included. Our study supported the impact of iron metabolism on muscle strength and performance.


Subject(s)
Iron , Sarcopenia , Transferrin , Humans , Sarcopenia/blood , Male , Female , Iron/blood , Aged , Middle Aged , Retrospective Studies , Transferrin/metabolism , Transferrin/analysis , Body Mass Index , Hand Strength , Risk Factors , Muscle, Skeletal/metabolism , Logistic Models , Aged, 80 and over
5.
BMC Genomics ; 25(1): 454, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720264

ABSTRACT

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Subject(s)
Anura , Hibernation , Metabolomics , Muscle, Skeletal , Animals , Hibernation/genetics , Hibernation/physiology , Muscle, Skeletal/metabolism , Anura/genetics , Anura/metabolism , Anura/physiology , Myocardium/metabolism , Transcriptome , Gene Expression Profiling , Seasons , Metabolome , Tibet
6.
PLoS One ; 19(5): e0302828, 2024.
Article in English | MEDLINE | ID: mdl-38722930

ABSTRACT

Cupping therapy is a popular intervention for improving muscle recovery after exercise although clinical evidence is weak. Previous studies demonstrated that cupping therapy may improve microcirculation of the soft tissue to accelerate tissue healing. However, it is unclear whether the cupping size could affect the spatial hemodynamic response of the treated muscle. The objective of this study was to use 8-channel near-infrared spectroscopy to assess this clinical question by assessing the effect of 3 cupping sizes (35, 40, and 45 mm in inner diameter of the circular cup) under -300 mmHg for 5 min on the muscle hemodynamic response from the area inside and outside the cup, including oxyhemoglobin and deoxy-hemoglobin in 18 healthy adults. Two-way factorial design was used to assess the interaction between the cupping size (35, 40, and 45 mm) and the location (inside and outside the cup) and the main effects of the cupping size and the location. The two-way repeated measures ANOVA demonstrated an interaction between the cupping size and the location in deoxy-hemoglobin (P = 0.039) but no interaction in oxyhemoglobin (P = 0.100), and a main effect of the cup size (P = 0.001) and location (P = 0.023) factors in oxyhemoglobin. For the cupping size factor, the 45-mm cup resulted in a significant increase in oxyhemoglobin (5.738±0.760 µM) compared to the 40-mm (2.095±0.312 µM, P<0.001) and 35-mm (3.134±0.515 µM, P<0.01) cup. Our findings demonstrate that the cupping size and location factors affect the muscle hemodynamic response, and the use of multi-channel near-infrared spectroscopy may help understand benefits of cupping therapy on managing musculoskeletal impairment.


Subject(s)
Hemodynamics , Muscle, Skeletal , Oxyhemoglobins , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Hemodynamics/physiology , Female , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis , Cupping Therapy/methods , Young Adult , Hemoglobins/metabolism
7.
PLoS One ; 19(5): e0298827, 2024.
Article in English | MEDLINE | ID: mdl-38722949

ABSTRACT

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Subject(s)
Adipocytes , Glutathione Peroxidase , MAP Kinase Signaling System , Animals , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Adipocytes/metabolism , Adipocytes/cytology , Swine , Cell Differentiation/genetics , Cell Proliferation , Adipogenesis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
8.
Lupus Sci Med ; 11(1)2024 May 08.
Article in English | MEDLINE | ID: mdl-38724183

ABSTRACT

OBJECTIVE: This study aimed to evaluate the prevalence of sarcopenia and its clinical significance in Turkish women with SLE, exploring the association between muscle mass, muscle strength and SLE disease activity. METHODS: A cross-sectional study was conducted at Gazi University Hospital's Department of Rheumatology from January to December 2020. It involved 82 patients with SLE, diagnosed according to the 2019 American College of Rheumatology/European Alliance of Associations for Rheumatology criteria, and 69 healthy controls. Sarcopenia was assessed using hand grip dynamometry (hand grip strength (HGS)) and bioelectrical impedance analysis for muscle mass, with sarcopenia defined according to the 2018 European Working Group on Sarcopenia in Older People criteria and specific cut-offs for the Turkish population. The main outcomes measured were the presence of sarcopenia and probable sarcopenia, HGS values, skeletal muscle mass index and SLE Disease Activity Index 2000 (SLEDAI-2K). RESULTS: Among the patients with SLE, 51.2% met the criteria for probable sarcopenia and 12.9% were diagnosed with sarcopenia. The mean HGS was significantly lower in the SLE group (21.7±4.9 kg) compared with controls, indicating reduced muscle strength. The prevalence of anti-double-stranded DNA (anti-dsDNA) antibodies was 82.9%. Multivariate regression analysis identified height and levels of anti-dsDNA antibodies as independent predictors for developing probable sarcopenia. No significant association was found between clinical parameters, including SLEDAI-2K scores, and sarcopenia status. CONCLUSIONS: Sarcopenia is prevalent among Turkish women with SLE, with a significant proportion showing reduced muscle strength. The study found no direct association between sarcopenia and SLE disease activity or clinical parameters. These findings underscore the importance of including muscle strength assessments in the routine clinical evaluation of patients with SLE to potentially improve management and quality of life.


Subject(s)
Hand Strength , Lupus Erythematosus, Systemic , Muscle Strength , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/physiopathology , Sarcopenia/diagnosis , Female , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/physiopathology , Cross-Sectional Studies , Turkey/epidemiology , Adult , Middle Aged , Prevalence , Case-Control Studies , Antibodies, Antinuclear/blood , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Severity of Illness Index
9.
Sci Rep ; 14(1): 10658, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724553

ABSTRACT

This study aimed to investigate the effects of exercise on excessive mitochondrial fission, insulin resistance, and inflammation in the muscles of diabetic rats. The role of the irisin/AMPK pathway in regulating exercise effects was also determined. Thirty-two 8-week-old male Wistar rats were randomly divided into four groups (n = 8 per group): one control group (Con) and three experimental groups. Type 2 diabetes mellitus (T2DM) was induced in the experimental groups via a high-fat diet followed by a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 30 mg/kg body weight. After T2DM induction, groups were assigned as sedentary (DM), subjected to 8 weeks of treadmill exercise training (Ex), or exercise training combined with 8-week cycloRGDyk treatment (ExRg). Upon completion of the last training session, all rats were euthanized and samples of fasting blood and soleus muscle were collected for analysis using ELISA, immunofluorescence, RT-qPCR, and Western blotting. Statistical differences between groups were analyzed using one-way ANOVA, and differences between two groups were assessed using t-tests. Our findings demonstrate that exercise training markedly ameliorated hyperglycaemia, hyperlipidaemia, and insulin resistance in diabetic rats (p < 0.05). It also mitigated the disarranged morphology and inflammation of skeletal muscle associated with T2DM (p < 0.05). Crucially, exercise training suppressed muscular excessive mitochondrial fission in the soleus muscle of diabetic rats (p < 0.05), and enhanced irisin and p-AMPK levels significantly (p < 0.05). However, exercise-induced irisin and p-AMPK expression were inhibited by cycloRGDyk treatment (p < 0.05). Furthermore, the administration of CycloRGDyk blocked the effects of exercise training in reducing excessive mitochondrial fission and inflammation in the soleus muscle of diabetic rats, as well as the positive effects of exercise training on improving hyperlipidemia and insulin sensitivity in diabetic rats (p < 0.05). These results indicate that regular exercise training effectively ameliorates insulin resistance and glucolipid metabolic dysfunction, and reduces inflammation in skeletal muscle. These benefits are partially mediated by reductions in mitochondrial fission through the irisin/AMPK signalling pathway.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Fibronectins , Inflammation , Insulin Resistance , Mitochondrial Dynamics , Muscle, Skeletal , Physical Conditioning, Animal , Rats, Wistar , Animals , Fibronectins/metabolism , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy , Rats , Muscle, Skeletal/metabolism , Inflammation/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Signal Transduction , Streptozocin
10.
BMC Neurol ; 24(1): 144, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724916

ABSTRACT

BACKGROUND: Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. There is no standardized method for deriving an optimal level of assistance, underscoring the importance of addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton robot by applying a novel optimization technique derived from the muscle synergy index. METHODS: Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4-5 times/week). The optimal robot assist rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram (EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial evaluation. The primary outcomes were the Fugl-Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were examined using the Wilcoxon signed-rank sum test. RESULTS: All 12 patients completed the procedure without any adverse events. Two participants were excluded from the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). The shoulder pain outcomes remained unchanged or improved in all patients. CONCLUSIONS: The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity function in patients with severe stroke in the chronic phase.


Subject(s)
Electromyography , Exoskeleton Device , Feasibility Studies , Muscle, Skeletal , Shoulder , Stroke Rehabilitation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Aged , Shoulder/physiopathology , Shoulder/physiology , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Exercise Therapy/methods , Stroke/physiopathology , Robotics/methods , Biomechanical Phenomena/physiology , Adult
11.
J Neuroeng Rehabil ; 21(1): 69, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725065

ABSTRACT

BACKGROUND: In the practical application of sarcopenia screening, there is a need for faster, time-saving, and community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel feature importance estimation method. METHODS: A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance during classification. RESULTS: Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet transform coefficients (CWT_kurtosis) had the highest feature impact scores. CONCLUSION: This study proposed a method for community-based sarcopenia screening using sEMG signals of forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.


Subject(s)
Electromyography , Hand Strength , Independent Living , Machine Learning , Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/physiopathology , Electromyography/methods , Aged , Male , Female , Hand Strength/physiology , China , Middle Aged , Muscle, Skeletal/physiopathology , Support Vector Machine , Aged, 80 and over , East Asian People
12.
Cells ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38727321

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , Muscular Atrophy, Spinal , Animals , Lipopolysaccharides/pharmacology , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Mice, Inbred C57BL , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Inflammation/pathology
13.
Sci Rep ; 14(1): 10635, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724575

ABSTRACT

It is well known that hyperthermia greatly impairs neuromuscular function and dynamic balance. However, whether a greater level of hyperthermia could potentially alter the lower limb simulated muscle activation when crossing an obstacle in female participants remains unknown. Therefore we examined the effect of a systematic increase in oral temperature on lower limb simulated muscle activation when crossing an obstacle in female participants. Eighteen female participants were recruited where they underwent a control trial (Con) and two progressive passive heating trials with Δ 1°C and Δ 2°C increase of oral temperature (Toral) using a 45°C water bath. In each trial, we assessed lower limb simulated muscle activation when crossing an obstacle height of 10%, 20%, and 30% of the participant's leg length and toe-off, toe-above-obstacle and heel-strike events were identified and analyzed. In all events, the lower limb simulated muscle activation were greater in Δ2°C than Δ1°C and Con when both leading and trailing limbs crossed the obstacle height of 20% and 30% leg length (all p < 0.001). However, the lower limb simulated muscle activation were not different between Δ1°C and Con across all obstacle heights (p > 0.05). This study concluded that a greater level of hyperthermia resulted in a greater lower limb simulated muscle activation to ensure safety and stability when females cross an obstacle height of 20% leg length or higher.


Subject(s)
Muscle, Skeletal , Humans , Female , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Adult , Young Adult , Hyperthermia/physiopathology , Lower Extremity/physiology
14.
Sci Rep ; 14(1): 10631, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724633

ABSTRACT

Higher fat-to-muscle mass ratio (FMR) is reported to be a risk factor for various diseases, including type 2 diabetes and cardiovascular diseases, and mortality. Although this association suggests that reducing FMR may help to prevent certain diseases and mortality, the relationship between FMR and lifestyle factors is unclear. Therefore, we performed a cross-sectional study with the aim to elucidate this relationship. This cross-sectional study included 1518 healthy Japanese adults aged 30 to 64 years. We measured FMR in the whole body, arms, legs, and trunk and assessed various lifestyle factors. Then, we performed forced entry multiple regression analyses for FMR with the following variables: sex, age, physical activity, dietary intake, sleep quality, cigarette smoking, stress levels, and body mass index. As a result, whole-body and regional FMRs were correlated with female sex (ß = 0.71); age (ß = 0.06); physical activity (ß = - 0.07); dietary intake of protein (ß = - 0.12), carbohydrate (ß = 0.04), sodium (ß = 0.13), and fiber (ß = - 0.16); and body mass index (ß = 0.70). The results suggest that in the Japanese middle-aged population, low FMR is associated with certain lifestyle factors, i.e. higher physical activity and a diet with higher protein and fiber and lower carbohydrate and sodium, independent of age, sex, and body mass index.


Subject(s)
Dietary Carbohydrates , Dietary Fiber , Dietary Proteins , Exercise , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Exercise/physiology , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Dietary Carbohydrates/administration & dosage , Body Mass Index , Japan , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Sodium, Dietary/administration & dosage , Adipose Tissue/metabolism , Body Composition , Life Style
15.
Sci Rep ; 14(1): 10652, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38730110

ABSTRACT

The recessive T allele of the missense polymorphism rs709596309 C > T of the leptin receptor gene is associated with intramuscular fat. However, its overall impact on pork production is still partial. In this work, we investigated the all-round effects of the TT genotype on lean growth efficiency and carcass, meat and fat quality using data from an experiment that compared the performance of 48 TT and 48 C- (24 CT and 24 CC) Duroc barrows. The TT pigs were less efficient for lean growth than the C- pigs. Although heavier, their carcasses had less lean content, were shorter and had lighter loins. Apart from increasing marbling and saturated fatty acid content, changes caused by the TT genotype in meat and fat quality are likely not enough to be perceived by consumers. The effect on visual marbling score exceeded that on intramuscular fat content, which suggests a direct influence of the T allele on the pattern of fat distribution in muscle. With current low-protein diets, the T allele is expected to be cost-effective only in niche markets where a very high level of marbling is critical.


Subject(s)
Receptors, Leptin , Animals , Receptors, Leptin/genetics , Swine/genetics , Genotype , Alleles , Meat/analysis , Polymorphism, Single Nucleotide , Adipose Tissue/metabolism , Male , Muscle, Skeletal/metabolism , Phenotype
16.
Support Care Cancer ; 32(6): 339, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733544

ABSTRACT

PURPOSE: We aimed to investigate the relationship between pretreatment gynecologic cancer survival and the physical function of patients with myosteatosis. Understanding this relationship prior to treatment would help healthcare providers identify and refer patients with poor muscle quality to an exercise program prior to treatment. METHODS: We conducted a cross-sectional analysis of 73 GC patients. Physical function was quantified using handgrip strength and an adapted version of the Senior Fitness Test (aerobic endurance not included). The EORTC QLC-C30 was used to evaluate general health quality. Myosteatosis (values below the median muscle radiodensity), muscle mass, and adipose tissue variables were calculated from the computed tomography (CT) scan at the third lumbar vertebra using specific software. RESULTS: Seventy patients (50.9 ± 15.2) were included; 41.5% had stage III or IV disease, and 61.4% had cervical cancer. The myosteatosis group was 11.9 years older and showed reduced functioning compared to the normal-radiodensity group. Age and Timed Up and Go (TUG) test results were shown to be the most reliable predictors of muscle radiodensity in pretreatment gynecological patients according to multivariate regression analysis (R2 = 0.314). CONCLUSION: Gynecological healthcare professionals should be aware that prompt exercise programs might be especially beneficial for older patients with reduced TUG performance to preserve muscle function and quality.


Subject(s)
Genital Neoplasms, Female , Humans , Female , Cross-Sectional Studies , Middle Aged , Aged , Adult , Hand Strength/physiology , Tomography, X-Ray Computed/methods , Quality of Life , Muscle, Skeletal/physiopathology
17.
Function (Oxf) ; 5(3): zqae011, 2024.
Article in English | MEDLINE | ID: mdl-38706958

ABSTRACT

Thanks to recent progress in cancer research, most children treated for cancer survive into adulthood. Nevertheless, the long-term consequences of anticancer agents are understudied, especially in the pediatric population. We and others have shown that routinely administered chemotherapeutics drive musculoskeletal alterations, which contribute to increased treatment-related toxicity and long-term morbidity. Yet, the nature and scope of these enduring musculoskeletal defects following anticancer treatments and whether they can potentially impact growth and quality of life in young individuals remain to be elucidated. Here, we aimed at investigating the persistent musculoskeletal consequences of chemotherapy in young (pediatric) mice. Four-week-old male mice were administered a combination of 5-FU, leucovorin, irinotecan (a.k.a., Folfiri) or the vehicle for up to 5 wk. At time of sacrifice, skeletal muscle, bones, and other tissues were collected, processed, and stored for further analyses. In another set of experiments, chemotherapy-treated mice were monitored for up to 4 wk after cessation of treatment. Overall, the growth rate was significantly slower in the chemotherapy-treated animals, resulting in diminished lean and fat mass, as well as significantly smaller skeletal muscles. Interestingly, 4 wk after cessation of the treatment, the animals exposed to chemotherapy showed persistent musculoskeletal defects, including muscle innervation deficits and abnormal mitochondrial homeostasis. Altogether, our data support that anticancer treatments may lead to long-lasting musculoskeletal complications in actively growing pediatric mice and support the need for further studies to determine the mechanisms responsible for these complications, so that new therapies to prevent or diminish chemotherapy-related toxicities can be identified.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Camptothecin/analogs & derivatives , Animals , Mice , Male , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Muscle, Skeletal/drug effects , Irinotecan/adverse effects , Fluorouracil/adverse effects , Fluorouracil/toxicity , Leucovorin , Camptothecin/adverse effects , Camptothecin/toxicity , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Mice, Inbred C57BL
18.
Function (Oxf) ; 5(3): zqae005, 2024.
Article in English | MEDLINE | ID: mdl-38706964

ABSTRACT

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Muscle, Skeletal , Neuronal Plasticity , Humans , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/blood , Exercise/physiology , Muscle, Skeletal/metabolism , Neuronal Plasticity/physiology , Male , Adult , Lactic Acid/blood , Lactic Acid/metabolism , Protein Precursors/metabolism , Young Adult , Female
19.
Sci Rep ; 14(1): 10448, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714802

ABSTRACT

Hip muscle weakness can be a precursor to or a result of lower limb injuries. Assessment of hip muscle strength and muscle motor fatigue in the clinic is important for diagnosing and treating hip-related impairments. Muscle motor fatigue can be assessed with surface electromyography (sEMG), however sEMG requires specialized equipment and training. Inertial measurement units (IMUs) are wearable devices used to measure human motion, yet it remains unclear if they can be used as a low-cost alternative method to measure hip muscle fatigue. The goals of this work were to (1) identify which of five pre-selected exercises most consistently and effectively elicited muscle fatigue in the gluteus maximus, gluteus medius, and rectus femoris muscles and (2) determine the relationship between muscle fatigue using sEMG sensors and knee wobble using an IMU device. This work suggests that a wall sit and single leg knee raise activity fatigue the gluteus medius, gluteus maximus, and rectus femoris muscles most reliably (p < 0.05) and that the gluteus medius and gluteus maximus muscles were fatigued to a greater extent than the rectus femoris (p = 0.031 and p = 0.0023, respectively). Additionally, while acceleration data from a single IMU placed on the knee suggested that more knee wobble may be an indicator of muscle fatigue, this single IMU is not capable of reliably assessing fatigue level. These results suggest the wall sit activity could be used as simple, static exercise to elicit hip muscle fatigue in the clinic, and that assessment of knee wobble in addition to other IMU measures could potentially be used to infer muscle fatigue under controlled conditions. Future work examining the relationship between IMU data, muscle fatigue, and multi-limb dynamics should be explored to develop an accessible, low-cost, fast and standardized method to measure fatiguability of the hip muscles in the clinic.


Subject(s)
Electromyography , Exercise , Hip , Muscle Fatigue , Humans , Electromyography/methods , Muscle Fatigue/physiology , Male , Exercise/physiology , Adult , Hip/physiology , Female , Muscle, Skeletal/physiology , Young Adult , Knee/physiology
20.
Front Immunol ; 15: 1396927, 2024.
Article in English | MEDLINE | ID: mdl-38690276

ABSTRACT

Background: Immunotherapy stands as a pivotal modality in the therapeutic landscape for the treatment of advanced hepatocellular carcinoma, yet responses vary among patients. This study delves into the potential impact of sarcopenia, myosteatosis and adiposity indicators, as well as their changes during immunotherapy, on treatment response and prognosis in patients with advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Methods: In this retrospective analysis, 116 patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors were recruited. Skeletal muscle, intramuscular, subcutaneous, and visceral adipose tissue were assessed by computed tomography at the level of the third lumbar vertebrae before and after 3 months of treatment. Sarcopenia and myosteatosis were evaluated by skeletal muscle index and mean muscle density using predefined threshold values. Patients were stratified based on specific baseline values or median values, along with alterations observed during the treatment course. Overall survival (OS) and progression-free survival (PFS) were compared using the log-rank test and a multifactorial Cox proportional risk model. Results: A total of 116 patients were recruited and divided into two cohorts, 81 patients for the training set and 35 patients for the validating set. In the overall cohort, progressive sarcopenia (P=0.021) and progressive myosteatosis (P=0.001) were associated with objective response rates, whereas progressive myosteatosis (P<0.001) was associated with disease control rates. In the training set, baseline sarcopenia, myosteatosis, and subcutaneous and visceral adipose tissue were not significantly associated with PFS and OS. In multivariate analysis adjusting for sex, age, and other factors, progressive sarcopenia(P=0.002) and myosteatosis (P=0.018) remained independent predictors of PFS. Progressive sarcopenia (P=0.005), performance status (P=0.006) and visceral adipose tissue index (P=0.001) were all independent predictors of OS. The predictive models developed in the training set also had good feasibility in the validating set. Conclusion: Progressive sarcopenia and myosteatosis are predictors of poor clinical outcomes in patients with advanced hepatocellular carcinoma receiving immune checkpoint inhibitors, and high baseline visceral adiposity is associated with a poorer survival.


Subject(s)
Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Sarcopenia , Humans , Sarcopenia/etiology , Sarcopenia/diagnosis , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Middle Aged , Liver Neoplasms/mortality , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/drug therapy , Retrospective Studies , Aged , Prognosis , Adult , Muscle, Skeletal/pathology , Adiposity
SELECTION OF CITATIONS
SEARCH DETAIL
...